首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
W Lapps  B G Hogue  D A Brian 《Virology》1987,157(1):47-57
The 3' end of the 20-kb genome of the Mebus strain of bovine enteric coronavirus (BCV) was copied into cDNA and cloned into the PstI site of the pUC9 vector. Four clones from the 3' end of the genome were sequenced either completely or in part to determine the sequence of the first 2451 bases. Within this sequence were identified, in order, a 3'-noncoding region of 291 bases, the gene for a 448-amino acid nucleocapsid protein (N) having a molecular weight of 49,379, and the gene for a 230-amino acid matrix protein (M) having a molecular weight of 26,376. A third large open reading frame is contained entirely within the N gene sequence but is positioned in a different reading frame; it potentially encodes a polypeptide of 207 amino acids having a molecular weight of 23,057. A higher degree of amino acid sequence homology was found between the M proteins of BCV and MHV (87%) than between the N proteins (70%). For the M proteins of BCV and MHV, notable differences were found at the amino terminus, the most probable site of O-glycosylation, where the sequence is N-Met-Ser-Ser-Val-Thr-Thr for BCV and N-Met-Ser-Ser-Thr-Thr for MHV. BCV apparently uses two of its six potential O-glycosylation sites.  相似文献   

3.
4.
RNA-binding proteins of coronavirus MHV-A59 were identified using an RNA overlay-protein blot assay (ROPBA). The major viral RNA-binding protein in virions and infected cells was the phosphorylated nucleocapsid protein N (50K). A new 140K virus structural protein was identified as a minor RNA-binding protein both in virions and in infected cells. The 140K protein was antigenically related to N, and upon reduction, yielded only 50K N. Thus, the 140K protein is probably a trimer of N subunits linked by intermolecular disulfide bonds. Several cellular RNA-binding proteins were also detected. RNA-binding of N was not nucleotide sequence specific. Single-stranded RNA of MHV, VSV, or cellular origin, a DNA probe of the MHV leader sequence, and double-stranded bovine rotavirus RNA could all bind to N. Binding of MHV RNA was optimal between pH 7 and 8, and the RNA could be eluted in 0.1 M NaCl. The ROPBA is a useful method for the initial identification of RNA-binding proteins, such as N and the 140K protein of murine coronavirus.  相似文献   

5.
6.
7.
8.
Popova R  Zhang X 《Virology》2002,294(1):222-236
The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.  相似文献   

9.
Using a 32P complementary DNA (cDNA) prepared against the A59 nucleocapsid protein messenger RNA, we have investigated the extent of homology between A59 and four other strains of murine hepatitis virus (MHV). Analysis by hybridization kinetics of the annealing between A59 [32P]cDNA and infected cell RNA from the other four MHV strains demonstrated 70–80% homology. By gel transfer analysis, the A59 [32P]cDNA was able to detect subgenomic-size virus-specific RNAs in cells infected with all of the five MHV strains. A similar pattern of seven viral RNAs was detected in cells infected with A59, MHV-1, MHV-3, and JHM. In contrast, cells infected with MHV-S contained seven virus-specific RNAs, of which only the two smallest species comigrated with RNAs from the other four strains. The results suggest that as previously shown with A59 (S. Cheley, R. Anderson, M. J. Cupples, E. C. M. Lee Chan, and V. L. Morris (1981)Virology, 112, 596–604), all MHV strains tested encode a nested set of subgenomic RNAs. Analysis of [35S]methionine-labeled viral proteins by SDS-polyacrylamide gel electrophoresis revealed that each strain of MHV specified four major viral polypeptides with apparent molecular weights very similar to those previously reported for the E2, N, El, and PEI polypeptides of A59. The strong degree of interstrain homology among the five MHV strains investigated was confirmed by comparative chymotryptic peptide mapping of the viral N proteins. A majority of the chymotryptic peptides from each of the [35Sknethionine-labeled N proteins was found to coelute by high-performance liquid chromotography. Moreover, this technique of peptide mapping indicated a particularly strong relatedness between MHV-1 and MHV-S and among MHV-3, JHM, and A59.  相似文献   

10.
11.
12.
Mutational analysis of the genome-linked protein of cowpea mosaic virus   总被引:2,自引:0,他引:2  
The coronavirus mouse hepatitis virus (MHV) directs the synthesis of viral RNA on discrete membranous complexes that are distributed throughout the cell cytoplasm. These putative replication complexes are composed of intimately associated but biochemically distinct membrane populations, each of which contains proteins processed from the replicase (gene 1) polyprotein. Specifically, one membrane population contains the gene 1 proteins p65 and p1a-22, while the other contains the gene 1 proteins p28 and helicase, as well as the structural nucleocapsid (N) protein and newly synthesized viral RNA. In this study, immunofluorescence confocal microscopy was used to define the relationship of the membrane populations comprising the putative replication complexes at different times of infection in MHV-A59-infected delayed brain tumor cells. At 5.5 h postinfection (p.i.) the membranes containing N and helicase colocalized with the membranes containing p1a-22/p65 at foci distinct from sites of M accumulation. By 8 to 12 h p.i., however, the membranes containing helicase and N had a predominantly perinuclear distribution and colocalized with M. In contrast, the p1a-22/p65-containing membranes retained a peripheral, punctate distribution at all times of infection and did not colocalize with M. By late times of infection, helicase, N, and M each also colocalized with ERGIC p53, a specific marker for the endoplasmic reticulum-Golgi-intermediate compartment. These data demonstrated that the putative replication complexes separated into component membranes that relocalized during the course of infection. These results suggest that the membrane populations within the MHV replication complex serve distinct functions both in RNA synthesis and in delivery of replication products to sites of virus assembly.  相似文献   

13.
Brockway SM  Denison MR 《Virology》2005,340(2):19-223
Despite ongoing research investigating mechanisms of coronavirus replication, functions of many viral nonstructural proteins (nsps) remain unknown. In the current study, a reverse genetic approach was used to define the role of the 28-kDa amino-terminal product (nsp1) of the gene 1 polyprotein during replication of the coronavirus murine hepatitis virus (MHV) in cell culture. To determine whether nsp1 is required for MHV replication and to identify residues critical for protein function, mutant viruses that contained deletions or point mutations within the nsp1-coding region were generated and assayed for defects in viral replication, viral protein expression, protein localization, and RNA synthesis. The results demonstrated that the carboxy-terminal half of nsp1 (residues K(124) through L(241)) was dispensable for virus replication in culture but was required for efficient proteolytic cleavage of nsp1 from the gene 1 polyprotein and for optimal viral replication. Furthermore, whereas deletion of nsp1 residues amino-terminal to K(124) failed to produce infectious virus, point mutagenesis of the nsp1 amino-terminus allowed recovery of several mutants with altered replication and RNA synthesis. This study identifies nsp1 residues important for protein processing, viral RNA synthesis, and viral replication.  相似文献   

14.
Annamalai P  Rao AL 《Virology》2005,332(2):650-658
The 3' ends of three genomic RNAs (gRNAs) of cowpea chlorotic mottle virus (CCMV) terminate in a highly conserved tRNA-like structure (3'TLS). To examine the intrinsic role played the 3'TLS in packaging, the competence of each gRNA lacking the 3' TLS (DeltaTLS-gRNA) to interact with dissociated coat protein (CP) subunits and form virions was assayed in vitro. In contrast to the well established requirement for the participation of either viral 3'TLS or host-tRNAs in the assembly of RNA-containing virions in brome mosaic virus (BMV; Choi, Y, G., Dreher, T. W., Rao, A. L. N. 2002. tRNA elements mediate the assembly of an icosahedral RNA virus. Proc. Natl. Acad. Sci. 99, 655-660), CCMV CP does not require the presence of viral TLS in cis or in trans. Similar in vitro assembly assays showed that CCMV CP subunits also packaged BMV RNAs lacking 3' TLS as well as two other non-bromoviral RNAs although with lesser efficiency. To characterize sequences of CCMV RNA3 (C3) required for packaging, a series deletions was engineered into C3 and their effect on virus assembly was examined. It was observed that, unlike BMV RNA3 whose packaging requires a bipartite signal (Choi, Y. G., Rao, A. L. N. 2003. Packaging of brome mosaic virus RNA3 is mediated through a bipartite signal. J. Virol. 77, 9750-9757), packaging of C3 is independent of either movement protein (MP) ORF or CP ORF or 3' non-coding regions. Based on the differential prerequisites identified in this study for the assembly of BMV and CCMV, we hypothesize that the adaptive condition for movement in monocotyledonous host has made packaging a necessary co-requirement for BMV.  相似文献   

15.
Summary The genomic relationship of porcine hemagglutinating encephalomyelitis virus (HEV) to bovine coronavirus (BCV) and human coronavirus (HCV) strain OC43 was examined by dot blot hybridization assays. Two BCV S gene-specific probes were generated by polymerase chain reaction from the avirulent L9-strain of BCV. Probes were located in the S1 and the S2 region of the peplomeric (S) glycoprotein gene. The S1 probe (726 bp) hybridized with BCV and HCV-OC43, but not with HEV under moderate stringency hybridization conditions (50 °C). Only slight signals were present with mouse hepatitis virus (MHV) and no signals were observed with feline infectious peritonitis virus (FIPV) or canine coronavirus (CCV). At high stringency conditions (60 °C) the S1 probe hybridized with BCV only. Using the S2 probe (680 bp) under moderate strin-gency conditions, hybridization signals were obtained with BCV, HCV-OC43 and HEV (strains 67N, NT9, VW572). The signals obtained by the three HEV strains were altogether weaker than with BCV and HCV-OC43. The S2 probe did not react with MHV, FIPV and CCV. At high stringency the S2-specific probe hybridized with BCV and HCV-OC43 but did not hybridize with HEV. Nucleotide sequence analysis of the region covering the S2 probe in HEV revealed 92.6% nucleotide sequence homology to BCV and 91.9% to HCV-OC43. In contrast, the region covering the S1 probe in HEV could not be amplified using the BCV S1-specific primers. The hybridization and sequencing results thus indicate a closer genomic relationship between BCV and HCV-OC43 than there is between HEV and BCV or HCV-OC43, respectively.  相似文献   

16.
17.
W S Robinson 《Virology》1971,44(3):494-502
The effect of cycloheximide on viral specific RNA synthesis and viral nucleocapsid formation was studied in chick embryo cells infected with Sendai virus. When cells were infected at a high multiplicity in the presence of cycloheximide, the 18 S and 35 S viral specific RNAs but not the 57 S (virion) RNA were synthesized during a 90-min period indicating that new protein synthesis is not necessary for the initiation of synthesis of the two smaller RNAs. When cells were treated with cycloheximide 18 hr after infection at the time of maximum viral specific RNA synthesis, the rate of synthesis of the 57 S RNA decreased much more rapidly than synthesis of the 35 S and 18 S RNAs. At the same time after infection, newly synthesized 57 S RNA continued to be converted to viral nucleocapsid in the presence of cycloheximide and the rate of incorporation of uridine-5′-3H into nucleocapsid decreased in parallel with the decrease in 57 S RNA synthesis. This indicates that nucleocapsid assembly continues in the absence of active protein synthesis.  相似文献   

18.
19.
Spencer KA  Dee M  Britton P  Hiscox JA 《Virology》2008,370(2):373-381
The coronavirus infectious bronchitis virus (IBV) nucleocapsid (N) protein is an RNA binding protein which is phosphorylated at two conserved clusters. Kinetic analysis of RNA binding indicated that the C-terminal phosphorylation cluster was involved in the recognition of viral RNA from non-viral RNA. The IBV N protein has been found to be essential for the successful recovery of IBV using reverse genetics systems. Rescue experiments indicated that phosphorylated N protein recovered infectious IBV more efficiently when compared to modified N proteins either partially or non-phosphorylated. Our data indicate that the phosphorylated form of the IBV N protein plays a role in virus biology.  相似文献   

20.
M M Parker  P S Masters 《Virology》1990,179(1):463-468
To obtain information about the structure and evolution of the nucleocapsid (N) protein of the coronavirus mouse hepatitis virus (MHV), we determined the entire nucleotide sequences of the N genes of MHV-A59, MHV-3, MHV-S, and MHV-1 from cDNA clones. At the nucleotide level, the N gene sequences of these viral strains, and that of MHV-JHM, were more than 92% conserved overall. Even higher nucleotide sequence identity was found in the 3' untranslated regions (3' UTRs) of the five strains, which may reflect the role of the 3' UTR in negative-strand RNA synthesis. All five N genes were found to encode markedly basic proteins of 454 or 455 residues having at least 94% sequence identity in pairwise comparisons. However, amino acid sequence divergences were found to be clustered in two short segments of N, putative spacer regions that, together, constituted only 11% of the molecule. Thus, the data suggest that the MHV N protein is composed of three highly conserved structural domains connected to each other by regions that have much less constraint on their amino acid sequences. The first two conserved domains contain most of the excess of basic amino acid residues; by contrast, the carboxy-terminal domain is acidic. Finally, we noted that four of the five N genes contain an internal open reading frame that potentially encodes a protein of 207 amino acids having a large proportion of basic and hydrophobic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号