首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cortical and thalamic afferent connections of rat orbital cortex were investigated using fluorescent retrograde axonal tracers. Each of the four orbital areas has a distinct pattern of connections. Corticocortical connections involving the ventral and ventrolateral orbital areas are more extensive than those of the medial and lateral orbital areas. The medial orbital area has cortical connections with the cingulate, medial agranular (Fr2) and posterior parietal (PPC) cortices. The ventral orbital area has connections with the cingulate area, area Fr2, secondary somatic sensory area Par2, PPC, and visual areas Oc2M and Oc2L. The ventrolateral orbital area (VLO) receives cortical input from insular cortex, area Fr2, somatic sensory areas Par1 and Par2, PPC and Oc2L. The lateral orbital area has cortical connections limited to the agranular and granular insular areas, and Par2. Thalamic afferents to the four orbital fields are also topographically organized, and are focused in the submedial and mediodorsal nuclei. The ventrolateral orbital area receives input from the entirety of the submedial nucleus, whereas the other orbital areas receive input from its periphery only. Each orbital area is connected with a particular segment of the mediodorsal nucleus. The medial orbital area receives its principal thalamic afferents from the parataenial nucleus, the dorsocentral portion of the mediodorsal nucleus, and the ventromedial portion of the submedial nucleus. The ventral orbital area receives input from the lateral segment of the mediodorsal nucleus, the rostromedial portion of the submedial nucleus and the central lateral nucleus. Thalamic afferents to the ventrolateral orbital area arise from the entirety of the submedial nucleus and from the lateral segment of the mediodorsal nucleus. The lateral orbital area receives thalamic afferents from the central segment of the mediodorsal nucleus, the ventral portion of the submedial nucleus and the ventromedial nucleus. The paraventricular, ventromedial, rhomboid and reuniens nuclei also provide additional input to the four orbital areas. The connections of the ventrolateral orbital area are interpreted in the context of its role in directed attention and allocentric spatial localization. The present findings provide anatomical support for the view that areas Fr2, PPC and VLO comprise a cortical network mediating such functions.  相似文献   

2.
 Fluorescent axonal tracers were used to investigate the connections of medial agranular cortex (frontal area 2, Fr2) in male prairie voles. The rostral and caudal portions of Fr2 (rFr2 and cFr2) have distinct but partially overlapping patterns of connections. Thalamic labeling after cFr2 injections was present in anteromedial nucleus (AM), ventrolateral nucleus (VL), lateral segment, mediodorsal nucleus (MDl), centrolateral nucleus (CL), ventromedial nucleus (VM), posterior nucleus (Po) and lateral posterior nucleus (LP). A band of labeled cells involving CL, central medial nucleus (CM) and rhomboid nucleus (Rh) formed a halo around the periphery of submedial (gelatinosus) nucleus (Sm). Within cFr2 there is a rostrocaudal gradient whereby projections from VL and MDl become progressively sparser caudally, whereas those from LP and Po become denser. Rostral Fr2 receives afferents from a similar group of thalamic nuclei, but has denser innervation from VL and MDl, lacks afferents from LP, and receives less input from nuclei around the periphery of Sm. Caudal Fr2 has extensive cortical connections including orbital cortex, rostral Fr2, Fr1, caudal parietal area 1 (Par1), parietal area 2 (Par2), and posterior parietal, retrosplenial and visual areas. Rostral Fr2 has similar connections with areas Fr1, Par1 and Par2; orbital connections focused in ventrolateral orbital cortex (VLO); connections with caudal Fr2; greatly reduced connections with posterior parietal cortex and the visual areas; and no connections with retrosplenial cortex. The axons linking rFr2 and cFr2 with each other and with other cortical areas travel predominately in the deep gray matter of layers VI and VII rather than in the white matter. Projections to the dorsal striatum from rFr2 are widespread in the head of the caudate, become progressively restricted to a dorsocentral focus more caudally, and disappear by the level of the anterior commissure. The projections from cFr2 are largely restricted to a focal dorsocentral region of the striatum and to the dorsolateral margin of the caudatoputamen. In comparison to area Fr2, the laterally adjacent area Fr1 has thalamic and cortical connections which are markedly restricted. Area Fr1 receives thalamic input from nuclei VL, anteroventral nucleus (AV), CL and Po, but none from mediodorsal nucleus (MD) or LP, and its input from VM is reduced. Cortical afferents to Fr1 originate from areas Fr2, caudal Par1 and Par2. Medial agranular cortex of prairie voles has a pattern of connections largely similar to that seen in rats, suggesting that area Fr2 in prairie voles is part of a cortical network that may mediate complex behaviors involving spatial orientation. Received: 20 May 1998 / Accepted: 14 October 1998  相似文献   

3.
The neuronal connections of rat posterior parietal cortex (PPC) have been examined using retrograde fluorescent axonal tracers. We have found that PPC receives thalamic input predominantly from the lateral posterior and lateral dorsal nuclei, and not from the ventrobasal nucleus, which projects to the rostrally adjacent hindlimb cortex, or from the dorsal lateral geniculate nucleus, which projects to the caudally adjacent visual association area. PPC has reciprocal corticocortical connections with medial agranular cortex and orbital cortex; together, these three cortical areas may function as a network for directed attention in rats.  相似文献   

4.
Kimura A  Donishi T  Okamoto K  Tamai Y 《Neuroscience》2004,128(2):399-419
We examined efferent connections of the cortical auditory field that receives thalamic afferents specifically from the suprageniculate nucleus (SG) and the dorsal division (MGD) of the medial geniculate body (MG) in the rat [Neuroscience 117 (2003) 1003]. The examined cortical region was adjacent to the caudodorsal border (4.8-7.0 mm posterior to bregma) of the primary auditory area (area Te1) and exhibited relatively late auditory response and high best frequency, compared with the caudal end of area Te1. On the basis of the location and auditory response property, the cortical region is considered identical to "posterodorsal" auditory area (PD). Injections of biocytin in PD revealed characteristic projections, which terminated in cortical areas and subcortical structures that play pivotal roles in directed attention and space processing. The most noticeable cortical terminal field appeared as dense plexuses of axons in area Oc2M, the posterior parietal cortex. Small terminal fields were scattered in area frontal cortex, area 2 that comprises the frontal eye field. The subcortical terminal fields were observed in the pontine nucleus, the nucleus of the brachium inferior colliculus, and the intermediate and deep layers of the superior colliculus. Corticostriatal projections targeted two discrete regions of the caudate putamen: the top of the middle part and the caudal end. It is noteworthy that the inferior colliculus and amygdala virtually received no projection. Corticothalamic projections terminated in the MGD, the SG, the ventral zone of the ventral division of the MG, the ventral margin of the lateral posterior nucleus (LP), and the caudodorsal part of the posterior thalamic nuclear group (Po). Large terminals were found in the MGD, SG, LP and Po besides small terminals, the major component of labeling. The results suggest that PD is an auditory area that plays an important role in spatial processing linked to directed attention and motor function. The results extend to the rat findings from nonhuman primates suggesting the existence of a posterodorsal processing stream for auditory spatial perception.  相似文献   

5.
In the rat cortex, the two non-primary auditory areas, posterodorsal and ventral auditory areas, may constitute the two streams of auditory processing in their distinct projections to the posterior parietal and insular cortices. The posterior parietal cortex is considered crucial for auditory spatial processing and directed attention, while possible auditory function of the insular cortex is largely unclear. In this study, we electrophysiologically delineated an auditory area in the caudal part of the granular insular cortex (insular auditory area, IA) and examined efferent connections of IA with anterograde tracer biocytin to deduce the functional significance of IA. IA projected to the rostral agranular insular cortex, a component of the lateral prefrontal cortex. IA also projected to the adjacent dysgranular insular cortex and the caudal agranular insular cortex and sent feedback projections to cortical layer I of the primary and secondary somatosensory areas. Corticofugal projections terminated in auditory, somatosensory and visceral thalamic nuclei, and the bottom of the thalamic reticular nucleus that could overlap the visceral sector. The ventral part of the caudate putamen, the external cortex of the inferior colliculus and the central amygdaloid nucleus were also the main targets. IA exhibited neural response to transcutaneous electrical stimulation of the forepaw in addition to acoustic stimulation (noise bursts and pure tones). The results suggest that IA subserves diverse functions associated with somatosensory, nociceptive and visceral processing that may underlie sound-driven emotional and autonomic responses. IA, being potentially involved in such extensive cross-modal sensory interactions, could also be an important anatomical node of auditory processing linked to higher neural processing in the prefrontal cortex.  相似文献   

6.
Budinger E  Heil P  Hess A  Scheich H 《Neuroscience》2006,143(4):1065-1083
It is still a popular view that primary sensory cortices are unimodal, but recent physiological studies have shown that under certain behavioral conditions primary sensory cortices can also be activated by multiple other modalities. Here, we investigate the anatomical substrate, which may underlie multisensory processes at the level of the primary auditory cortex (field AI), and which may, in turn, enable AI to influence other sensory systems. We approached this issue by means of the axonal transport of the sensitive bidirectional neuronal tracer fluorescein-labeled dextran which was injected into AI of Mongolian gerbils (Meriones unguiculatus). Of the total number of retrogradely labeled cell bodies (i.e. cells of origin of direct projections to AI) found in non-auditory sensory and multisensory brain areas, approximately 40% were in cortical areas and 60% in subcortical structures. Of the cell bodies in the cortical areas about 82% were located in multisensory cortex, viz., the dorsoposterior and ventroposterior, posterior parietal cortex, the claustrum, and the endopiriform nucleus, 10% were located in the primary somatosensory cortex (hindlimb and trunk region), and 8% in secondary visual cortex. The cortical regions with retrogradely labeled cells also contained anterogradely labeled axons and their terminations, i.e. they are also target areas of direct projections from AI. In addition, the primary olfactory cortex was identified as a target area of projections from AI. The laminar pattern of corticocortical connections suggests that AI receives primarily cortical feedback-type inputs and projects in a feedforward manner to its target areas. Of the labeled cell bodies in the subcortical structures, approximately 90% were located in multisensory thalamic, 4% in visual thalamic, and 6% in multisensory lower brainstem structures. At subcortical levels, we observed a similar correspondence of retrogradely labeled cells and anterogradely labeled axons and terminals in visual (posterior limitans thalamic nucleus) and multisensory thalamic nuclei (dorsal and medial division of the medial geniculate body, suprageniculate nucleus, posterior thalamic cell group, zona incerta), and in the multisensory nucleus of the brachium of the inferior colliculus. Retrograde, but not anterograde, labeling was found in the multisensory pontine reticular formation, particularly in the reticulotegmental nucleus of the pons. Conversely, anterograde, but no retrograde, labeling was found in the visual laterodorsal and lateroposterior thalamic nuclei, in the multisensory peripeduncular, posterior intralaminar, and reticular thalamic nuclei, as well as in the multisensory superior and pericentral inferior colliculi (including cuneiform and sagulum nucleus), pontine nuclei, and periaqueductal gray. Our study supports the notion that AI is not merely involved in the analysis of auditory stimulus properties but also in processing of other sensory and multisensory information. Since AI is directly connected to other primary sensory cortices (viz. the somatosensory and olfactory ones) multisensory information is probably also processed in these cortices. This suggests more generally, that primary sensory cortices may not be unimodal.  相似文献   

7.
Summary The cortical afferents to the cortex of the anterior ectosylvian sulcus (SEsA) were studied in the cat, using the retrograde axonal transport of horseradish peroxidase technique. Following injections of the enzyme in the cortex of both banks, fundus and both ends (postero-dorsal and anteroventral) of the anterior ectosylvian sulcus, retrograde labeling was found in: the primary, secondary, and tertiary somatosensory areas (SI, SII and SIII); the motor and premotor cortices; the primary, secondary, anterior and suprasylvian fringe auditory areas; the lateral suprasylvian (LS) area, area 20 and posterior suprasylvian visual area; the insular cortex and cortex of posterior half of the sulcus sylvius; in area 36 of the perirhinal cortex; and in the medial bank of the presylvian sulcus in the prefrontal cortex. Moreover, these connections are topographically organized. Considering the topographical distribution of the cortical afferents, three sectors may be distinguished in the cortex of the SEsA. 1) The cortex of the rostral two-thirds of the dorsal bank. This sector receives cortical projections from areas SI, SII and SIII, and from the motor cortex. It also receives projections from the anterolateral subdivision of LS, and area 36. 2) The cortex of the posterior third of the dorsal bank and of the posterodorsal end. It receives cortical afferents principally from the primary, secondary and anterior auditory areas, from SI, SII and fourth somatosensory area, from the anterolateral subdivision of LS, vestibular cortex and area 36. 3) The cortex of the ventral bank and fundus. This sulcal sector receives abundant connections from visual areas (LS, 20, posterior suprasylvian, 21 and 19), principally from the lateral posterior and dorsal subdivisions of LS. It also receives abundant connections from the granular insular cortex, caudal part of the cortex of the sylvian sulcus and suprasylvian fringe. Less abundant cortical afferents were found to arise in area 36, second auditory area and prefrontal cortex. The abundant sensory input of different modalities which appears to converge in the cortex of the anterior ectosylvian sulcus, and the consistent projection from this cortex to the deep layers of the superior colliculus, make this cortical region well suited to play a role in the control of the orientation movements of the eyes and head toward different sensory stimuli.Supported by FISSS grants 521/81 and 1250/84  相似文献   

8.
We investigated the distribution of cortical, callosal, and thalamic connections from the primary somatosensory area (S1) in naked mole-rats, concentrating on lower incisor and forelimb representations. A neuronal tracer (WGA-HRP) was injected into the center of each respective representation under guidance from microelectrode recordings of neuronal activity. The locations of cells and terminals were determined by aligning plots of labeled cells with flattened cortical sections reacted for cytochrome oxidase. The S1 lower incisor area was found to have locally confined intrahemispheric connections and longer connections to a small cluster of cells in the presumptive secondary somatosensory (S2) and parietal ventral (PV) incisor fields. The S1 incisor area also had sparse connections with anterior cortex, in presumptive primary motor cortex. Homotopic callosal projections were identified between the S1 lower incisor areas in each hemisphere. Thalamocortical connections related to the incisor were confined to ventromedial portions of the ventral posterior medial subnucleus (VPM) and posterior medial nucleus (Po). Injections into the S1 forelimb area revealed reciprocal intrahemispheric connections to S2 and PV, to two areas in frontal cortex, and to two areas posterior to S1 that appear homologous to posterior lateral area and posterior medial area in rats. The S1 forelimb representation also had callosal projections to the contralateral S1 limb area and to contralateral S2 and PV. Thalamic distribution of label from forelimb injections included ventral portions of the ventral posterior lateral subnucleus (VPL), dorsolateral Po, the ventral lateral nucleus, and the ventral medial nucleus and neighboring intralaminar nuclei.  相似文献   

9.
Previous studies have determined that the striate cortex of the rat is reciprocally connected with multiple extrastriate cortical areas that are retinotopically organized. The objective of this study was to investigate the retinotopy of the striate-extrastriate connections in the rat, by placing triple or double injections of fluorescent tracers (fluorogold, fast blue, rhodamine dextran, or rhodamine-labeled microspheres) in different regions of the striate cortex (Oc1) and mapping the distribution of cells and fibers labeled with the different tracers in the lateral (Oc2L) and medial (Oc2M) extrastriate cortex. The tracer injection sites were visualized in tangential sections of the flattened cortex and correlated with the myelin layout of the striate cortex and with an electrophysiological map from previous studies. The results showed retinotopically organized Oc1 connections with ten different extrastriate cortical areas. The location of these extrastriate areas and the retinotopy of their striate connections remained mostly invariant despite changes of the injection sites in Oc1. Thus, the quadrantic retinotopy was obtained for striate connections to areas posterior, posterolateral, lateromedial, laterointermediate, laterolateral, anterolateral and rostrolateral in Oc2L; and to areas posteromedial, anteromedial, and anterior in Oc2M. The present anatomical map correlates well with electrophysiological maps of the rat extrastriate cortex from previous studies. Furthermore, they provide a definition of the retinotopy of some areas that have not been completely mapped before. These results reaffirm the existence of multiple extrastriate visual areas in the rat.  相似文献   

10.
Zinc-rich synaptic boutons in the neocortex arise from the neocortex itself. However, the precise organisation of these circuits is not known. Therefore, the laminar and areal pattern of zinc-rich cortico-cortical connections between visual areas was studied by retrograde tracing using intracerebral injections of sodium selenite. This tracer was injected in supragranular and infragranular layers in various cortical visual areas in order to precipitate zinc in the synaptic boutons, which was retrogradely transported to neuronal somata. Supragranular injections led to retrogradely labelled neurones in layer II-III, ipsilaterally and contralaterally. Neurones often appeared in groups or clusters. Infragranular injections labelled neurones in layers II-III, VI and, to a lesser extent, in layer V, both ipsilaterally and contralaterally. Neurones in layer VI formed a wide continuous band. Concerning the connections between visual (=occipital) areas, injections in occipital area 2, lateral part (Oc2L), rendered the largest number of retrogradely labelled neurones, which were located in occipital area 1 (Oc1), occipital area 2, medial part (Oc2M) and outside the visual cortex. Callosal zinc-rich projections were dense in the homotopic area but sparse in Oc1 and temporal cortex. Injections in Oc1 rendered moderate numbers of labelled neurones in occipital areas, in both hemispheres. Injections in Oc2M labelled moderate numbers of neurones in occipital areas in both hemispheres and in the frontal and cingulate cortices.These results indicate that zinc-rich cortico-cortical connections are organised into two segregated systems arising from either supragranular or infragranular neurones. In addition, in the visual cortex, zinc-rich systems appear to converge on Oc2L. Zinc-rich connections appear as an extensive, highly organised association system.  相似文献   

11.
Kimura A  Donishi T  Okamoto K  Tamai Y 《Neuroscience》2005,135(4):1325-1342
The functional significance of parallel and redundant information processing by multiple cortical auditory fields remains elusive. A possible function is that they may exert distinct corticofugal modulations on thalamic information processing through their parallel connections with the medial geniculate body and thalamic reticular nucleus. To reveal the anatomical framework for this function, we examined corticothalamic projections of tonotopically comparable subfields in the primary and non-primary areas in the rat auditory cortex. Biocytin was injected in and around cortical area Te1 after determining best frequency at the injection site on the basis of epicortical field potentials evoked by pure tones. The rostral part of area Te1 (primary auditory area) and area temporal cortex, area 2, dorsal (Te2D) (posterodorsal auditory area) dorsal to the caudal end of area Te1, which both exhibited high best frequencies, projected to the ventral zone of the ventral division of the medial geniculate body. The caudal end of area Te1 (auditory area) and the rostroventral part of area Te1 (a part of anterior auditory field), which both exhibited low best frequencies, projected to the dorsal zone of the ventral division of the medial geniculate body. In contrast to the similar topography in the projections to the ventral division of the medial geniculate body, collateral projections to the thalamic reticular nucleus terminated in the opposite dorsal and ventral zones of the lateral and middle tiers of the nucleus in each pair of the tonotopically comparable cortical subfields. In addition, the projections of the non-primary cortical subfields further arborized in the medial tier of the thalamic reticular nucleus. The results suggest that tonotopically comparable primary and non-primary subfields in the auditory cortex provide corticofugal excitatory effects to the same part of the ventral division of the medial geniculate body. On the other hand, corticofugal inhibition via the thalamic reticular nucleus may operate in different parts of the ventral division of the medial geniculate body or different thalamic nuclei. The primary and non-primary cortical auditory areas are presumed to subserve distinct gating functions for auditory attention.  相似文献   

12.
The auditory cortex in echolocating bats is one of the best studied in mammals, yet the projections of the thalamus to the different auditory cortical fields have not been systematically analyzed in any bat species. The data of the present study were collected as part of a combined investigation of physiological properties, neuroarchitecture, and chemoarchitecture as well as connectivity of cortical fields in Rhinolophus in order to establish a neuroanatomically and functionally coherent view of the auditory cortex in the horseshoe bat. This paper first describes the neuroanatomic parcellation of the medial geniculate body and then concentrates on the afferent thalamic connections with auditory cortical fields of the temporal region. Deposits of horseradish peroxidase and wheatgerm-agglutinated horseradish peroxidase were made into neurophysiologically characterized locations of temporal auditory cortical fields; i.e., the tonotopically organized primary auditory cortex, a ventral field, and a temporal subdivision of a posterior dorsal field. A clear topographic relationship between thalamic subdivisions and specific cortical areas is demonstrated. The primary auditory cortex receives topographically organized input from the central ventral medial geniculate body. The projection patterns to the temporal subdivision of the posterior dorsal field suggest that it is a "core" field, similar to the posterior fields in the cat. Projections to the ventral field arise primarily from border regions of the ventral medial geniculate body. On the whole, the organization of the medial geniculate body projections to the temporal auditory cortex is quite similar to that described in other mammals, including cat and monkey.  相似文献   

13.
The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of the superior colliculus, nucleus of Darkschewitsch and dorsomedial parvicellular red nucleus (macaque cases only), dorsal, dorsolateral and lateral basilar pontine nuclei, nucleus reticularis tegmenti pontis, locus ceruleus, and superior central nucleus. The findings are discussed in terms of the possibility that area 7m contains a "medial parietal eye field" and belongs to a neural network of oculomotor-related structures that plays a role in the control of eye movement.  相似文献   

14.
The auditory cortex in echolocating bats is one of the best studied in mammals, yet the projections of the thalamus to the different auditory cortical fields have not been systematically analyzed in any bat species. The data of the present study were collected as part of a combined investigation of physiological properties, neuroarchitecture, and chemoarchitecture as well as connectivity of cortical fields in Rhinolophus in order to establish a neuroanatomically and functionally coherent view of the auditory cortex in the horseshoe bat. This paper first describes the neuroanatomic parcellation of the medial geniculate body and then concentrates on the afferent thalamic connections with auditory cortical fields of the temporal region. Deposits of horseradish peroxidase and wheatgerm-agglutinated horseradish peroxidase were made into neurophysiologically characterized locations of temporal auditory cortical fields; i.e., the tonotopically organized primary auditory cortex, a ventral field, and a temporal subdivision of a posterior dorsal field. A clear topographic relationship between thalamic subdivisions and specific cortical areas is demonstrated. The primary auditory cortex receives topographically organized input from the central ventral medial geniculate body. The projection patterns to the temporal subdivision of the posterior dorsal field suggest that it is a “core” field, similar to the posterior fields in the cat. Projections to the ventral field arise primarily from border regions of the ventral medial geniculate body. On the whole, the organization of the medial geniculate body projections to the temporal auditory cortex is quite similar to that described in other mammals, including cat and monkey.  相似文献   

15.
R.L. Reep  S.S. Winans 《Neuroscience》1982,7(5):1265-1288
The agranular insular cortex is transitional in location and structure between the ventrally adjacent olfactory allocortex primutivus and dorsally adjacent sensory-motor isocortex. Its ventral anterior division receives major afferent projections from olfactory areas of the limbic system (posterior primary olfactory cortex, posterolateral cortical amygdaloid nucleus and lateral entorhinal cortex) while its dorsal anterior division does so from non-olfactory limbic areas (lateral and basolateral amygdaloid nuclei).The medial segment of the mediodorsal thalamic nucleus projects to both the ventral and dorsal divisions of the agranular insular cortex, to the former from its anterior portion and to the latter from its posterior portion. Other thalamic inputs to the two divisions arise from the gelatinosus, central medial, rhomboid and parafascicular nuclei. The dorsal division, but not the ventral division, receives input from neurons in the lateral hypothalamus and posterior hypothalamus.The medial frontal cortex projects topographically and bilaterally upon both ventral and dorsal anterior insular cortex, to the former from the ventrally located medial orbital and infralimbic areas, to the latter from the dorsally-located anterior cingulate and medial precentral areas, and to both from the intermediately located prelimbic area. Similarly, the ipsilateral posterior agranular insular cortex and perirhinal cortex project in a topographic manner upon the two divisions of the agranular insular cortex.Commissural input to both divisions originates from pyramidal neurons in the respective contralateral homotopical cortical area. In each case, pyramidal neurons in layer V contribute 90% of this projection and 10% arises from layer III pyramidals.In the brainstem, the dorsal raphe nucleus projects to the ventral and dorsal divisions of the agranular insular cortex and the parabrachial nucleus projects to the dorsal division.Based on their cytoarchitecture, pattern of afferent connections and known functional properties, we consider the ventral and dorsal divisions of the agranular insular cortex to be, respectively, periallocortical and proisocortical portions of the limbic cortex.  相似文献   

16.
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: “dorsal stream” extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.  相似文献   

17.
The Fink-Heimer silver impregnation and the autoradiographic methods were used to study the fiber projections of the cingulate cortex in the squirrel monkey. It was found that this cortex provides inputs to the striatum, thalamus and several areas of isocortex. Evidence was found for a number of fiber projections (1) Fibers from the anterior limbic area were traced to the central part of the head of the caudate nucleus, putamen, septum, dorsomedial nucleus of the thalamus, anterior hypothalamus and lateral basal nucleus of the amygdala. (2) Projections from the cingulate area were traced to the lateral part of the head of the caudate nucleus, putamen, and to the centromedian, anterior, lateral dorsal, and lateral ventral thalamic nuclei and to medial nuclei of the base of the pons. (3) There were projections from the retrosplenial area of the anterior, lateral dorsal, dorsomedial, and posterior thalamic nuclei and lateral nuclei of the pons. These results indicate that most of the cingulate gyrus is an intermediate structure between the thalamus and overlying cortex. The anterior limbic area forms a bridge between the thalamus and other areas of the cingulate gyrus and the frontal cortex. (4) The retrosplenial area and the posterior part of the cingulate area bridge the adjacent visual sensory association cortex and pelvic areas of the sensory motor cortex, respectively. These areas of the cingulate gyrus project directly to the striatum as well as to the thalamus, structurally providing limbic system input to subcortical motor structures.  相似文献   

18.
Summary The interconnections of the auditory cortex with the parahippocampal and cingulate cortices were studied in the cat. Injections of the anterograde and retrograde tracer WGA-HRP were performed, in different cats (n = 9), in electrophysiologically identified auditory cortical fields. Injections in the posterior zone of the auditory cortex (PAF or at the PAF/AI border) labeled neurons and axonal terminal fields in the cingulate gyrus, mainly in the ventral bank of the splenial sulcus (a region that can be considered as an extension of the cytoarchitectonic area Cg), and posteriorly in the retrosplenial area. Labeling was also present in area 35 of the perirhinal cortex, but it was sparser than in the cingulate gyrus. Following WGA-HRP injection in All, no labeling was found in the cingulate gyrus, but a few neurons and terminals were labeled in area 35. In contrast, no or very sparse labeling was observed in the cingulate and perirhinal cortices after WGA-HRP injections in the anterior zone of the auditory cortex (AI or AAF). A WGA-HRP injection in the cingulate gyrus labeled neurons in the posterior zone of the auditory cortex, between the posterior ectosylvian and the posterior suprasylvian sulci, but none was found more anteriorly in regions corresponding to AI, AAF and AII. The present data indicate the existence of preferential interconnections between the posterior auditory cortex and the limbic system (cingulate and parahippocampal cortices). This specialization of posterior auditory cortical areas can be related to previous observations indicating that the anterior and posterior regions of the auditory cortex differ from each other by their response properties to sounds and their pattern of connectivity with the auditory thalamus and the claustrum.Abbreviations AAF anterior auditory cortical field - aes anterior ectosylvian sulcus - AI primary auditory cortical field - AII secondary auditory cortical field - ALLS anterior-lateral lateral suprasylvian visual area - BF best frequency - C cerebral cortex - CC corpus callosum - CIN cingulate cortex - CL claustrum - DLS dorsal lateral suprasylvian visual area - DP dorsoposterior auditory area - E entorhinal cortex - IC inferior colliculus - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - MGB medial geniculate body - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical field - pes posterior ectosylvian sulcus - PLLS posterior-lateral lateral suprasylvian visual area - PS posterior suprasylvian visual area - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SC superior colliculus - SS suprasylvian sulcus - T temporal auditory cortical field - TMB tetramethylbenzidine - VBX ventrobasal complex of thalamus, external nucleus - VL pars ventrolateralis of the ventral division of the MGB - VLS ventrolateral suprasylvian visual area - VPAF ventroposterior auditory cortical field - WGA-HRP wheat germ agglutinin labeled with horseradish peroxidase - wm white matter  相似文献   

19.
Feig SL 《Neuroscience》2005,136(4):1147-1157
Corticothalamic axons from layer 5 of primary and secondary auditory and visual areas have large terminals that make multiple synaptic contacts on proximal dendrites of relay cells in higher order thalamic nuclei and have been termed "driver" inputs. The corticothalamic cells express mRNA for the presynaptic growth-associated protein-43, in the adult rat [Feig SL (2004) Corticothalamic cells in layers 5 and 6 of primary and secondary sensory cortex express GAP-43 mRNA in the adult rat. J Comp Neurol 468:96-111]. In contrast, ascending driver afferents to first order nuclei (e.g. retinal, inferior collicular, and lemniscal) lose growth-associated protein-43 as mature synaptic terminals are established. Levels of immunoreactivity for growth-associated protein-43 are compared for first and higher order visual (lateral geniculate and lateral posterior), auditory (ventral and dorsal divisions of the medial geniculate), and somatosensory (ventral posterior and posterior) thalamic nuclei. At one week postnatal, staining for growth-associated protein-43 is uniform throughout first and higher order thalamic nuclei. By three weeks and thereafter, staining is denser in the higher order than first order thalamic nuclei. Electron microscopy shows growth-associated protein-43 in profiles with characteristics of afferents from layer 5 in LP and medial geniculate nucleus and no such label in retinal afferents in lateral geniculate nucleus. In these nuclei, approximately 25% of the profiles with characteristics of cortical afferents from layer 6 have label for growth-associated protein-43. The superficial layers of the superior colliculus also show growth-associated protein-43 positive profiles with characteristics of terminals from cortical layer 5. Some growth-associated protein-43 positive terminals were also positive for GABA in the thalamic nuclei studied and in the superior colliculus. The data suggest that sensory afferents to first order thalamocortical relays become stabilized once mature synaptic patterns are established, but the higher stages of information processing involving higher order thalamic relays, via cells in cortical layer 5, retain plasticity related to growth-associated protein-43 in the adult.  相似文献   

20.
The cortical representations of the vibrissae of the rat form a matrix in which each whisker has its own area of cortex, called a 'barrel'. The afferent pathways from the periphery travel first to the trigeminal nuclei and thence via the ventroposteromedial thalamus (VPM) to the cortical barrels have been described in detail. We have studied the output from barrels by filling adjacent areas of the primary somatosensory cortex (SI) with either Phaseolus vulgaris leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) and demonstrating the course and terminations of the axons that arise within the barrel fields. The method not only dramatically illustrates the previously described corticothalamic pathway to VPM but also demonstrates a strict topography in the cortical afferents to the thalamic reticular nucleus (RT). Cells supplying the RT projection are found below the barrels in layer IV. Connections to the posterior thalamus, on the other hand, have no discernible topography and are derived from cortical areas surrounding the barrels. Thus the outputs of these 'septal' areas return to the region from which they receive thalamic input. The corticocortical connections are also visible in the same material. Contralateral cortical connections arise from the cells of the septa between barrels. The projections to secondary somatosensory area (SII) are mirror images of the barrel pattern in SI with rather more overlap but nonetheless a recognisable topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号