首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose

Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca2+ compartments in regulating slow wave activity in the guinea pig prostate.

Experimental approach

Standard intracellular membrane potential recording techniques were used.

Key results

The majority (89%) of impaled cells displayed ‘slow wave’ activity. Cyclopiazonic acid (10 µmol·L−1) transiently depolarized (3–9 mV) the membrane potential of the prostatic stroma and transiently increased slow wave frequency. Thereafter, slow wave frequency slowly decreased over 20–30 min. Ryanodine transiently increased slow wave frequency, although after 30 min exposure slow wave frequency and time course returned to near control values. Caffeine (1 mmol·L−1) reduced slow wave frequency, accompanied by membrane depolarization of about 8 mV. Blockade of inositol trisphosphate receptor (IP3R)-mediated Ca2+ release with 2-aminoethoxy-diphenylborate (60 µmol·L−1) or Xestospongin C (3 µmol·L−1) or inhibiting phospholipase C and IP3 formation using U73122 (5 µmol·L−1) or neomycin (1 and 4 mmol·L−1) reduced slow wave frequency, amplitude and duration. The mitochondrial uncouplers, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (1–10 µmol·L−1), carbonyl cyanide m-chlorophenylhydrazone (1–3 µmol·L−1) or rotenone (10 µmol·L−1), depolarized the membrane (8–10 mV) before abolishing electrical activity.

Conclusion and implications

These results suggest that slow wave activity was dependent on the cyclical release of Ca2+ from IP3-controlled internal stores and mitochondria. This implies that intracellular compartments were essential in the initiation and/or maintenance of the regenerative contractile activity in the guinea pig prostate gland.  相似文献   

2.

Background and purpose:

The transient receptor potential (TRP) channels, transient receptor potential melastatin-1 (TRPM8) and transient receptor potential ankyrin-1 (TRPA1), are expressed in subpopulations of sensory neurones and have been proposed to mediate innocuous and noxious cold sensation respectively. The aim of this study was to compare TRPM8 and TRPA1 modulation of glutamatergic afferent transmission within the spinal dorsal horn.

Experimental approach:

Whole cell patch clamp recordings were made from rat spinal cord slices in vitro to examine the effect of TRP agonists and temperature on glutamatergic excitatory postsynaptic currents (EPSCs).

Key results:

Icilin (3 or 100 µmol·L−1), menthol (200 µmol·L−1) and capsaicin (1 µmol·L−1) reduced the amplitude of primary afferent evoked EPSCs in subpopulations of lamina I and II neurones. In a subpopulation of superficial neurones, innocuous cold (threshold 29°C), 3 µmol·L−1 icilin (EC50 1.5 µmol·L−1) and menthol (EC50 263 µmol·L−1) increased the rate of spontaneous miniature EPSCs. In the majority of lamina I and II neurones, 100 µmol·L−1 icilin (EC50 79 µmol·L−1), allyl isothiocyanate (EC50 226 µmol·L−1), cinnamaldehyde (EC50 38 µmol·L−1) and capsaicin (1 µmol·L−1) increased miniature EPSC rate. The response to 100 µmol·L−1, but not 3 µmol·L−1 icilin, was abolished by ruthenium red, while neither was affected by iodoresiniferatoxin. Responsiveness to 3 µmol·L−1, but not to 100 µmol·L−1 icilin, was highly predictive of innocuous cold responsiveness. Neurones responding to 3 µmol·L−1 icilin and innocuous cold were located more superficially than those responding to 100 µmol·L−1 icilin.

Conclusions and implications:

Activation of TRPM8 and TRPA1 presynaptically modulated glutamatergic transmission onto partially overlapping but distinct populations of superficial dorsal horn neurones. Spinal TRPM8 and TRPA1 channels may therefore provide therapeutic targets in cold hyperesthesia.  相似文献   

3.

BACKGROUND AND PURPOSE

Quercetin lowers plasma glucose, normalizes glucose tolerance tests and preserves pancreatic β-cell integrity in diabetic rats. However, its mechanism of action has never been explored in insulin-secreting β-cells. Using the INS-1 β-cell line, the effects of quercetin were determined on glucose- or glibenclamide-induced insulin secretion and on β-cell dysfunctions induced by hydrogen peroxide (H2O2). These effects were analysed along with the activation of the extracellular signal-regulated kinase (ERK)1/2 pathway. N-acetyl-L-cysteine (NAC) and resveratrol, two antioxidants also known to exhibit some anti-diabetic properties, were used for comparison.

EXPERIMENTAL APPROACH

Insulin release was quantified by the homogeneous time resolved fluorescence method and ERK1/2 activation tested by Western blot experiments. Cell viability was estimated by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assay.

KEY RESULTS

Quercetin (20 µmol·L−1) potentiated both glucose (8.3 mmol·L−1)- and glibenclamide (0.01 µmol·L−1)-induced insulin secretion and ERK1/2 phosphorylation. The ERK1/2 (but not the protein kinase A) signalling pathway played a crucial role in the potentiation of glucose-induced insulin secretion by quercetin. In addition, quercetin (20 µmol·L−1), protected β-cell function and viability against oxidative damage induced by 50 µmol·L−1 H2O2 and induced a major phosphorylation of ERK1/2. In the same conditions, resveratrol or NAC were ineffective.

CONCLUSION AND IMPLICATIONS

Quercetin potentiated glucose and glibenclamide-induced insulin secretion and protected β-cells against oxidative damage. Our study suggested that ERK1/2 played a major role in those effects. The potential of quercetin in preventing β-cell dysfunction associated with diabetes deserves further investigation.  相似文献   

4.

Background and purpose:

Piceatannol is more potent than resveratrol in free radical scavenging in association with antiarrhythmic and cardioprotective activities in ischaemic-reperfused rat hearts. The present study aimed to investigate the antiarrhythmic efficacy and the underlying ionic mechanisms of piceatannol in rat hearts.

Experimental approach:

Action potentials and membrane currents were recorded by the whole-cell patch clamp techniques. Fluo-3 fluorimetry was used to measure cellular Ca2+ transients. Antiarrhythmic activity was examined from isolated Langendorff-perfused rat hearts.

Key results:

In rat ventricular cells, piceatannol (3–30 µmol·L−1) prolonged the action potential durations (APDs) and decreased the maximal rate of upstroke (Vmax) without altering Ca2+ transients. Piceatannol decreased peak INa and slowed INa inactivation, rather than induced a persistent non-inactivating current, which could be reverted by lidocaine. Resveratrol (100 µmol·L−1) decreased peak INa without slowing INa inactivation. The inhibition of peak INa or Vmax was associated with a negative shift of the voltage-dependent steady-state INa inactivation curve without altering the activation threshold. At the concentrations more than 30 µmol·L−1, piceatannol could inhibit ICa,L, Ito, IKr, Ca2+ transients and Na+-Ca2+ exchange except IK1. Piceatannol (1–10 µmol·L−1) exerted antiarrhythmic activity in isolated rat hearts subjected to ischaemia-reperfusion injury.

Conclusions and implications:

The additional hydroxyl group on resveratrol makes piceatannol possessing more potent in INa inhibition and uniquely slowing INa inactivation, which may contribute to its antiarrhythmic actions at low concentrations less than 10 µmol·L−1.  相似文献   

5.
6.

Background and purpose:

The aims of the present work were to study the mechanism of the reverse rate dependency of different interventions prolonging cardiac action potential duration (APD).

Experimental approach:

The reverse rate-dependent lengthening effect of APD-prolonging interventions and the possible involvement of IKr (rapid component of the delayed rectifier potassium current) and IK1 (inward rectifier potassium current) were studied by using the standard microelectrode and the whole-cell patch-clamp techniques in dog multicellular ventricular preparations and in myocytes isolated from undiseased human and dog hearts.

Key results:

All applied drugs – dofetilide (1 µmol·L−1), BaCl2 (10 µmol·L−1), BAY-K-8644 (1 µmol·L−1), veratrine (1 µg·mL−1) – lengthened APD in a reverse rate-dependent manner regardless of their mode of action, suggesting that reverse rate dependency may not represent a specific mechanism of APD prolongation. The E-4031-sensitive current (IKr) and the Ba2+-sensitive current (IK1) were recorded during repolarizing voltage ramps having various steepness and also during action potential waveforms with progressively prolonged APD. Gradually delaying repolarization results in smaller magnitude of IKr and IK1 currents at an isochronal phase of the pulses. This represents a positive feedback mechanism, which appears to contribute to the reverse rate-dependent prolongation of action potentials.

Conclusions and implications:

Action potential configuration may influence the reverse rate-dependent APD prolongation due to the intrinsic properties of IKr and IK1 currents. Drugs lengthening repolarization by decreasing repolarizing outward, or increasing depolarizing inward, currents are expected to cause reverse rate-dependent APD lengthening with high probability, regardless of which current they modify.  相似文献   

7.

BACKGROUND AND PURPOSE

The acute effects of PGE2 on bladder smooth muscle and nerves were examined to determine the origin of PGE2-induced spontaneous rhythmic contractions.

EXPERIMENTAL APPROACH

Contraction studies, confocal Ca2+ imaging and electrophysiological recordings in strips of mouse urinary bladder were used to differentiate the effects of PGE2 on bladder smooth muscle and efferent nerves.

KEY RESULTS

PGE2 (50 µM) increased the tone and caused phasic contractions of detrusor smooth muscle strips. Confocal Ca2+ imaging showed that PGE2 increased the frequency of whole-cell Ca2+ transients (WCTs) (72 ± 5%) and intracellular recordings showed it increased the frequency of spontaneous depolarizations, from 0.31·s−1 to 0.90·s−1. Non-selective inhibition of EP receptors using SC-51322 and AH-6809 (10 µM), or the L-type Ca2+ channel blocker nifedipine (1 µM), prevented these phasic contractions and WCTs, and reduced the tone (by 45 ± 7% and 59 ± 6%, respectively). Blocking P2X1 receptors with NF449 (10 µM) caused a small but significant reduction in the frequency of PGE2-induced phasic contractions (24 ± 9%) and WCTs (28 ± 17%) but had no significant effect on spontaneous depolarizations or tone. Inhibiting muscarinic receptors with cyclopentolate (1 µM) had no significant effect on these measures. Spontaneous WCTs became synchronous in PGE2, implying enhanced functional coupling between neighbouring cells. However, the electrical input resistance was unchanged.

CONCLUSIONS AND IMPLICATIONS

It was concluded that depolarization alone is sufficient to explain a functional increase in intercellular coupling and the ability of PGE2 to increase detrusor spontaneous rhythmic activity does not require parasympathetic nerves.  相似文献   

8.

BACKGROUND AND PURPOSE

Diabetic cystopathy is one of the most common and incapacitating complications of diabetes mellitus. This study aimed to evaluate the functional, structural and molecular alterations of detrusor smooth muscle (DSM) in streptozotocin-induced diabetic mice, focusing on the contribution of Ca2+ influx through L-type voltage-operated Ca2+ channels (L-VOCC).

EXPERIMENTAL APPROACH

Male C57BL/6 mice were injected with streptozotocin (125 mg·kg−1). Four weeks later, contractile responses to carbachol, α,β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation were measured in urothelium-intact DSM strips. Cystometry and histomorphometry were performed, and mRNA expression for muscarinic M2/M3 receptors, purine P2X1 receptors and L-VOCC in the bladder was determined.

KEY RESULTS

Diabetic mice exhibited higher bladder capacity, frequency, non-void contractions and post-void pressure. Increased bladder weight, wall thickness, bladder volume and neural tissue were observed in diabetic bladders. Carbachol, α,β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation all produced greater DSM contractions in diabetic mice. The L-VOCC blocker nifedipine almost completely reversed the enhanced DSM contractions in bladders from diabetic animals. The Rho-kinase inhibitor Y27632 had no effect on the enhanced carbachol contractions in the diabetic group. Expression of mRNA for muscarinic M3 receptors and L-VOCC were greater in the bladders of diabetic mice, whereas levels of M2 and P2X1 receptors remained unchanged.

CONCLUSIONS AND IMPLICATIONS

Diabetic mice exhibit features of urinary bladder dysfunction, as characterized by overactive DSM and decreased voiding efficiency. Functional and molecular data suggest that overactive DSM in diabetes is the result of enhanced extracellular Ca2+ influx through L-VOCC.  相似文献   

9.

Aim:

To investigate the effect of evodiamine (a quinolone alkaloid from the fruit of Evodia rutaecarpa) on the progression of Alzheimer''s disease in SAMP8 and APPswe/PS1ΔE9 transgenic mouse models.

Methods:

The mice at age of 5 months were randomized into the model group, two evodiamine (50 mg·kg−1·d−1 and 100 mg·kg−1·d−1) groups and an Aricept (2 mg·kg−1·d−1) group. The littermates of no-transgenic mice and senescence accelerated mouse/resistance 1 mice (SAMR1) were used as controls. After 4 weeks of treatment, learning abilities and memory were assessed using Morris water-maze test, and glucose uptake by the brain was detected using positron emission tomography/computed tomography (PET/CT). Expression levels of IL-1β, IL-6, and TNF-α in brain tissues were detected using ELISA. Expression of COX-2 protein was determined using Western blot.

Results:

In Morris water-maze test, evodiamine (100 mg·kg−1·d−1) significantly alleviated the impairments of learning ability and memory. Evodiamine (100 mg·kg−1·d−1) also reversed the inhibition of glucose uptake due to development of Alzheimer''s disease traits in mice. Furthermore, the dose of evodiamine significantly decreased the expression of IL-1β, IL-6, TNF-α, and COX-2 that were involved in the inflammation due to Alzheimer''s disease.

Conclusion:

The results indicate that evodiamine (100 mg·kg−1·d−1) improves cognitive abilities in the transgenic models of Alzheimer''s disease.  相似文献   

10.

BACKGROUND AND PURPOSE

Exposure to mercury is known to increase cardiovascular risk but the underlying mechanisms are not well explored. We analysed whether chronic exposure to low mercury doses affects endothelial modulation of the coronary circulation.

EXPERIMENTAL APPROACH

Left coronary arteries and hearts from Wistar rats treated with either HgCl2 (first dose 4.6 µg·kg−1, subsequent doses 0.07 µg·kg−1 day−1, 30 days) or vehicle were used. Endothelial cells from pig coronary arteries incubated with HgCl2 were also used.

KEY RESULTS

Mercury treatment increased 5-HT-induced vasoconstriction but reduced acetylcholine-induced vasodilatation. It also reduced nitric oxide (NO) production and the effects of NO synthase inhibition with L-NAME (100 µmol·L−1) on 5-HT and acetylcholine responses. Superoxide anion production and mRNA levels of NOX-1 and NOX-4 were all increased. The superoxide anion scavenger tiron (1 mmol·L−1) reduced 5-HT responses and increased acetylcholine responses only in vessels from mercury-treated rats. In isolated hearts from mercury-treated rats, coronary perfusion and diastolic pressure were unchanged, but developed isovolumetric systolic pressure was reduced. In these hearts, L-NAME increased coronary perfusion pressure and diastolic pressure while it further reduced developed systolic pressure.

CONCLUSIONS AND IMPLICATIONS

Chronic exposure to low doses of mercury promotes endothelial dysfunction of coronary arteries, as shown by decreased NO bioavailability induced by increased oxidative stress. These effects on coronary function increase resistance to flow, which under overload conditions might cause ventricular contraction and relaxation impairment. These findings provide further evidence that mercury, even at low doses, could be an environmental risk factor for cardiovascular disease.  相似文献   

11.

Background and purpose:

Diadenosine polyphosphates are normally present in cells at low levels, but significant increases in concentrations can occur during cellular stress. The aim of this study was to investigate the effects of diadenosine pentaphosphate (Ap5A) and an oxidized analogue, oAp5A on the gating of sheep cardiac ryanodine receptors (RyR2).

Experimental approach:

RyR2 channel function was monitored after incorporation into planar bilayers under voltage-clamp conditions.

Key results:

With10 µmol·L−1 cytosolic Ca2+, a significant ‘hump’ or plateau at the base of the dose–response relationship to Ap5A was revealed. Open probability (Po) was significantly increased to a plateau of approximately 0.2 in the concentration range 100 pmol·L−1–10 µmol·L−1. High Po values were observed at >10 µmol·L−1 Ap5A, and Po values close to 1 could be achieved. Nanomolar levels of ATP and adenosine also revealed a hump at the base of the dose–response relationships, although GTP did not activate at any concentration, indicating a common, high-affinity binding site on RyR2 for adenine-based compounds. The oxidized analogue, oAp5A, did not significantly activate RyR2 via the high-affinity binding site; however, it could fully open the channel with an EC50 of 16 µmol·L−1 (Ap5A EC50 = 140 µmol·L−1). Perfusion experiments suggest that oAp5A and Ap5A dissociate slowly from their binding sites on RyR2.

Conclusions and implications:

The ability of Ap5A compounds to increase Po even in the presence of ATP and their slow dissociation from the channel may enable these compounds to act as physiological regulators of RyR2, particularly under conditions of cellular stress.  相似文献   

12.

Background and purpose:

Intravenous injection of the endocannabinoid anandamide induces complex cardiovascular changes via cannabinoid CB1, CB2 and vanilloid TRPV1 receptors. Recently, evidence has been accumulating that in vitro, but not in vivo, anandamide relaxes blood vessels, via an as yet unidentified, non-CB1 vascular cannabinoid receptor, sensitive to O-1918 (1,3-dimethoxy-5-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-benzene). We here examined whether the anandamide-induced hypotension in urethane-anaesthetized rats was also mediated via a non-CB1 vascular cannabinoid receptor.

Experimental approach:

Effects of two antagonists (O-1918 and cannabidiol) of the non-CB1 vascular cannabinoid receptor on anandamide-induced changes in mean, systolic and diastolic blood pressure (MBP, SBP, DBP), mesenteric (MBF) and renal (RBF) blood flow and heart rate (HR) in urethane-anaesthetized rats was examined.

Key results:

In anaesthetized rats, anandamide (1.5–3 µmol·kg−1) and its stable analogue methanandamide (0.5 µmol·kg−1) caused a delayed and prolonged decrease in MBP, SBP, DBP, MBF and RBF by about 10–30% of the respective basal values without changing HR. In pithed rats, anandamide (3 µmol·kg−1) decreased blood pressure by about 15–20% of the basal value without affecting HR, MBF and RBF. All vascular changes were reduced by about 30–70% by cannabidiol and O-1918 (3 µmol·kg−1, each).

Conclusions and implications:

Non-CB1 cannabinoid vascular receptors, sensitive to O-1918, contribute to the hypotensive effect of anandamide in anaesthetized rats. Activation of these receptors may be therapeutically important as the endocannabinoid system could be activated as a compensatory mechanism in various forms of hypertension.  相似文献   

13.

BACKGROUND AND PURPOSE

Rosiglitazone is an anti-diabetic drug acting as an insulin sensitizer. We recently found that rosiglitazone also inhibits the vascular isoform of ATP-sensitive K+ channels and compromises vasodilatory effects of β-adrenoceptor activation and pinacidil. As its potency for the channel inhibition is in the micromolar range, rosiglitazone may be used as an effective KATP channel inhibitor for research and therapeutic purposes. Therefore, we performed experiments to determine whether other isoforms of KATP channels are also sensitive to rosiglitazone and what their sensitivities are.

EXPERIMENTAL APPROACH

KIR6.1/SUR2B, KIR6.2/SUR1, KIR6.2/SUR2A, KIR6.2/SUR2B and KIR6.2ΔC36 channels were expressed in HEK293 cells and were studied using patch-clamp techniques.

KEY RESULTS

Rosiglitazone inhibited all isoforms of KATP channels in excised patches and in the whole-cell configuration. Its IC50 was 10 µmol·L−1 for the KIR6.1/SUR2B channel and ∼45 µmol·L−1 for KIR6.2/SURx channels. Rosiglitazone also inhibited KIR6.2ΔC36 channels in the absence of the sulphonylurea receptor (SUR) subunit, with potency (IC50= 45 µmol·L−1) almost identical to that for KIR6.2/SURx channels. Single-channel kinetic analysis showed that the channel inhibition was mediated by augmentation of the long-lasting closures without affecting the channel open state and unitary conductance. In contrast, rosiglitazone had no effect on KIR1.1, KIR2.1 and KIR4.1 channels, suggesting that the channel inhibitory effect is selective for KIR6.x channels.

CONCLUSIONS AND IMPLICATIONS

These results suggest a novel KATP channel inhibitor that acts on the pore-forming KIR6.x subunit, affecting the channel gating.

LINKED ARTICLE

This article is commented on by Dart, pp. 23–25 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01990.x  相似文献   

14.

Background:

5-HT2B receptors are localized within the myenteric nervous system, but their functions on motor/sensory neurons are unclear. To explore the role of these receptors, we further characterized the 5-HT2B receptor antagonist RS-127445 and studied its effects on peristalsis and defecation.

Experimental approach:

Although reported as a selective 5-HT2B receptor antagonist, any interactions of RS-127445 with 5-HT4 receptors are unknown; this was examined using the recombinant receptor and Biomolecular Interaction Detection technology. Mouse isolated colon was mounted in tissue baths for isometric recording of neuronal contractions evoked by electrical field stimulation (EFS), or under an intraluminal pressure gradient to induce peristalsis; the effects of RS-127445 on EFS-induced and on peristaltic contractions were measured. Faecal output of rats in grid-bottom cages was measured over 3 h following i.p. RS-127445 and separately, validation of the effective doses was achieved by determining the free, unbound fraction of RS-127445 in blood and brain.

Key results:

RS-127445 (up to 1 µmol·L−1) did not interact with the 5-HT4 receptor. RS-127445 (0.001–1 µmol·L−1) did not affect EFS-induced contractions of the colon, although at 10 µmol·L−1 the contractions were reduced (to 36 ± 8% of control, n= 4). RS-127445 (0.1–10 µmol·L−1) concentration-dependently reduced peristaltic frequency (n= 4). RS-127445 (1–30 mg·kg−1), dose-dependently reduced faecal output, reaching significance at 10 and 30 mg·kg−1 (n= 6–11). In blood and brain, >98% of RS-127445 was protein-bound.

Conclusions and implications:

High-protein binding of RS-127445 indicates that relatively high doses are required for efficacy. The results suggest that 5-HT2B receptors tonically regulate colonic motility.  相似文献   

15.

BACKGROUND AND PURPOSE

Liver X receptor (LXR) agonists are atheroprotective but often induce hypertriglyceridaemia and liver steatosis. We investigated the effect of a novel high-affinity LXR activator, AZ876, on plasma lipids, inflammation and atherosclerosis, and compared the effects with another LXR agonist, GW3965.

EXPERIMENTAL APPROACH

APOE*3Leiden mice were fed an atherogenic diet alone or supplemented with either AZ876 (5 or 20 µmol·kg−1·day−1) or GW3965 (17 µmol·kg−1·day−1) for 20 weeks. Total cholesterol and triglyceride levels were measured using commercial kits. Plasma cytokines were determined by using bead-based multiplex suspension array kits with the Luminex technology. Atherosclerosis was assessed histochemically and lesion composition was assessed by immunohistochemical methods.

KEY RESULTS

Low-dose AZ876 had no effect on plasma or liver lipids, whereas high-dose AZ876 increased plasma triglycerides (+110%) and reduced cholesterol (−16%) compared with controls. GW3965 increased plasma triglycerides (+70%). Low-dose AZ876 reduced lesion area (−47%); and high-dose AZ876 strongly decreased lesion area (−91%), lesion number (−59%) and severity. In either dose, AZ876 did not affect lesion composition. GW3965 reduced atherosclerosis and collagen content of lesions (−23%; P < 0.01). High-dose AZ876 and GW3965, but not low-dose AZ876, reduced inflammation as reflected by lower cytokine levels and vessel wall activation.

CONCLUSIONS AND IMPLICATIONS

We have identified a novel LXR agonist that when given in a low dose inhibits the progression of atherosclerosis without inducing anti-inflammatory effects, liver steatosis or hypertriglyceridaemia. Therefore, the primary protective action of a low-dose AZ876 is likely to be an increased reverse cholesterol transport.  相似文献   

16.
17.

Background and purpose

As a combination of 5-HT selective reuptake inhibitor (SSRI) with 5-HT1A receptor antagonism may yield a rapidly acting antidepressant, WAY-211612, a compound with both SSRI and 5-HT1A receptor antagonist activities, was evaluated in preclinical models.

Experimental approach

Occupancy studies confirmed the mechanism of action of WAY-211612, while its in vivo profile was characterized in microdialysis and behavioural models.

Key results

WAY-211612 inhibited 5-HT reuptake (Ki = 1.5 nmol·L−1; KB = 17.7 nmol·L−1) and exhibited full 5-HT1A receptor antagonist activity (Ki = 1.2 nmol·L−1; KB = 6.3 nmol·L−1; Imax 100% in adenyl cyclase assays; KB = 19.8 nmol·L−1; Imax 100% in GTPγS). WAY-211612 (3 and 30 mg·kg−1, po) occupied 5-HT reuptake sites in rat prefrontal cortex (56.6% and 73.6% respectively) and hippocampus (52.2% and 78.5%), and 5-HT1A receptors in the prefrontal cortex (6.7% and 44.7%), hippocampus (8.3% and 48.6%) and dorsal raphe (15% and 83%). Acute or chronic treatment with WAY-211612 (3–30 mg·kg−1, po) raised levels of cortical 5-HT approximately twofold, as also observed with a combination of an SSRI (fluoxetine; 30 mg·kg−1, s.c.) and a 5-HT1A antagonist (WAY-100635; 0.3 mg·kg−1, s.c). WAY-211612 (3.3–30 mg·kg−1, s.c.) decreased aggressive behaviour in the resident-intruder model, while increasing the number of punished crossings (3–30 mg·kg−1, i.p. and 10–56 mg·kg−1, po) in the mouse four-plate model and decreased adjunctive drinking behaviour (56 mg·kg−1, i.p.) in the rat scheduled-induced polydipsia model.

Conclusions and implications

These findings suggest that WAY-211612 may represent a novel antidepressant.  相似文献   

18.

Background and purpose:

Thromboxane A2 and endothelial dysfunction are implicated in the development of pulmonary hypertension. The receptor-transduction pathway for U46619 (9,11-dideoxy-9α, 11α-methanoepoxy prostaglandin F)-induced contraction was examined in endothelium-intact (E+) and denuded (E−) rat pulmonary artery rings.

Experimental approach:

Artery rings were mounted on a wire myograph under a tension of 7–7.5 mN at 37°C and gassed with 95% O2/5% CO2. Isometric recording was made by using Powerlab data collection and Chart 5 software.

Key results:

Both E+ and E− contractile responses were sensitive to Rho-kinase inhibition and the chloride channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid]. The E+ response was sensitive to the store-operated calcium channel blockers SKF-96365 {1-[B-[3-(4-methoxyphenyl)propoxy]-4-methoxy-phenethyl]-1H-imidazole hydrochloride} and 2-APB (2-amino ethoxy diphenylborate) (75–100 µmol·L−1). The E− response was sensitive to 2-APB (10–30 µmol·L−1), a putative IP3 receptor antagonist, and the calcium and chloride channel blockers nifedipine, DIDS (4,4′-diisothiocyanostilbene-2,2′-disulphonic acid) and niflumic acid but was insensitive to SKF-96365. Inhibiting KV with 4-AP in E+ rings exposed a contraction sensitive to nifedipine, DIDS and niflumic acid, whereas inhibiting BKCa exposed a contraction sensitive to mibefradil, DIDS and niflumic acid. This indicates that removal of the endothelium allows the TP receptor to inhibit KV, which may involve coupling to phospholipase C, because inhibition of phospholipase C with U73122 (1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-y]amino]hexyl]– 1H-pyrrole-2,5-dione) switched the E− pathway to the E+ pathway.

Conclusions and implications:

The results from this study indicate that distinct transduction pathways can be employed by the TP receptor to produce contraction and that the endothelium is able to influence the coupling of the TP receptor.British Journal of Pharmacology (2009) 157, 581–596; doi:10.1111/j.1476-5381.2008.00084.x; published online 22 April 2009This article is part of a themed section on Endothelium in Pharmacology. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009  相似文献   

19.

Background and purpose:

We investigated the effects of a synthetic flavonol, 3′,4′-dihydroxyflavonol (DiOHF) on the expression of monocyte chemoattractant protein-1 (MCP-1) in rat vascular smooth muscle cells.

Experimental approach:

MCP-1 expression was assessed by quantitative real-time PCR and protein phosphorylation by immunoprecipitation and Western blots.

Key results:

DiOHF (1–30 µmol·L−1) concentration-dependently reduced MCP-1 expression in both quiescent cells and cells stimulated with platelet-derived growth factor (PDGF) or interleukin 1-β. The effect of DiOHF was associated with a suppression of focal adhesion kinase (FAK)-mediated signalling. In vitro kinase assays demonstrated that DiOHF is a potent inhibitor of FAK kinase activity (EC50= 2.4 µmol·L−1). Expression of FAK-related non-kinase reduced basal MCP-1 expression, but not that induced by PDGF or interleukin 1-β. DiOHF also inhibited autophosphorylation of PDGF receptors. The PDGF receptor inhibitor AG-1296 potently suppressed basal and PDGF-induced MCP-1 expression. Inhibition of extracellular signal-regulated kinase activation by DiOHF, either directly or indirectly, may also be involved in its effects on MCP-1 expression. DiOHF had no inhibitory effect on either p38 or nuclear factor-κB activation. Moreover, DiOHF inhibited smooth muscle cell spreading (a FAK-mediated response) and proliferation.

Conclusions and implications:

This is the first report on a flavonoid compound (DiOHF) that is a potent FAK inhibitor. DiOHF also inhibits PDGF receptor autophosphorylation. These effects underlie the inhibitory action of DiOHF on MCP-1 expression in smooth muscle cells. Our results suggest that DiOHF might be a useful tool for dissection of the (patho)physiological roles of FAK signalling.British Journal of Pharmacology (2009) 157, 597–606; doi:10.1111/j.1476-5381.2009.00199.x; published online 9 April 2009  相似文献   

20.

Background and purpose

While remifentanil can be used either during labour or fetal surgery, more should be known about the transplacental transfer of this opioid. The aim of this study was to investigate the placental transfer and haemodynamic effects of remifentanil after i.v. administration to pregnant ewes.

Experimental approach

Seven pregnant ewes received a continuous infusion of remifentanil (0.33 µg·kg−1·min−1) for 1 h, and maternal and fetal arterial blood samples were drawn at regular intervals during and up to 1 h after the discontinuation of the infusion. Haemodynamic parameters were monitored continuously. Blood gas samples were drawn at baseline and once during the infusion.

Key results

Peak maternal remifentanil plasma levels of 4.0 ± 0.9 ng·mL−1 (mean ± SD) and peak fetal plasma levels of 0.4 ± 0.3 ng·mL−1 were obtained. Remifentanil plasma levels dropped rapidly after the discontinuation of the infusion. The continuous infusion of remifentanil did not result in significant maternal or fetal haemodynamic changes.

Conclusions and implications

Remifentanil rapidly passes through the placenta of pregnant ewes and although remifentanil concentrations stay significantly lower in the fetus compared with those in the mother, remifentanil can be detected in significant amounts in the fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号