首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent times, there were considerable efforts made to promote the use of environmentally friendly and biodegradable natural insecticides and repellents, particularly from botanical sources. The present study explored the effects of crude leaf ethyl acetate, acetone, and methanol extracts of Aegle marmelos (L.) Correa ex Roxb, Andrographis lineata Wallich ex Nees., Andrographis paniculata (Burm.f.) Wallich ex Nees., Cocculus hirsutus (L.) Diels, Eclipta prostrata L., and Tagetes erecta L. on repellent activity against Culex tritaeniorhynchus Giles. The maximum repellent activity was observed at 500 ppm in methanol extracts of A. marmelos, ethyl acetate extracts of A. lineata, C. hirsutus, and E. prostrata and the mean complete protection time ranged from 120 to 150 min with the different extracts tested. The ethyl acetate extract of A. lineata showed 100% repellency in 120 min; acetone extracts of A. marmelos and C. hirsutus and methanol extract of T. erecta showed complete protection in 90 min at 250 ppm, respectively. These results suggest that the leaf extracts of A. marmelos, A. lineata, and C. hirsutus have the potential to be used as an ideal eco-friendly approach for the control of the C. tritaeniorhynchus. Therefore, this study provides first report on the repellent activity against Japanese encephalitis, C. tritaeniorhynchus of plant extracts from Southern India.  相似文献   

2.
Anopheles subpictus and Culex tritaeniorhynchus have developed resistance to various synthetic insecticides, making its control increasingly difficult. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The leaf acetone, chloroform, ethyl acetate, hexane, and methanol extracts of Aegle marmelos (Linn.) Correa ex Roxb, Andrographis lineata Wallich ex Nees., Andrographis paniculata (Burm.f.) Wall. ex Nees., Cocculus hirsutus (L.) Diels, Eclipta prostrata L., and Tagetes erecta L. were tested against fourth-instar larvae of malaria vector, A. subpictus Grassi and Japanese encephalitis vector, C. tritaeniorhynchus Giles (Diptera: Culicidae). All plant extracts showed moderate larvicidal effects after 24 h of exposure at 1,000 ppm; however, the highest larval mortality was found in leaf ethyl acetate of A. marmelos, E. prostrata, hexane, methanol of A. paniculata and C. hirsutus against the larvae of A. subpictus (LC50 = 167.00, 78.28, 67.24, 142.83 ppm; LC90 = 588.31, 360.75, 371.91, and 830.01 ppm) and against the larvae of C. tritaeniorhynchus (LC50 = 99.03, 119.89, 88.50, 105.19 ppm; LC90 = 479.23, 564.85, 416.39, and 507.86 ppm), respectively. These results suggest that the leaf hexane extract of A. paniculata and ethyl acetate extract of E. prostrata have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. tritaeniorhynchus. Therefore, this study provides first report on the mosquito larvicidal activity of plant extracts against vectors from Southern India.  相似文献   

3.
Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The leaf acetone, ethyl acetate, and methanol extracts of Aegle marmelos (Linn.) Correa ex Roxb, Andrographis lineata Wallich ex Nees, and Cocculus hirsutus (L.) Diels were tested for oviposition-deterrent, ovicidal, and repellent activities against Anopheles subpictus Grassi (Diptera: Culicidae). The percentage of effective oviposition repellency of 92.60 , 93.04, 95.20, 88.26, 92.80, 94.01, 95.77, 96.93, and 92.54 at 500 ppm and the lowest repellency of 47.14, 58.00, 56.52, 64.93, 71.09, 66.42, 50.62, 57.62, and 65.73 at 31.25 ppm in acetone, ethyl acetate, and methanol extracts of Aegle marmelos, Andrographis lineata, and Cocculus hirsutus, respectively. The oviposition activity index (OAI) value of acetone, ethyl acetate, and methanol extracts of Aegle marmelos, Andrographis lineata, and Cocculus hirsutus at 500 ppm were −0.86, −0.87, −0.90, −0.78, −0.87, −0.86, −0.91, −0.94, and −0.86 respectively. The OAI values revealed that the solvent plant extracts have deterrent effect, and they caused a remarkable negative response resulting in oviposition of very few eggs. Mean percent hatchability of the ovicidal activity was observed 24 h after treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100% with ethyl acetate extract of Aegle marmelos, methanol extracts Aegle marmelos, Andrographis lineata, and Cocculus hirsutus were exerted at 1,000 ppm. The maximum repellent activity was observed at 500 ppm in methanol extracts of Aegle marmelos, Andrographis lineata, and ethyl acetate extract of Cocculus hirsutus, and the mean complete protection time ranged from 90 to 120 min with the different extracts tested. These results suggest that the leaf extracts of Aegle marmelos, Andrographis lineata, and Cocculus hirsutus have the potential to be used as an ideal ecofriendly approach for the control of the Anopheles subpictus. Therefore, this study provides first report on the oviposition, ovicidal, and repellent activities against malaria vector, Anopheles subpictus of plant extracts from Southern India.  相似文献   

4.
Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The purpose of the present study was to assess the effect of leaf ethyl acetate, acetone and methanol extracts of Aegle marmelos (L.) Correa ex Roxb (Rutaceae), Andrographis lineata Wallich ex Nees. (Acanthaceae), Andrographis paniculata (Burm.f.) Wall. ex Nees. (Acanthaceae), Cocculus hirsutus (L.) Diels (Menispermaceae), Eclipta prostrata L. (Asteraceae) and Tagetes erecta L. (Compositae) on ovicidal and oviposition-deterrent activities against Culex tritaeniorhynchus Giles (Diptera: Culicidae). The percentage of egg hatching in methanol extracts of Andrographis lineata, Cocculus hirsutus and T. erecta were 16, 12 and 16 exerted at 500 ppm, respectively. The percentage of effective oviposition repellency was 97.77 at 500 ppm and the lowest repellency was 42.06 at 31.25 ppm in methanol and acetone extracts of Andrographis lineata and Andrographis paniculata, respectively. The oviposition activity index values revealed that the solvent plant extracts have deterrent effect, and they caused a remarkable negative response resulting in oviposition of very few eggs. These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal ecofriendly approach for the control of the Culex tritaeniorhynchus.  相似文献   

5.
The present study was based on assessments of the antiparasitic activities to determine the efficacies of leaf hexane, chloroform, ethyl acetate, acetone and methanol extracts of Aegle marmelos (Linn.) Correa ex Roxb, Andrographis lineata Wallich ex Nees., Andrographis paniculata (Burm.f.) Wallich ex Nees., Cocculus hirsutus (L.) Diels, Eclipta prostrata L., and Tagetes erecta L. against the adult cattle tick Haemaphysalis bispinosa Neumann 1897 (Acarina: Ixodidae), the larvae of Rhipicephalus (Boophilus) microplus Canestrini 1887 (Acari: Ixodidae) and sheep fluke Paramphistomum cervi Zeder 1790 (Digenea: Paramphistomatidae). All plant extracts showed moderate toxic effect on parasites after 24 h of exposure; however, the highest parasitic activity was found in leaf ethyl acetate extract of A. lineata, methanol extract of A. marmelos, A. paniculata, and C. hirsutus against H. bispinosa (LC50 = 395.27, 358.45, 327.21 and 420.50 ppm); ethyl acetate extract of A. paniculata, C. hirsutus, methanol extracts of A. marmelos, A. lineata, and E. prostrata against the larvae of R. microplus (LC50 = 207.70, 258.61, 134.09, 206.00, and 274.33 ppm); hexane extract of A. lineata, ethyl acetate extract of A. paniculata, E. prostrata, acetone extracts of T. erecta, methanol extracts of A. marmelos and C. hirsutus against P. cervi (LC50 = 254.23, 451.17, 425.73, 253.60, 542.71, and 360.17 ppm), respectively. The present study is the first report on the veterinary parasitic activity of plant extracts from Southern India.  相似文献   

6.
Mosquitoes are insect vectors responsible for the transmission of parasitic and viral infections to millions of people worldwide, with substantial morbidity and mortality. Infections transmitted by mosquitoes include malaria, yellow fever, chikungunya, filariasis and other arboviruses. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The adulticidal activities of crude hexane, benzene, ethyl acetate, acetone and methanol leaf extracts of Acalypha alnifolia were assayed for their toxicity against three important vector mosquitoes, viz., Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract were observed. The LC50 values of A. alnifolia leaf extracts against adulticidal activity of (hexane, benzene, ethyl acetate, acetone and methanol) A. aegypti, A. stephensi and C. quinquefasciatus were the following: A. aegypti values were 371.87, 342.97, 320.17, 300.86 and 279.75 ppm; A. stephensi values were 358.35, 336.64, 306.10, 293.01 and 274.76 ppm; C. quinquefasciatus values were 383.59, 354.13, 327.74, 314.33 and 291.71 ppm. The results of the repellent activity of hexane, benzene, ethyl acetate, acetone and methanol extract of A. alnifolia plant at three different concentrations of 1.0, 3.0, and 5.0 mg/cm2 were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, this plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100 % with methanol extract of A. alnifolia was exerted at 125 and 300 ppm. The larval density was decreased after the treatment of plant extracts at the breeding sites (water bodies system) of vector mosquitoes, and hence, these plant extracts are suitable alternatives of synthetic insecticides for mosquito vector management.These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This study provides first report on the mosquito ovicidal, repellent and adulticidal activities of these plant extracts against mosquito vector species from India.  相似文献   

7.
Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the adulticidal, repellent, and ovicidal potential of the crude hexane, ethyl acetate, benzene, aqueous, and methanol solvent extracts from the medicinal plants Andrographis paniculata, Cassia occidentalis, and Euphorbia hirta against the medically important mosquito vector, Anopheles stephensi (Diptera: Culicidae).The adult mortality was observed after 24 h of exposure. All extracts showed moderate adulticide effects; however, the highest adult mortality was found in methanol extract of A. paniculata followed by C. occidentalis and E. hirta against the adults of A. stephensi with LC50 and LC90 values of 210.30, 225.91, and 263.91 ppm and 527.31, 586.36, and 621.91 ppm, respectively. The results of the repellent activity of hexane, ethyl acetate, benzene, aqueous, and methanol extract of A. paniculata, C. occidentalis, and E. hirta plants at three different concentrations of 1.0, 3.0, and 6.0 mg/cm2 were applied on skin of forearm in man and exposed against adult female mosquitoes. In this observation, these three plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100 % with methanol extract of A. paniculata exerted at 150 ppm and aqueous, methanol extract of C. occidentalis and E. hirta were exerted at 300 ppm. These results suggest that the leaf extracts of A. paniculata, C. occidentalis, and E. hirta have the potential to be used as an ideal eco-friendly approach for the control of the A. stephensi. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management program.  相似文献   

8.
Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The aim of this study was to evaluate the adulticidal activity and adult emergence inhibition (EI) of leaf hexane, chloroform, ethyl acetate, acetone, and methanol extracts of Aegle marmelos (Linn.) Correa ex Roxb, Andrographis lineata Wallich ex Nees., Andrographis paniculata (Burm.f.) Wall. ex Nees., Cocculus hirsutus L. Diels, Eclipta prostrata L., and Tagetes erecta L. tested against malarial vector, Anopheles subpictus Grassi (Diptera: Culicidae). All plant extracts showed moderate adulticidal activity and EI effects after 24 h of exposure at 1,000 ppm; however, the highest adulticidal activity was observed in ethyl acetate extract of A.lineata, chloroform extract of A.paniculata, acetone extract of C.hirsutus, and methanol extract of T.erecta (LD50 = 126.92, 95.82, 109.40, and 89.83 ppm; LD90 = 542.95, 720.82, 459.03, and 607.85 ppm); and effective EI was found in leaf acetone extract of the A. marmelos, ethyl acetate extract of A.lineata, methanol extracts of C. hirsutus, and T.erecta, (EI50 = 128.14, 79.39, 143.97, and 92.82 ppm; EI90 = 713.53, 293.70, 682.72, and 582.59 ppm), respectively, against A. subpictus. These results suggest that the leaf methanol extract of C. hirsutus and T.erecta have the potential to be used as an ideal eco-friendly approach for the control of A. subpictus. Therefore, this study provides first report on the mosquito adulticidal activity and EI of plant extracts against malaria vector.  相似文献   

9.
The purpose of the present study was to assess the effect of crude extracts of marine actinobacteria on larvicidal, repellent, and ovicidal activities against Culex tritaeniorhynchus and Culex gelidus (Diptera: Culicidae). The early fourth instar larvae of C. tritaeniorhynchus and C. gelidus, reared in the laboratory, were used for larvicidal, ovicidal, and repellent assay with crude extracts of actinobacteria. Saccharomonospora spp. (LK-1), Streptomyces roseiscleroticus (LK-2), and Streptomyces gedanensis (LK-3) were identified as potential biocide producers. Based on the antimicrobial activity, three strains were chosen for larvicidal activity. The marine actinobacterial extracts showed moderate to high larvicidal effects after 24 h of exposure at 1,000 ppm and the highest larval mortality was found in extract of LK-3 (LC50 = 108.08 ppm and LC90 = 609.15 ppm) against the larvae of C. gelidus and (LC50 = 146.24 ppm and LC90 = 762.69 ppm) against the larvae of C. tritaeniorhynchus. Complete protections for 240 min were found in crude extract of LK-2 and LK-3 at 1,000 ppm, against mosquito bites of C. tritaeniorhynchus and C. gelidus, respectively. After 24-h treatment, mean percent hatchability of the ovicidal activity was observed. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Crude extracts of LK-1 and LK-3 showed no hatchability at 1,000 ppm against C. tritaeniorhynchus and C. gelidus, respectively. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. tritaeniorhynchus and C. gelidus.  相似文献   

10.
This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85 % compared with the control group for all the species, with oviposition activity index values of ?0.94, ?0.95, and ?0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84?±?4.08, 38.42?±?3.67, and 79.35?±?2.09 % for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.  相似文献   

11.
Mosquitoes are the major vector for the transmission of malaria, dengue fever, yellow fever, filariasis, schistosomiasis, and Japanese encephalitis. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal, ovicidal, and adulticidal potential of the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts from the medicinal plant Erythrina indica against the medically important mosquito vectors, Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of leaf of E. indica against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus with the LC50 and LC90 values of 69.43, 75.13, and 91.41 ppm and 125.49, 134.31, and 167.14 ppm, respectively. The mean percent hatchability of the eggs was observed after 48 h post treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of E. indica against A. stephensi, A. aegypti, and C. quinquefasciatus exerted 100 % mortality (zero hatchability) at 150, 200, and 250 ppm, respectively. Control eggs showed above 99.3–100 % hatchability. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in methanol extract against A. stephensi followed by A. aegypti and C. quinquefasciatus with the LD50 and LD90 values of 88.76, 94.09, and 119.64 ppm and 160.83, 169.01, and 219.77 ppm, respectively. No mortality was recorded in the control. Our data suggest that the crude hexane, benzene, chloroform, ethyl acetate, and methanol solvent extracts of E. indica have the potential to be used as an eco-friendly approach for the control of the A. stephensi, A. aegypti, and C. quinquefasciatus.  相似文献   

12.
Several diseases are associated to the mosquito–human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100 % mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99–100 % hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in methanol extract against Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus with the LD50 and LD90 values were 120.44, 135.60, and 157.71 ppm and 214.65, 248.35, and 290.95 ppm, respectively. No mortality was recorded in the control. The finding of the present investigation revealed that the root extract of Asparagus racemosus possess remarkable ovicidal, larvicidal and adulticidal activity against medically important vector mosquitoes and this is the low cost and ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito ovicidal, larvicidal and adulticidal activities of the reported Asparagus racemosus root.  相似文献   

13.
Since ancient times, plant and microbial products were used in various aspects. However, their use against insects decreased when chemical products became developed. Recently, concerns increased with respect to public health and environmental security requiring detection of natural products that may be used against insects. In this study, mosquito Larvicidal and ovicidal activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of the leaf of three plants, Eclipta alba, Cardiospermum halicacabum, and Andrographis paniculata, were tested against the early third-instar larvae of Anopheles stephensi (Liston) (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of A. paniculata, E. alba, and C. halicacabum against the larvae of A. stephensi (LC50 = 79.68, 112.56, and 133.01 ppm; LC90 = 154.66, 220.68, and 270.72 ppm), respectively. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100% with methanol and ethyl acetate extract of A. paniculata and methanol extract of E. alba were exerted at 200 ppm and methanol and benzene extract of C. halicacabum exerted at 150 ppm. This is an ideal eco-friendly approach for the control of the malaria vector, A. stephensi. Therefore, this study provides first report on the larvicidal and ovicidal activities against malaria vector, A. stephensi of E. alba plant extracts.  相似文献   

14.
The larvicidal, behavioral, and morphological response of dengue vector, Aedes aegypti treated with deleterious weed, Argemone mexicana, was explored. The 1,000 ppm extracts of A. mexicana leaf, stem, and roots prepared in five different solvents (petroleum ether, hexane, benzene, acetone, and ethanol) were screened for their larvicidal activity against dengue vector establishing the efficacy of petroleum ether and hexane extracts. Other extracts, unable to give 100 % mortality, were considered ineffective and discarded from further study. Larvicidal bioassay conducted with selected extracts confirmed the higher efficacy of hexane extracts exhibiting 1.1- to 1.8-fold more potential than the petroleum ether extracts. The results further revealed 1.6- to 2.4-fold higher efficacy of root extracts than those prepared from the leaves and stem of A. mexicana. The hexane root extract of A. mexicana was found to be the most effective larvicide with LC50 value of 91.331 ppm after 24 h of exposure causing 1.8 and 2.4 fold more toxicity as compared to the hexane leaf and stem extracts, respectively. Prolonged exposure of the larvae to the extracts resulted in increased toxicity potential of the extracts. Observations of the treated larvae revealed excitation, violent vertical, and horizontal movements with aggressive anal biting behavior suggesting effect of extracts on their neuromuscular system. Morphological studies of the treated larvae revealed the demelanization of cuticle and shrinkage of internal cuticle of anal papillae indicating the anal papillae as the probable action sites of the A. mexicana extracts. The potential of A. mexicana as new larvicides against dengue vector are being explored.  相似文献   

15.
The present study aimed to evaluate the essential oil and an isolated compound from the leaves of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. The plant material was macerated and steam distilled using clavenger apparatus for oil extraction. The essential oil was tested at different concentrations of 100, 50, 25, 12.5 and 6.25 ppm concentrations against the larvae of Ae. albopictus. The isolated compound was tested for larvicidal, ovicidal, repellent, oviposition deterrent and adulticidal activities at 10, 5, 2.5, 1.25 and 0.625 ppm concentrations. The essential oil exhibited LC50 values of 194.63 and 199.65 and confertifolin exhibited LC50 values of 2.02 and 3.16 against the second and fourth instar larvae of Ae. albopictus, respectively. The ovicidal activity of 100 % on 0- to 6-h-old eggs, repellent activity of 320.6 min, oviposition deterrent activity of 98.51 % and adulticidal activity of 100 % at 10 ppm concentration of confertifolin were recorded. No mortality of was observed in negative control. To the best of our knowledge, this is the first report on the potential mosquitocidal activities of confertifolin against Ae. albopictus.  相似文献   

16.
Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. In mosquito control programs, botanical origin may have the potential to be used successfully as eggs, larvae, and adult. The larvicidal, ovicidal, and repellent activities of crude benzene and ethyl acetate extracts of leaf of Ervatamia coronaria and Caesalpinia pulcherrima were assayed for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in benzene extract of E. coronaria against the larvae of Anopheles Stephensi, Aedes aegypti, and Culex quinquefasciatus with the LC50 and LC90 values were 79.08, 89.59, and 96.15 ppm and 150.47, 166.04, and 174.10 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h posttreatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. The leaf extract of E. coronaria was found to be most effective than Caesalpinia pulcherrima against eggs/egg rafts of three vector mosquitoes. For E. coronaria, the benzene extract exerted 300, 250, and 200 ppm against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus, respectively. The results of the repellent activity of benzene and ethyl acetate extract of E. coronaria and Caesalpinia pulcherrima plants at three different concentrations of 1.0, 2.5, and 5.0 mg/cm2 were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, these two plant crude extracts gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf solvent plant extracts have the potential to be used as an ideal ecofriendly approach for the control of mosquitoes. This is the first report on the mosquito larvicidal, ovicidal, and repellent activities of the reported E. coronaria and Caesalpinia pulcherrima plants.  相似文献   

17.
This no-choice, laboratory study focuses on the feeding of homogeneous powdered, dried, yeast with different plant extracts on mosquito fourth-instar larvae to determine the effects on their mortality. Screening for antifeedant activity of plant extracts with some known medicinal attributes could lead to the discovery of new agents for vector control. The aim of this study was to investigate the antifeedant activity of crude leaf hexane, ethyl acetate, acetone, and methanol extracts of Andrographis lineata Wallich ex Nees. (Acanthaceae), Anisomeles malabarica (L.) Sims. (Lamiaceae), Argemone mexicana L. (Papaveraceae), Aristolochia bracteolata Lam. (Aristolochiaceae), Chrysanthemum indium L. (Asteraceae), Datura metal L. (Solanaceae), Eclipta prostrata L. (Asteraceae), and Sesbania grandiflora (L.) Pers. (Fibaceae) against the fourth-instar larvae of Anopheles subpictus Grassi (Diptera:Culicidae). All the crude extracts showed antifeedant activity in a dose-dependent manner. The plant extracts exhibited a significant antifeedant activity after 24 and 48 h of exposure; however, the highest larval mortality was found in leaf ethyl acetate extract of A. malabarica, acetone extract E. prostrata, methanol extract of A. lineata, C. indium, and S. grandiflora after 24 h (LC50 = 2.53, 2.82, 2.31, 2.56, and 2.08 mg/mL; LC90 = 6.40, 8.06, 7.45, 6.98, and 6.20 mg/mL), respectively. The hexane extract of A. lineata, D. metal, methanol extract of A. bracteolata and E. prostrata showed larval mortality after 48 h (LC50 = 3.05, 2.11, 3.00, and 2.18 mg/mL; LC90 = 9.06, 6.22, 8.23, and 5.77 mg/mL), respectively. One hundred percent larval mortality was observed in methanol extract of A. lineata, and C. indium after 24 h and the hexane extract of A. lineata and D. metal after 48 h at 10 mg/100 mL. The methanol extracts of A. lineata and C. indium significantly increased larval mortality in comparison to larvae fed with untreated diet. Bacillus thuringiensis subsp. israelensis is widely accepted as a biological pesticide because of its highly specific activity against dipteran insects without adverse effects on other organisms. The feeding deterrent activity of different herbal extracts against the larvae of malaria vector A. subpictus exhibited significantly lower toxicity compare with the bio larvicides, B. thuringiensis. These results suggest that the methanol extract of A. lineata, C. indium, the hexane extract of A. lineata and D. metal have the potential to be used as an ideal eco-friendly approach for the control of the medically important vector A. subpictus. These findings corroborate traditional insecticidal application of selected plants and the results can be extended for the control of mosquitoes.  相似文献   

18.
Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The acetone, chloroform, ethyl acetate, hexane, methanol and petroleum ether extracts of leaf, flower and seed of Cassia auriculata L., Leucas aspera (Willd.), Rhinacanthus nasutus KURZ., Solanum torvum Swartz and Vitex negundo Linn. were tested against fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest mortality was found in leaf petroleum ether, flower methanol extracts of C. auriculata, flower methanol extracts of L. aspera and R. nasutus, leaf and seed methanol extracts of S. torvum and leaf hexane extract of V. negundo against the larvae of A. subpictus (LC50 = 44.21, 44.69, 53.16, 41.07, 35.32, 28.90 and 44.40 ppm; LC90 = 187.31, 188.29, 233.18, 142.66, 151.60, 121.05 and 192.11 ppm, respectively) and against the larvae of C. tritaeniorhynchus (LC50 = 69.83, 51.29, 81.24, 71.79, 44.42, 84.47 and 65.35 ppm; LC90 = 335.26, 245.63, 300.45, 361.83, 185.09, 351.41 and 302.42 ppm, respectively). These results suggest that the leaf petroleum ether, flower methanol extracts of C. auriculata, leaf and seed methanol extracts of S. torvum and leaf hexane extract of V. negundo have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. tritaeniorhynchus. This is the first report on the mosquito larvicidal activity of the medicinal plant extracts.  相似文献   

19.
Cattle tick control has been limited by the resistance of these parasites to synthetic acaricides. Natural products are a possible alternative as they have different mechanisms of action. Acmella oleracea is a native plant with a large cultivated area in the Amazon region and could be easily used for large-scale preparation of a commercial product. This study evaluated the in vitro action of the hexane extract of the aerial parts of A. oleracea on larvae and engorged females of the cattle tick Rhipicephalus microplus. Spilanthol was the major constituent with a content of 14.8 % in the extract. The hexane extract of A. oleracea was highly effective against larvae of R. microplus with an LC50 of 0.8 mg mL?1. Against engorged females, hexane extract of A. oleracea reduced oviposition and hatchability of eggs with an LC50 of 79.7 mg mL?1. Larvae and engorged females were killed by the hexane extract with high efficiency (>95 %) at concentrations of 3.1 and 150.0 mg mL?1, respectively. These results demonstrate that the hexane extract of A. oleracea has significant activity against R. microplus and has potential to be developed into formulations for tick control.  相似文献   

20.
Different extracts of 1,000 ppm were prepared from the leaves of Parthenium hysterophorus using acetone, benzene, petroleum ether, diethyl ether and hexane as the solvents. The efficacy of each extract was assessed against dengue fever vector, Aedes aegypti by evaluating the variations in fecundity, fertility and behavioural response of the female adults. The leaf extracts could cause 70–100% repellency in the oviposition behaviour of the adults. The diethyl ether extract was found to be the most effective extract resulting in maximum effective repellency (99.7%) leading to the highest levels of reduced fecundity and 100% egg mortality followed by benzene extracts causing 93.8% reduced oviposition and 100% ovicidal effect. Hexane and acetone extracts with the least oviposition deterrence of 70–74% and negligible egg mortality (8–9%) proved to be the least effective extracts. The petroleum ether extract had a moderate impact resulting in 93.2% diminished fecundity and 41% ovicidal effect. The behavioural response of female adults of A. aegypti was evaluated by performing spatial repellency and contact irritancy assays. The most significant spatial repellency behaviour was elicited by acetone extracts leading to escape of 80% mosquitoes. Hexane and diethyl ether extracts could cause moderate response with 50–60% escape, while a slight and no reaction was observed on exposure to petroleum ether and benzene extracts, respectively. An interesting observation was the knocked-down activity caused by the hexane extracts with no recovery even after 24 h. A significant contact irritancy response was noticed in the mosquitoes on exposure to acetone leaf extracts resulting in first flight only after 4 s and a total of 12 flights during exposure. No irritancy behaviour was observed on exposure to diethyl ether and benzene leaf extracts. However, as against controls, a slight irritability response was noticed on exposure to hexane leaf extracts resulting in relative irritability of 1.2. Our results suggest the selective efficiency of Parthenium leaf extracts against A. aegypti, as the most effective oviposition deterrent and ovicidal agent was least effective as irritant extract and vice-versa. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号