首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jendrossek V  Müller I  Eibl H  Belka C 《Oncogene》2003,22(17):2621-2631
Induction of apoptosis contributes to the cytotoxic action of the intravenously applicable alkylphosphocholine erucylphosphocholine (ErPC). To define molecular requirements for ErPC-induced apoptosis, activation of caspases-8, -9 and -3 and cleavage of the caspase-3 substrates PARP and ICAD were tested in normal Jurkat T cells, Jurkat cells resistant to death receptor (CD95 or TNFalpha-related apoptosis inducing ligand (TRAIL)-induced apoptosis, Jurkat cells lacking caspase-8 or Fas-associated death domain (FADD) Jurkat cells expressing a dominant-negative caspase-9 or overexpressing Bcl-2 as well as BJAB B-lymphoma cells expressing a dominant-negative FADD (FADD-DN). ErPC induced a time- and dose-dependent apoptotic cell death in Jurkat and BJAB cells, which was characterized by breakdown of the phosphatidylserine asymmetry, depolarization of the mitochondrial membrane potential, release of cytochrome c, activation of caspases-9, -8 and -3, cleavage of PARP and ICAD, as well as chromatin condensation. ErPC-induced apoptosis was independent from CD95-receptor signaling and FADD since CD95- and TRAIL-resistant, caspase-8- and FADD-negative Jurkat cells, as well as BJAB cells expressing FADD-DN were sensitive to ErPC-induced apoptosis. In contrast, inhibition of caspase-9 and overexpression of Bcl-2 significantly reduced ErPC-induced caspase activation and apoptosis. Thus, ErPC triggers apoptosis via a Bcl-2-dependent mitochondrial but death receptor-independent pathway.  相似文献   

2.
Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome c, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome c release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome c, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing in vivo.  相似文献   

3.
Suliman A  Lam A  Datta R  Srivastava RK 《Oncogene》2001,20(17):2122-2133
Tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis. TRAIL induces apoptosis via death receptors (DR4 and DR5) in a wide variety of tumor cells but not in normal cells. The objectives of this study are to investigate the intracellular mechanisms by which TRAIL induces apoptosis. The death receptor Fas, upon ligand binding, trimerizes and recruits the adaptor protein FADD through the cytoplasmic death domain of Fas. FADD then binds and activates procaspase-8. It is unclear whether FADD is required for TRAIL-induced apoptosis. Here we show that the signaling complex of DR4/DR5 is assembled in response to TRAIL binding. FADD and caspase-8, but not caspase-10, are recruited to the receptor, and cells deficient in either FADD or caspase-8 blocked TRAIL-induced apoptosis. In addition, TRAIL initiates the activation of caspases, the loss of mitochondrial transmembrane potential (Deltapsi(m)), the cleavage of BID, and the redistribution of mitochondrial cytochrome c. Treatment of Jurkat cells with cyclosporin A delayed TRAIL-induced Deltapsi(m), caspase-3 activation and apoptosis. Similarly, Overexpression of Bcl-2 or Bcl-X(L) delayed, but did not inhibit, TRAIL-induced Deltapsi(m) and apoptosis. In contrast, XIAP, cowpox virus CrmA and baculovirus p35 inhibited TRAIL-induced apoptosis. These data suggest that death receptors (DR4 and DR5) and Fas receptors induced apoptosis through identical signaling pathway, and TRAIL-induced apoptosis via both mitochondrial-dependent and -independent pathways.  相似文献   

4.
Targeting cannabinoid receptors has recently been shown to trigger apoptosis and offers a novel treatment modality against malignancies of the immune system. However, the precise mechanism of apoptosis in such cancers has not been previously addressed. In this study, we used human Jurkat leukemia cell lines with defects in intrinsic and extrinsic signaling pathways to elucidate the mechanism of apoptosis induced by Delta9-tetrahydrocannabinol (THC). We observed that Jurkat cells deficient in FADD or caspase-8 were partially resistant to apoptosis, while dominant-negative caspase-9 mutant cells were completely resistant to apoptosis. Use of caspase inhibitors confirmed these results. Furthermore, overexpression of Bcl-2 rendered the cells resistant to THC at early time points but not upon prolonged exposure. THC treatment led to loss of Deltapsi(m), in both wild-type and FADD-deficient Jurkat cells thereby suggesting that THC-induced intrinsic pathway was independent of FADD. THC treatment of wild-type Jurkat cells caused cytochrome c release, and cleavage of caspase-8, -9, -2, -10, and Bid. Caspase-2 inhibitor blocked THC-induced caspase-3 in wild-type Jurkat cells but not loss of Deltapsi(m). Together, these data suggest that the intrinsic pathway plays a more critical role in THC-induced apoptosis while the extrinsic pathway may facilitate apoptosis via cross-talk with the intrinsic pathway.  相似文献   

5.
BACKGROUND AND PURPOSE: Previously it was shown that combination of death ligand TRAIL and irradiation strongly increases cell kill in several human tumour cell lines. Since Bcl-2 overexpression did not strongly interfere with the efficacy, components of the mitochondrial death pathway are not required for an effective combined treatment. In the present study the minimal molecular prerequisites for the efficacy of a combined treatment were determined. MATERIALS AND METHODS: Apoptosis induction in control, caspase-8 and FADD negative Jurkat cells, BJAB control and FADD-DN cells was analysed by FACS. Activation of caspase-8, -10 and -3 and cleavage of PARP was determined by immunoblotting. TRAIL receptors were activated using recombinant human TRAIL. Surface expression of TRAIL receptors DR4 and DR5 was analysed by FACS. RESULTS: Jurkat T-cells express the agonistic DR5 receptor but not DR4. Presence of FADD was found to be essential for TRAIL induced apoptosis. Caspase-8 negative cells show very low rates of apoptosis after prolonged stimulation with TRAIL. No combined effects of TRAIL with irradiation could be found in FADD-DN overexpressing and FADD deficient cells. However, the combination of TRAIL and irradiation clearly lead to a combined effect in caspase-8 negative Jurkat cells, albeit with reduced death rates. In these cells activation of the alternative initiator caspase-10 could be detected after combined treatment. CONCLUSION: Our data show that a combined therapy with TRAIL and irradiation will only be effective in cells expressing at least one agonistic TRAIL receptor, FADD and caspase-8 or caspase-10.  相似文献   

6.
Caspase-8 plays an essential role in apoptosis triggered by death receptors. Through the cleavage of Bid, a proapoptotic Bcl-2 member, it further activates the mitochondrial cytochrome c/Apaf-1 pathway. Because caspase-8 can be processed also by anticancer drugs independently of death receptors, we investigated its exact role and order in the caspase cascade. We show that in Jurkat cells either deficient for caspase-8 or overexpressing its inhibitor c-FLIP apoptosis mediated by CD95, but not by anticancer drugs was inhibited. In the absence of active caspase-8, anticancer drugs still induced the processing of caspase-9, -3 and Bid, indicating that Bid cleavage does not require caspase-8. Overexpression of Bcl-x(L) prevented the processing of caspase-8 as well as caspase-9, -6 and Bid in response to drugs, but was less effective in CD95-induced apoptosis. Similar responses were observed by overexpression of a dominant-negative caspase-9 mutant. To further determine the order of caspase-8 activation, we employed MCF7 cells lacking caspase-3. In contrast to caspase-9 that was cleaved in these cells, anticancer drugs induced caspase-8 activation only in caspase-3 transfected MCF7 cells. Thus, our data indicate that, unlike its proximal role in receptor signaling, in the mitochondrial pathway caspase-8 rather functions as an amplifying executioner caspase.  相似文献   

7.
Death receptor-induced apoptosis is paradigmatically mediated via the recruitment of FADD adapter molecule to the ligand/receptor complex and subsequent activation of caspase-8. However, several observations provided evidence that components of the mitochondrial apoptosis pathway are involved in death receptor-mediated apoptosis. In this regard, caspase-8-mediated activation of Bid induces the release of cytochrome c from the mitochondria, which, in turn, triggers the formation of the apoptosome protein complex, resulting in the activation of caspase-9. Whereas Bax or Bak were shown to be required for the proapoptotic effect of Bid, Bcl-2 was described to interfere with its action. Up to now, contradictory results regarding the role of Bcl-2 in TRAIL-induced apoptosis have been published. In order to study the influence of Bcl-2 on TRAIL-induced cell death more detailed, we utilized a tetracycline-regulated Bcl-2 expression system in Jurkat T cells. After having analysed the dose response for TRAIL-induced activation of caspase-8, -9, -3, breakdown of the mitochondrial membrane potential, and changes in the apoptotic morphology in cells expressing different Bcl-2 levels, we conclude that overexpression of Bcl-2 mediates a partial resistance towards lower doses of TRAIL that can be overcome when higher doses of TRAIL are applied. Thus, the requirement of the mitochondrial pathway for death receptor-induced apoptosis in type II cells should be reconsidered, since the protective effect of Bcl-2 is limited to lower TRAIL doses or early observation time points.  相似文献   

8.
Tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis. TRAIL induces apoptosis in a wide variety of tumor cells but not in normal cells. Oncogene Bcl-2 can protect cells from apoptosis induced by various stress stimuli. However, it is not clear whether Bcl-2 can regulate TRAIL-induced apoptosis. The objective of this study was to investigate whether Bcl-2 can regulate apoptosis induced by TRAIL. TRAIL initiates the activation of caspases, the loss of mitochondrial transmembrane potential (Delta psi(m)), and the redistribution of mitochondrial cytochrome c. TRAIL has no effect on Delta psi(m) and apoptosis in Jurkat cells deficient in either FADD or caspase-8, suggesting both FADD and caspase-8 are required for TRAIL signaling. Overexpression of Bcl-2 delays, but does not inhibit, TRAIL-induced Delta psi(m), cytochrome c release from mitochondria and apoptosis, whereas etoposide-induced apoptosis is blocked by Bcl-2. XIAP, cowpox virus CrmA and baculovirus p35 inhibits TRAIL-induced apoptosis. These data suggest that TRAIL can be used to kill Bcl-2 positive cells that can not be killed by other class of chemotherapeutic drugs.  相似文献   

9.
Apoptosis is required for proper tissue homeostasis. Defects in apoptosis signaling pathways, thus, contribute to carcinogenesis and chemoresistance. A major goal in chemotherapy is, therefore, to find cytotoxic agents that restore the ability of tumor cells to undergo apoptosis. We show here that the sesquiterpene lactone helenalin (10-50 microM) induces apoptosis in leukemia Jurkat T cells even if they lack the CD95 death receptor or overexpress the antiapoptotic proteins Bcl-x(L) or Bcl-2. Activated peripheral blood mononuclear cells, however, are not affected (10-50 microM helenalin). Helenalin led to a time-dependent (0-24 h) cleavage of the specific caspase-3-like substrate Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin as well as to the proteolytic processing of procaspase-3 and -8. Caspase activation was a necessary requirement for apoptosis because the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk, 50 microM) completely abrogated helenalin-induced DNA fragmentation as well as phosphatidylserin translocation. Although the initiator caspase-8 was activated, the helenalin-induced signaling pathway did not require the CD95 death receptor as shown using cells without or with an antibody (ZB4)-blocked CD95 receptor. Helenalin also did not induce CD95 or CD95-ligand expression. On the other hand, helenalin was found to induce the release of cytochrome c from mitochondria that was not inhibited by the caspase inhibitor zVAD-fmk, which indicated that cytochrome c release precedes caspase activation. Cytochrome c release was accompanied by dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)), which was partly inhibited by zVAD-fmk, which suggests that caspases are involved in loss of DeltaPsi(m). Most importantly, overexpression of the mitochondria protecting proteins Bcl-x(L) or Bcl-2 failed to confer resistance to helenalin-induced apoptosis, although the data presented here suggest that helenalin induces a mitochondria-dependent pathway. Thus, helenalin is a promising experimental cytotoxic agent that possibly points to new strategies to overcome apoptosis resistance attributable to overexpression of antiapoptotic Bcl-2 proteins.  相似文献   

10.
Activation of the CD95 death receptor as well as ionizing radiation induces apoptotic cell death in human lymphoma cells. The activation of caspases is a hallmark of apoptosis induction irrespective of the apoptotic trigger. In contrast to death receptor signaling, the exact mechanisms of radiation-induced caspase activation are not well understood. We provide evidence that both, radiation and CD95 stimulation, induce the rapid activation of caspase-8 and BID followed by apoptosis in Jurkat T-cells. To analyse the relative position of caspase-8 within the apoptotic cascade we studied caspase activation and apoptosis in Jurkat cells overexpressing Bcl-2 or Bcl-xL. Caspase-8 activation, pro-apoptotic BID cleavage and apoptosis in response to radiation were abrogated in these cells, while the responses to CD95 stimulation were only partially attenuated by overexpression of Bcl-2 family members. In parallel, the breakdown of the mitochondrial transmembrane potential (DeltaPsim) in response to radiation was inhibited by overexpression of Bcl-2/Bcl-xL Jurkat cells genetically deficient for caspase-8 were found to be completely resistant towards CD95. However, radiation-induced apoptotic responses in caspase-8-negative cells displayed only a modest reduction. We conclude that ionizing radiation activates caspase-8 and BID downstream of mitochondrial damage suggesting that, in contrast to CD95, both events function as executioners rather than initiators of the apoptotic process.  相似文献   

11.
In this report, we have assessed the role of IFN-gamma as a sensitizing agent in apoptosis mediated by activation of death receptor CD95 in breast tumor cells. Treatment of the tumor cell lines MCF-7 and MDA-MB231 with IFN-gamma significantly facilitated apoptosis induced by CD95 receptor ligation at the plasma membrane, independently of p53 status. In contrast, IFN-gamma treatment did not enhance the apoptotic effect of the DNA-damaging drug, doxorubicin. Analysis of apoptosis regulators indicated that caspase-8 mRNA and protein levels were up-regulated in both of the cell lines after treatment with IFN-gamma. Furthermore, IFN-gamma sensitized MCF-7 and MDA-MB231 cells to CD95-mediated activation of caspase-8, induction of cytochrome c release from mitochondria, and processing of caspase-9. Release of cytochrome c, caspases activation, and apoptosis were prevented in MCF-7 cells overexpressing Bcl-2. Altogether these results indicate that IFN-gamma, maybe through the elevation of caspase-8 levels, sensitizes human breast tumor cells to a death receptor-mediated, mitochondria-operated pathway of apoptosis.  相似文献   

12.
Arsenic trioxide (As2O3, arsenite) efficiently kills cells from various hematologic malignancies and has successfully been employed especially for the treatment of acute promyelocytic leukemia. There and in lymphoid cells, we demonstrated that As2O3 induces cell death in a caspase-2- and -9-independent fashion. Here, we address a potential role of death receptor signaling through the FADD/caspase-8 death-inducing signaling complex in As2O3-induced cell death. In detail, we demonstrate that As2O3 induces cell death independently of caspase-8 or FADD and cannot be blocked by disruption of CD95/Fas receptor ligand interaction. Unlike in death receptor ligation-induced apoptosis, As2O3-induced cell death was not blocked by the broad-spectrum caspase inhibitor z-VAD-fmk or the caspase-8-specific inhibitor z-IETD-fmk. Nevertheless, As2O3-induced cell death occurred in a regulated manner and was abrogated upon Bcl-2 overexpression. In contrast, As2O3-induced cell demise was neither blocked by the caspase-9 inhibitor z-LEHD-fmk nor substantially inhibited through the expression of a dominant negative caspase-9 mutant. Altogether our data demonstrate that As2O3-induced cell death occurs independently of the extrinsic death receptor pathway of apoptosis. Cell death proceeds entirely via an intrinsic, Bcl-2-controlled mitochondrial pathway that does, however, not rely on caspase-9.  相似文献   

13.
The role of Bcl-2 in TRAIL-induced apoptosis has been investigated in lymphoid cells. Here we show that the human prostatic carcinoma cell line PC3 was sensitive to TRAIL treatment whereas PC3 overexpressing of Bcl-2 was resistant. TRAIL receptors ligation in PC3 activated caspases -2, -3, -7, -8, and -9, induced Bid processing, dissipation of mitochondrial transmembrane potential (Delta Psi(m)), and cytochrome c release. We have detected caspases -8 and -3 only in the cytosolic fraction of cells, but caspases -2, -7, and -9 were found both in cytosolic and mitochondrial fractions. Bcl-2 overexpression did not affect caspase-8 activation although it did change the processing pattern of caspase-3. At the same time, Bcl-2 overexpression inhibited the activation of mitochondrial localized caspases -2, -7, and -9. Bcl-2 also abrogated TRAIL-induced cytochrome c release and dissipation of Delta Psi(m). These findings suggest that TRAIL-induced apoptosis in the epithelial cell line PC3 depends both on mitochondrial integrity and caspase activation.  相似文献   

14.
Fulda S  Meyer E  Friesen C  Susin SA  Kroemer G  Debatin KM 《Oncogene》2001,20(9):1063-1075
Apoptosis in response to cellular stress such as treatment with cytotoxic drugs is mediated by effector caspases (caspase-3) which can be activated by different initiator pathways. Here, we report on a cell type specific triggering of death receptor and/or mitochondrial pathways upon drug treatment. In type I cells (BJAB), both the receptor and the mitochondrial pathway were activated upon drug treatment, since blockade of either the receptor pathway by overexpression of dominant negative FADD (FADD-DN) or of the mitochondrial pathway by overexpression of Bcl-X(L) only partially inhibited apoptosis. Drug treatment induced formation of a FADD- and caspase-8-containing CD95 death-inducing signaling complex (DISC) in type I cells resulting in activation of caspase-8 as the most apical caspase. In contrast, in type II cells (Jurkat), apoptosis was predominantly controlled by mitochondria, since overexpression of Bcl-2 completely blocked drug-induced apoptosis, while overexpression of FADD-DN had no protective effect. In these cells, caspases including caspase-8 were activated by mitochondria-driven signaling events and no DISC was detected despite expression levels of CD95, FADD and caspase-8 proteins comparable to type I cells. Likewise, drug-induced CD95 aggregation was predominantly found in type I cells. Bid was cleaved prior to mitochondrial alterations in type I cells providing a molecular link between caspase-8 activation and mitochondrial perturbations, whereas in type II cells, Bid was cleaved downstream of mitochondria. Our findings of a cell type specific response to cytotoxic drugs have implications for the identification of molecular parameters for chemosensitivity or resistance in different tumor cells.  相似文献   

15.
16.
17.
The peroxisome-proliferator-activated receptor (PPAR) gamma agonist, CDDO, is under investigation for use in various malignancies. The mechanisms by which CDDO induces apoptosis are controversial. We have therefore sought to determine these mechanisms using primary chronic lymphocyte leukemic (CLL) cells and Jurkat cell lines with defined apoptotic abnormalities. In these cells, CDDO induced-apoptosis involved caspase-independent loss in mitochondrial membrane potential followed by caspase processing. The pattern of CDDO-induced caspase processing, defined by use of a caspase inhibitor, strongly suggested that caspase-9 was the apical caspase. Moreover, CDDO induced apoptosis in caspase-8 and FADD-deficient but not in Bcl-xL overexpressing Jurkat cells. In CLL cells, CDDO induced an early release of mitochondrial cytochrome c and Smac that preceded apoptosis. Thus, in both cell types, CDDO induced apoptosis primarily by the intrinsic pathway with caspase-9 as the apical caspase. This has important implications in the design of novel agents for the treatment of CLL and other malignancies.  相似文献   

18.
Ren G  Zhao YP  Yang L  Fu CX 《Cancer letters》2008,262(2):190-200
Clitocine, a natural biologically active substance isolated from the mushroom Leucopaxillus giganteus, possesses several bioactivities including antitumor. Here, for the first time, we studied the molecular mechanism of clitocine-induced apoptosis in human cervical cancer cells (HeLa). Clitocine-induced cell death was characterized with the changes in cell morphology, DNA fragmentation, activation of caspase-3, -8, and -9 (like) activities, poly(ADP-ribose) polymerase (PARP) cleavage, release of cytochrome c (cyt c) into cytosol, and increase of Bax:Bcl-2 ratio. These results indicated that the induction of apoptosis by clitocine involved the multiple pathway including death receptor and mitochondrial pathways, and strongly suggested that the mitochondrial pathways were mediated by down-regulation of Bcl-2 and up-regulation of Bax, release of cytochrome c and subsequent activation of caspase-3 followed by down stream events leading to apoptotic mode of cell death.  相似文献   

19.
Resveratrol has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. In the present study, we determined the effect of high intracellular levels of the anti-apoptosis protein Bcl-2 on caspase-3 activation, PLC-gamma1 degradation and cytochrome c release during resveratrol-induced apoptosis. For this, we used U937/vector and U937/Bcl-2 cells, which were generated by transfection of the cDNA of the Bcl-2 gene. As compared with U937/vector, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment with 60 or 100 microM resveratrol for 24 h produced morphological features of apoptosis and DNA fragmentation in U937/vector cells, respectively. This was associated with caspase-3 activation and PLC-gamma1 degradation. In contrast, resveratrol-induced caspase-3 activation and PLC-gamma1 degradation and apoptosis were significantly inhibited in U937/Bcl-2 cells. Bcl-2 overexpressing cells exhibited less cytochrome c release and sustained expression levels of the IAP proteins during resveratrol-induced apoptosis. In addition, these findings indicate that Bcl-2 inhibits resveratrol-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase-3 that is involved in the execution of apoptosis.  相似文献   

20.
J Almenara  R Rosato  S Grant 《Leukemia》2002,16(7):1331-1343
Interactions between the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) and the cyclin-dependent kinase (CDK) inhibitor flavopiridol (FP) were examined in human leukemia cells. Simultaneous exposure (24 h) of myelomonocytic leukemia cells (U937) to SAHA (1 microM) and FP (100 nM), which were minimally toxic alone (1.5 +/- 0.5% and 16.3 +/- 0.5% apoptosis respectively), produced a dramatic increase in cell death (ie 63.2 +/- 1.9% apoptotic), reflected by morphology, procaspase-3 and -8 cleavage, Bid activation, diminished DeltaPsi(m), and enhanced cytochrome c release. FP blocked SAHA-mediated up-regulation of p21(CIP1) and CD11b expression, while inducing caspase-dependent Bcl-2 and pRb cleavage. Similar interactions were observed in HL-60 and Jurkat leukemic cells. Enhanced apoptosis in SAHA/FP-treated cells was accompanied by a marked reduction in clonogenic surivival. Ectopic expression of either dominant-negative caspase-8 (C8-DN) or CrmA partially attenuated SAHA/FP-mediated apoptosis (eg 45 +/- 1.5% and 38.2 +/- 2.0% apoptotic vs 78 +/- 1.5% in controls) and Bid cleavage. SAHA/FP induced-apoptosis was unaffected by the free radical scavenger L-N-acetyl cysteine or the PKC inhibitor GFX. Finally, ectopic Bcl-2 expression marginally attenuated SAHA/FP-related apoptosis/cytochrome c release, and failed to restore clonogenicity in cells exposed to these agents. Together, these findings indicate that SAHA and FP interact synergistically to induce mitochondrial damage and apoptosis in human leukemia cells, and suggest that this process may also involve engagement of the caspase-8-dependent apoptotic cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号