首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
Some proximal femur geometry (PFG) parameters, measured by dual-energy X-ray absorptiometry (DXA), have been reported to discriminate subjects with hip fracture. Relatively few studies have tested their ability to discriminate femoral neck fractures from those of the trochanter. To this end we performed a cross-sectional study in a population of 547 menopausal women over 69 years of age with femoral neck fractures (n= 88), trochanteric fractures (n= 93) or controls (n= 366). Hip axis length (HAL), neck–shaft angle (NSA), femoral neck diameter (FND) and femoral shaft diameter (FSD) were measured by DXA, as well as the bone mineral density (BMD) of the nonfractured hip at the femoral neck, trochanter and Ward’s triangle. In fractured subjects, BMD was lower at each measurement site. HAL was longer and NSA wider in those with femoral neck fractures. With logistic regression the age-adjusted odds ratio (OR) for a 1 standard deviation (SD) decrease in BMD was significantly associated at each measurement site with femoral neck fracture (femoral neck BMD: OR 1.9, 95% confidence interval (95% CI): 1.4–2.5; trochanter BMD: OR 1.6, 95% CI 1.2–2.0; Ward’s triangle BMD: OR 1.7, 95% CI 1.3–2.2) and trochanteric fracture (femoral neck BMD: OR 2.6, 95% CI 1.9–3.6; trochanter BMD: OR 3.0, 95% CI 2.2–4.1; Ward’s triangle BMD: OR 1.8, 95% CI 1.4–2.3). Age-adjusted OR for 1 SD increases in NSA (OR 2.2, 95% CI 1.7–2.8) and HAL (OR 1.3, 95% CI 1.1–1.6) was significantly associated with the fracture risk only for femoral neck fracture. In the best predictive model the strongest predictors were site-matched BMD for both fracture types and NSA for neck fracture. Trochanteric BMD had the greatest area (0.78, standard error (SE) 0.02) under the receiver operating characteristic curve in trochanteric fractures, whereas for NSA (0.72, SE 0.03) this area was greatest in femoral neck fractures. These results confirm the association of BMD with proximal femur fracture and support the evidence that PFG plays a significant role only in neck fracture prediction, since NSA is the best predictive parameter among those tested. Received: 24 April 2001 / Accepted: 1 August 2001  相似文献   

2.
Dual-energy X-ray absorptiometry (DXA) of the proximal femur and in more recent years quantitative ultrasound (QUS) of the heel are the most established methods for assessing hip fracture risk. Measurement of the fingers offers a new approach. We performed DXA of the proximal femur, QUS of the heel and fingers, and radiographic absorptiometry (RA) of the fingers in 87 non-institutionalized women, 65–85 years of age, with a first hip fracture and compared them with 195 randomly selected age-matched controls. Bone mineral density (BMD) of the femoral neck and heel Stiffness Index were significantly lower among cases than among controls (by 15% and 17%, respectively; p<0.0001), whereas no significant differences were found for finger measurements. When applying the WHO criterion of osteoporosis, 62–98% of the patients were classified as osteoporotic, compared with 19–85% of the controls, depending on method and site. The risks of hip fracture, estimated as odds ratios for every 1 SD reduction in femoral neck BMD, heel Stiffness Index, finger QUS and finger RA, were: 3.6 (95% CI 2.4–5.5), 3.4 (95% CI 2.2–5.0), 1.0 (95% CI 0.7–1.3) and 1.2 (95% CI 0.8–1.6), respectively. Compared with women with normal BMD of the femoral neck, those classified as osteopenic had an odds ratio of hip fracture of 14 (95% CI 2-110), whereas those classified as osteoporotic had an odds ratio of 63 (95% CI 8–501). We conclude that hip DXA and heel QUS have similar capacities to discriminate the risk of a first hip fracture, whereas QUS and RA of the phalanges seem inferior techniques for differentiating female hip fracture patients from controls. Received: 10 March 2000 / Accepted: 21 September 2000  相似文献   

3.
We have previously shown that hip bone mineral density (BMD), heel broadband ultrasound attenuation (BUA) and bone resorption markers are independent predictors of hip fracture in elderly women. We investigated whether a combination of these three parameters could improve the predictive value of a single test in a nested case–control analysis (75 hip fractures and 228 age-matched controls) of the EPIDOS prospective study comprising 7598 healthy women 75 years of age and older followed prospectively for a mean 22 months. At baseline, prior fracture, femoral neck BMD by dual-energy X-ray absorptiometry (DXA), heel BUA and urinary type I collagen C-telopeptide breakdown products (CTX) were assessed. The area under the receiver operating characteristic curve was significant for the three diagnostic tests, heel BUA being the best single predictor. The added value of urinary CTX to either BMD or BUA depends on the cutoff point chosen to define patients at risk and on the therapeutic strategy that is considered. Defining patients at risk as those with low BMD (or low BUA) or high CTX resulted in a significant increase in the sensitivity compared with BMD or BUA alone – a strategy that could be applied when a broad treatment is considered. However, this increased sensitivity was also obtained simply by increasing the BMD and BUA cutoffs, suggesting that a combination of CTX with BMD/BUA is not useful for that type of treatment strategy. Conversely, defining patients at risk as those with both low BMD and high CTX increases the specificity (88% vs 78%) with a similar number of hip fracture patients being identified (30% vs 32%) – a combination that could be useful when the strategy is to target treatment to a subset of high-risk patients. This strategy appears to be more cost-effective than bone mass measurement alone as indicated by the 37% fewer patients who need to be treated to avoid one fracture per year. If DXA or ultrasound is not available, the combination of a bone resorption marker with a history of any type of fracture after the age of 50 years gave a predictive value similar to that obtained with femoral neck BMD or heel BUA alone, for both types of treatment strategy. We conclude that the combination of urinary CTX with hip BMD could be useful for the identification of elderly women at high risk for hip fracture, resulting in higher specificity for a given sensitivity threshold than BMD measurement alone. If DXA is not available, the combination of history of fracture and urinary CTX performs as well as hip BMD to assess hip fracture risk in elderly women. Received: 24 November 1997 / Revised: 3 March 1998  相似文献   

4.
Hip geometry and bone mineral density (BMD) have previously been shown to relate independently to hip fracture risk. Our objective was to determine by how much hip geometric data improved the identification of hip fracture. Lunar pencil beam scans of the proximal femur were obtained. Geometric and densitometric values from 800 female controls aged 60 years or more (from population samples which were participants in the European Prospective Osteoporosis Study, EPOS) were compared with data from 68 female hip fracture patients aged over 60 years who were scanned within 4 weeks of a contralateral hip fracture. We used Lunar DPX ‘beta’ versions of hip strength analysis (HSA) and hip axis length (HAL) applied to DPX(L) data. Compressive stress (Cstress), calculated by the HSA software to occur as a result of a typical fall on the greater trochanter, HAL, body mass index (BMI: weight/(height)2) and age were considered alongside femoral neck BMD (FN-BMD, g/cm2) as potential predictors of fracture. Logistic regression was used to generate predictors of fracture initially from FN-BMD. Next age, Cstress (as the most discriminating HSA-derived parameter), HAL and BMI were added to the model as potentially independent predictors. It was not necessary to include both HAL and Cstress in the logistic models, so the entire data set was examined without excluding the subjects missing HAL measurements. Cstress combined with age and BMI provided significantly better prediction of fracture than FN-BMD used alone as is current practice, judged by comparing areas under receiver operating characteristic (ROC) curves (p<0.001, deLong’s test). At a specificity of 80%, sensitivity in identification was improved from 66% to 81%. Identifying women at high risk of hip fracture is thus likely to be substantially enhanced by combining bone density with age, simple anthropometry and data on the structural geometry of the hip. HSA might prove to be a valuable enhancement of DXA densitometry in clinical practice and its use could justify a more pro-active approach to identifying women at high risk of hip fracture in the community. Received: 16 March 2001 / Accepted: 3 August 2001  相似文献   

5.
The effect of femoral bone mineral density (BMD) and several parameters of femoral neck geometry (hip axis length, neck–shaft angle and mean femoral neck width) on hip fracture risk in a Spanish population was assessed in a cross-sectional study. All parameters were determined by dual-energy X-ray absorptiometry. There were 411 patients (116 men, 295 women; aged 60–90 years) with hip fractures in whom measurements were taken in the contralateral hip. Controls were 545 persons (235 men, 310 women; aged 60–90 years) who participated in a previous study on BMD in a healthy Spanish population. Femoral neck BMD was significantly lower, and neck–shaft angle and mean femoral neck width significantly higher, in fracture cases than in controls. The logistic regression analysis adjusted by age, height and weight showed that a decrease of 1 standard deviation (SD) in femoral neck BMD was associated with an odds ratio of hip fracture of 4.52 [95% confidence interval (CI) 2.93 to 6.96] in men and 4.45 (95% CI 3.11 to 6.36) in women; an increase of 1 SD in neck–shaft angle of 2.45 (95% CI 1.73 to 3.45) in men and 3.48 (95% CI 2.61 to 4.65) in women; and an increase of 1 SD in mean femoral neck width of 2.15 (95% CI 1.55 to 2.98) in men and 2.40 (95% CI 1.79 to 3.22) in women. The use of a combination of femoral BMD and geometric parameters of the femoral neck except for hip axis length may improve hip fracture risk prediction allowing a better therapeutic strategy for hip fracture prevention. Received: 16 September 1999 / Accepted: 22 February 2000  相似文献   

6.
The aim of this study was to determine whether both types of hip fracture, femoral neck and intertrochanteric, have similar risk factors. A prospective cohort study was carried out on community-dwelling elderly women in four areas of the United States: Baltimore, MD; Pittsburgh, PA; Minneapolis, MN and Portland, OR. The participants were 9704 Caucasian women, 65 years and older, of whom 279 had fractured their femoral neck and 222 had fractured their trochanteric region of the proximal femur. The predictors used were the bone mass of the calcaneus and proximal femur, anthropometry, history of fracture (family and personal), medication use, functional status, physical activity and visual function. The main outcome measures were femoral neck and intertrochanteric fractures occurring during an average of 8 years of follow-up. In multivariate proportional hazards models, several risk factors increased the risk of both types of hip fracture; including femoral neck bone density and increased functional difficulty. In hazard regression models that directly compared risk factors for the two types of hip fracture, calcaneal bone mineral density (BMD) predicted femoral neck fractures more strongly than intertrochanteric fractures (OR = 1.16; 95% CI = 1.02–1.31). Steroid use and impaired functional status also predicted femoral neck fractures instead of intertrochanteric fractures. Poor health status (OR = 0.74; 95% CI = 0.55–1.00) predicted intertrochanteric fractures more strongly than femoral neck fractures. We conclude that femoral neck fractures are largely predicted by BMD and poor functional ability while aging and poor health status predispose to intertrochanteric fractures. Received: 8 February 2000 / Accepted: 10 June 2000  相似文献   

7.
Bone mineral density (BMD) and hip axis length (HAL) are important determinants of fracture risk in women. There are, however, few data concerning their predictive risk in men. The aim of this study was to determine the relationship between BMD, HAL and the risk of hip fracture in men. A case–control design was used. Cases were men aged 50 years and over with a minimal-trauma hip fracture admitted to the Royal Cornwall Hospital, Truro, during 1995–1997. Controls were recruited from a large general practice within the catchment area of the hospital. Subjects were invited for assessment of BMD at the lumbar spine and proximal femur, using dual-energy X-ray absorptiometry. HAL was assessed using machine software. Data concerning BMD were available in 62 fracture cases and 100 controls. After adjusting for age, height and weight, a reduction in BMD was associated with a significant increase in the risk of hip fracture [odds ratio (OR) 1.8–4.0 per standard deviation (SD) reduction, depending on site]. HAL was similar in both fracture and control groups (12.0 cm vs 12.0 cm). After adjusting for height, there was no association between HAL and the risk of hip fracture (OR per 1 SD increase in HAL = 0.9; 95% confidence interval 0.6, 1.3). Compared with those with a cervical fracture (n= 31), those with an intertrochanteric fracture (n= 31) had lower BMD at all skeletal sites, though this was significant for the trochanteric site only. It is concluded that BMD though not hip axis length is a risk factor for low-trauma hip fracture in Caucasian men. Received: 28 September 1999 / Accepted: 21 April 2000  相似文献   

8.
We conducted a population-based cohort study in 7598 white healthy women, aged 75 years and over, recruited from the voting lists. We measured at baseline bone mineral density (BMD g/cm2) of the proximal femur (neck, trochanter and Ward's triangle) and the whole body, as well as fat and lean body mass, by dual-energy X-ray absorptiometry (DXA). One hundred and fifty-four women underwent a hip fracture during an average 2 years follow-up. Each standard deviation decrease in BMD increased the risk of hip fracture adjusted for age, weight and centre by 1.9 (95% CL 1.5, 2.3) for the femoral neck, 2.6 times (2.0, 3.3) for the trochanter, 1.8 times (1.4, 2.2) for Ward's triangle, 1.6 times (1.2, 2.0) for the whole body, and 1.3 times (1.0, 1.5) for the fat mass. The areas under the receiver operating characteristic (ROC) curves were not significantly different between trochanter and femoral neck BMD, whereas ROC curves of femoral neck and trochanter BMD were significantly better than those for Ward's triangle and whole-body BMD. emsp;Women who sustained an intertrochanteric fracture were older (84 ± 4.5 years) than women who had a cervical fracture (81 ± 4.5 years) and trochanter BMD seemed to be a stronger predictor of intertrochanteric ([RR = 4.5 (3.1, 6.5)] than cervical fractures ([RR = 1.8 (1.5, 2.3]). emsp;In very elderly women aged 80 years and more, hip BMD was still a significant predictor of hip fracture but the relative risk was significantly lower than in women younger than 80 years. emsp;In the 48% of women who had a femoral neck BMD T-score less than –2.5, the relative risk of hip fracture was increased by 3, and the unadjusted incidence of hip fracture was 16.4 per 1000 woman-years compared with 1.1 in the population with a femoral neck BMD T-score 5–1. Received: 19 May 1997 / Accepted: 16 October 1997  相似文献   

9.
The incidence of osteoporotic hip fracture increases in postmenopausal women with low hip bone mineral density (BMD). Dual X-ray absorptiometry (DXA) is the most commonly used technique for the assessment of bone status and provides good measurement precision. However, DXA affords little information about bone architecture. Quantitative ultrasound (QUS) systems have been developed to evaluate bone status for assessment of fracture risk. Our study was designed to assess a new QUS system from Hologic, the Sahara; to compare it with a previous model, the Walker-Sonix UBA 575+; and to investigate whether it is able to discriminate between women with and without fracture. Using both ultrasound devices, the measurements were performed at the heels of 33 postmenopausal women who had recently sustained hip fracture. A control group of 35 age-matched postmenopausal women was recruited for comparison. The total, neck and trochanter femoral BMD values were assessed using DXA for both groups. QUS and DXA measurements were significantly lower in fractured patients (p<0.005) than in the control group. The short-term, mid-term and standardized short-term precisions were used to evaluate the reproducibility of the two QUS systems. The Sahara showed a better standardized coefficient of variation for broadband ultrasound attenuation (BUA) than did the UBA 575+ (p<0.001). The correlation of BUA and speed of sound (SOS) between the two QUS devices was highly significant, with an r value of 0.92 for BUA and 0.91 for SOS. However, the correlation between DXA and ultrasound parameters ranged from 0.28 to 0.44. We found that ultrasound measurements at the heel were significant discriminators of hip fractures with odds ratios (OR) ranging from 2.7 to 3.2. Even after adjusting the logistic regressions for total, neck or trochanter femoral BMD, QUS variables were still significant independent discriminators of hip fracture. The areas under the ROC curves of each ultrasound parameter ranged from 0.75 to 0.78, and compared very well with femoral neck BMD (p>0.05). In conclusion, our study indicated that the calcaneal QUS variables, as measured by the Sahara system can discriminate hip fracture patients equally as well as hip DXA. Received: 29 October 1999 / Accepted: 7 September 1999  相似文献   

10.
Introduction Proximal femoral bone strength is not only a function of femoral bone mineral density (BMD), but also a function of the spatial distribution of bone mass intrinsic in structural geometric properties such as diameter, area, length, and angle of the femoral neck. Recent advancements in bone density measurement include software that can automatically calculate a variety of femoral structural variables that may be related to hip fracture risk. The purpose of this study was to compare femoral bone density, structure, and strength assessments obtained from dual-energy X-ray absorbtiometry (DXA) measurements in a group of women with and without hip fracture. Methods DXA measurements of the proximal femur were obtained from 2,506 women 50 years of age or older, 365 with prior hip fracture and 2,141 controls. In addition to the conventional densitometry measurements, structural variables were determined using the Hip Strength Analysis program, including hip axis length (HAL), cross-sectional moment of inertia (CSMI), and the femur strength index (FSI) calculated as the ratio of estimated compressive yield strength of the femoral neck to the expected compressive stress of a fall on the greater trochanter. Results Femoral neck BMD was significantly lower and HAL significantly higher in the fracture group compared with controls. Mean CSMI was not significantly different between fracture patients and controls after adjustment for BMD and HAL. FSI, after adjustment for T score and HAL, was significantly lower in the fracture group, consistent with a reduced capacity to withstand a fall without fracturing a hip. Conclusion We conclude that BMD, HAL, and FSI are significant independent predictors of hip fracture.  相似文献   

11.
Hip axis length (HAL) has been reported as an independent risk factor for hip fracture. Later puberty may increase bone size because of delayed epiphyseal fusion. We sought to identify associations between bone size at the proximal femur with age at menarche and other indices of growth such as stature. Femoral neck dimensions were measured from dual-energy X-ray absorptiometry scans of the proximal femur in a random sample of 203 premenopausal Caucasian women (age 20–30 years). There were no associations between age at menarche and HAL, femoral axis length (FAL) or femoral neck width (FNW). Age at menarche was associated with height (r= 0.2, p= 0.02). Variations in HAL, FAL and FNW do not appear to be related to age at menarche. Received: 4 August 1998 / Accepted: 25 November 1998  相似文献   

12.
Bone mass and structure at the proximal femur are important predictors of hip fracture. The aims of this study were to compare in a large sample of elderly men and women the precision of measurements of bone mass and structure at multiple sites at the proximal femur, to examine their interrelationships, to establish their relationships with age and body size, and to examine criteria for defining geometric and architectural variables in bone structure. Women (n= 336) and men (n= 141) over the age of 60 years were studied cross-sectionally. Bone mineral density (BMD) and content (BMC) at the proximal femur were measured in duplicate by dual-energy X-ray absorptiometry (DXA). Shaft and total upper femur (hip) sites in addition to femoral neck, Ward's triangle and trochanter were measured. Structural variables, measured from radiographs and from DXA images, including cortical thickness at calcar femorale, lateral cortex and mid-femur, width of the femur and medulla, Singh grade, hip and femoral axis length, femoral head and neck width and the center of mass of the femoral neck. BMD and BMC had high reproducibility and there were significant differences in reproducibility across sites. Among sites, total upper femur and shaft had the highest reproducibility. Duplicate measurements substantially improved reliability of the measurement and are recommended when the value is close to a diagnostic level or when it will be used to establish rates of change. Reproducibility of structural variables was also high except for the lateral cortex, center of mass and Singh grade. Variance due to measurement error did not change with either age or gender. Women were significantly different from men, after controlling for differences in body size, in all variables except Singh grade and medulla width. BMD and BMC were negatively related to age and positively to body size. Structural variables examined in relation to age and body size fell into two categories. The first comprised variables that were not age-related but were body-size-related, suggesting that they could be classified as geometric variables. The second comprised variables that were both body-size-related and age-related, suggesting that they could be classified as architectural variables. Using these criteria, calcar and lateral cortex were architectural variables, whereas shaft width, hip and femoral axis length, femoral head and neck width, and center of mass were geometric in both men and women. In women, shaft cortex width and medulla width were age-related, whereas in men they were not. Singh grade showed no consistent pattern with age or body size in women and men. Received: 7 January 1997 / Accepted: 7 November 1997  相似文献   

13.
Bone Mineral Density and Vertebral Fractures in Men   总被引:1,自引:0,他引:1  
In women, many studies indicate that the risk of vertebral fragility fractures increases as bone mineral density (BMD) declines. In contrast, few studies are available for BMD and vertebral fractures in men. It is uncertain that the strength of the relationship between BMD and fractures is similar in magnitude in middle-aged men and in postmenopausal women. In the present study, 200 men (mean age 54.7 years) with lumbar osteopenia (T-score <−1.5) were recruited to examine the relationships between spine BMD and hip BMD and the associations of BMD with vertebral fractures. Lumbar BMD was assessed from L2 to L4, in the anteroposterior view, using dual-energy X-ray densitometry. At the upper left femur, hip BMD was measured at five regions of interest: femoral neck, trochanter, intertrochanter, Ward’s triangle and total hip. Spinal radiographs were analyzed independently by two trained investigators and vertebral fracture was defined as a reduction of at least 20% in the anterior, middle or posterior vertebral height. Spinal radiographs evidenced at least one vertebral crush fracture in 119 patients (59.5%). The results of logistic regression showed that age, femoral and spine BMDs were significant predictors of the presence of a vertebral fracture. Odds ratios for a decrease of 1 standard deviation ranged from 1.8 (1.3–2.8) for spine BMD to 2.3 (1.5–3.6) for total hip BMD. For multiple fractures odds ratios ranged from 1.7 (1.1–2.5) for spine BMD to 2.6 (1.7–4.3) for total hip BMD. In all models, odds ratios were higher for hip BMD than for spine BMD, particularly in younger men, under 50 years. A T-score <−2.5 in the femur (total femoral site) was associated with a 2.7-fold increase in the risk of vertebral fracture while a T-score <−2.5 in the spine was associated with only a 2-fold increase in risk. This study confirms the strong association of age and BMD with vertebral fractures in middle-aged men, shows that the femoral area is the best site of BMD measurement and suggests that a low femoral BMD could be considered as an index of severity in young men with lumbar osteopenia. Received: 27 October 1998 / Accepted: 22 February 1999  相似文献   

14.
Bone mineral density (BMD) measurement by hip dual-energy X-ray absorptiometry (DXA) is considered the best predictor of osteoporotic fracture risk. BMD takes into account only in part the bone cross-sectional area that is an important determinant of both bone compression strength and of bending breaking resistance. From DXA measurements of proximal radius (Osteoplan, NIM, Verona, Italy) we obtained the projected outer diameter (D) and the mean diameter of the medulla (d), by an algorithm based on the assumption of a constant cortical volumetric density of 1050 g/cm3. The algorithm was validated by the good correlation found (r= 0.8) between calculated d and that actually measured by peripheral quantitative tomography (pQCT; XCT 960, Stratec, Unitrem, Italy) at the same radial site. The D and d values were used to calculate a bending breaking resistance index (BBRI) that is a component of the cross-sectional moment of inertia. The BBRI measured in 5460 women aged 35–89 years, was stable up to the age of 65–70 years and rapidly declined thereafter by 0.7% per year. This profile appears to be due to the fact that the increase in medullary area is compensated in terms of mechanical resistance by enlargement of cross-sectional area. In 68 women with either previous femoral neck (n= 41) or pertrochanteric fracture (n= 27) DXA measurements at proximal and ultradistal radius, lumbar spine and femoral neck were obtained together with the evaluation of proximal radius BBRI. The diagnostic accuracy of BBRI was somewhat comparable to that of spine and femoral neck BMD and significantly superior to that of ultradistal and proximal radius BMD, from which it was derived. Despite the obvious limitation of the cross-sectional nature of this study, our results indicate that a simple re-elaboration of the data obtained by peripheral radial densitometry may achieve diagnostic accuracy for hip fracture risk assessment only marginally lower than that of the direct measure of the BMD of the femoral neck. They also give additional support to the view that bone geometry, particularly for compact skeletal segments, is a determinant of its strength at least as important as bone density. Received: 25 July 2000 / Accepted: 9 April 2001  相似文献   

15.
Hip fracture is the most serious consequence of osteoporosis, frequently occurring in the elderly; however, no research has been performed to identify the fall characteristics, functional mobility and bone mineral density (BMD) concurrently as risk factors. We investigated the risk factors of hip fractures using a multifactorial approach for a further preventive strategy. This age- and sex-matched case-control study was conducted in a community-based general hospital. A total of 252 consecutive community-dwelling ambulatory elderly, aged between 65 and 85 years, were studied: 127 patients (faller with hip fracture) and 125 controls (faller without hip fracture). Body mass index (BMI), predisposing medical conditions, fall characteristics, functional mobility and BMD of the hip were evaluated by direct interview and clinical examination. In the final model of multivariate regression analysis, risk factors for hip fracture were direct hip impact (adjusted odds ratio (OR), 4.9; 95% confidence interval (CI), 2.7–8.8), previous stroke (adjusted OR, 2.9; 95% CI, 1.3–6.3), sideways fall (adjusted OR, 2.5; 95% CI, 1.6–3.9), functional mobility (a decrease of 1 SD; adjusted OR, 2.0; 95% CI, 1.1–3.5), BMI (a decrease of 1 SD; adjusted OR, 1.8; 95% CI, 1.1–2.8) and femoral neck BMD (a decrease of 1 SD; adjusted OR, 1.7; 95% CI, 1.0–2.8). The effect of risk factors remained the same in different analysis sets, and adding or removing femoral neck BMD did not change other risk factors, though BMD was significantly correlated with functional mobility and BMI. Importantly, both sideways fall and direct hip impact are independent predictors of hip fracture. From these results, we suggest a preventive strategy of hip fracture in the elderly: besides the maintenance of BMD, keeping an appropriate body weight and maintaining a physically active lifestyle might be crucial. Received: 11 January 2001 / Accepted: 6 July 2001  相似文献   

16.
The objectives of this study were to (1) obtain both femoral neck strength (FNS) and hip axis length (HAL) values from left and right femurs (regardless of hip dominance) measured by DXA and evaluate their relationship with BMD of all hip regions including total hip, (2) determine if there is a difference between dominant and nondominant hip BMD in any of the hip regions, and (3) determine how physical activity influences hip BMD. Participants were 136, generally healthy Caucasian women (57.4–88.6 years). BMD was measured by DPX-MD. Past and present activity was assessed by the Allied Dunbar National Fitness Survey for older adults and normal/brisk walking pace was measured in a straight hallway. FNS analysis uses femoral geometry to calculate stresses at the femoral neck for two loading conditions: Safety Factor Index (SF) indicates risk of fracture for forces generated during a one-legged stance, and Fall Index (FI) indicates risk of fracture for forces generated during a fall on the greater trochanter. Simple and multiple regression analyses were used to determine predictive ability of HAL, SF, and FI for respective hip BMD values. There was no statistical difference in BMD between two hips in any of the measured regions, however, the nondominant hip correlated better with other skeletal sites. Subjects with a faster normal walking speed had higher neck BMD in the nondominant hip, 0.832 ± 0.12 vs. 0.791 ± 0.10 g/cm2 (P < 0.05). Longer HAL of the left hip was negatively related to neck, trochanter, shaft, and total hip BMD. FI was significantly associated with all sites of the hip BMD, while SF was associated only with neck and wards BMC (P < 0.05). In summary: (1) a longer HAL is associated with lower BMD and a higher FI with higher BMD, (2) it might be sufficient to measure BMD in only the nondominant hip, and (3) walking at a faster pace may positively benefit femoral neck BMD. Therefore, it appears that HAL, SF, and FI all play important roles in estimating fracture risk and should be assessed along with BMD when using DXA.  相似文献   

17.
Bone mineral density (BMD) has been shown to predict fracture risk in community-dwelling older persons; however, no comparable prospective study has been performed in the long-term care setting where the role of BMD testing is uncertain. To determine the ability of a single BMD measurement to predict the risk of subsequent fracture in long-term care residents, we designed a prospective study in a 725-bed long-term care facility. A total of 252 Caucasian nursing home residents (mean age 88 years, 74% women) were recruited between 1992 and 1998. BMD of the hip, radius or both sites was measured using dual-energy X-ray absorptiometry. Participants were followed through September 1999 for the occurrence of fracture. Cox proportional hazards regression models were constructed to determine the relationship between BMD and the risk of fracture controlling for potentially confounding variables. Sixty-three incident osteoporotic fractures occurred during a median follow-up time of 2.3 years. The multivariate-adjusted risk of fracture for each standard deviation decrease in BMD was 2.82 (95% CI 1.81–4.42) at the total hip, 2.79 (95% CI 1.69–4.61) at the femoral neck, 2.26 (95% CI 1.51–3.38) at the trochanter, 1.83 (95% CI 1.14–2.94) at the radial shaft and 1.84 (95% CI 1.21–2.80) at the ultradistal radius. Subjects in the lowest age-specific quartile of femoral neck BMD had over 4 times the incidence of fracture compared with those in the highest quartile. BMD at either hip or radius was a predictor of osteoporotic fracture, although in women, radial BMD did not predict fracture. Knowledge of BMD in long-term care residents provides important information on subsequent fracture risk. Received: 3 December 1999 / Accepted: 17 March 2000  相似文献   

18.
Digital X-ray radiogrammetry (DXR) is a technique that uses automated image analysis of standard hand radiographs to estimate bone mineral density (DXR-BMD). Previous studies have shown that DXR-BMD measurements have high precision, are strongly correlated with forearm BMD and are lower in individuals with prevalent fractures. To determine whether DXR-BMD measurements predict wrist, hip and vertebral fracture risk we conducted a case–cohort study within a prospective study of 9704 community-dwelling elderly women (the Study of Osteoporotic Fractures). We compared DXR-BMD, and BMD of the radius (proximal and distal), calcaneus, femoral neck and posteroanterior lumbar spine in women who subsequently suffered a wrist (n= 192), hip (n= 195), or vertebral fracture (n= 193) with randomly selected controls from the same cohort (n= 392–398). DXR-BMD was estimated from hand radiographs acquired at the baseline visit. The radiographs were digitized and the Pronosco X-posure System was used to compute DXR-BMD from the second through fourth metacarpals. Wrist fractures were confirmed by radiographic reports and hip fractures were confirmed by radiographs. Vertebral fractures were defined using morphometric analysis of lateral spine radiographs acquired at baseline and an average of 3.7 years later. Age-adjusted odds ratio (OR, vertebral fracture) or relative hazard (RH, wrist and hip fracture) for a 1 SD decrease in BMD were computed. All BMD measurements were similar for prediction of wrist (RH = 1.5–2.1) and vertebral fracture (OR = 1.8–2.5). Femoral neck BMD best predicted hip fracture (RH = 3.0), while the relative hazards for all other BMD measurements were similar (RH = 1.5–1.9). These prospective data indicate that DXR-BMD performs as well as other peripheral BMD measurements for prediction of wrist, hip and vertebral fractures. Therefore, DXR-BMD may be useful for prediction of fracture risk in clinical settings where hip BMD is not available. Received: 27 April 2001 / Accepted: 10 October 2001  相似文献   

19.
Measurements of bone mineral density (BMD) are useful for the assessment of fracture risk in osteoporosis. First prospective studies showed that quantitative ultrasound as measured at the calcaneus also predicts future hip fracture risk, independently of BMD and as accurately as BMD. The aim of this study was to compile a reference population for a new ultrasound device that determines amplitude-dependent speed of sound (AD-SOS) through the proximal phalanges of the hand and to prove its ability to distinguish between health volunteers and osteoporotic patients. In a case–control study we examined 139 healthy women aged 21–94 years and a group of 24 female patients aged 69–94 years with recent hip fractures. In the healthy reference population additional BMD measurements were performed with dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound measurements at the calcaneus were carried out. In vivo precision of AD-SOS measurements through the phalanges was 0.52% CV. Simple regression analyses showed a negative correlation with age (r= 70.73, p50.001); modest significant correlations with BMD of the lumbar spine (r= 0.36, p50.001) and BMD of the femoral neck (r= 0.37, p= 0.002) as measured with DXA were shown. The comparison with another ultrasound device measuring SOS and broadband ultrasound attenuation (BUA) through the calcaneus showed correlation with SOS (r= 0.50, p50.001); no significant correlation was found with BUA measurements. Furthermore a dependency of AD-SOS values in anthropometric factors such as body mass index (r= 0.37, p50.001), height (r= 0.40, p50.001) and weight (r= 0.23, p50.05) was shown. First study results on 24 clinically diagnosed osteoporotic patients, defined as patients with recent (51 week) pertrochanteric or femoral neck fractures, showed a good separation between age- and sex-matched controls and osteoporotic patients (Z= 72.0 SD). Receiver operating characteristic (ROC) curves showed an area under the fitted curve of 0.83 + 0.06. These results are powerful for a device measuring AD-SOS through the proximal phalanges of the hand, and further prospective studies have proven the capability of phalangeal ultrasound in fracture risk assessment. Received: 4 January 1996 / Accepted: 15 January 1998  相似文献   

20.
Risk Factors for Perimenopausal Fractures: A Prospective Study   总被引:11,自引:6,他引:5  
This prospective study was aimed at determining the risk factors for the development of fractures in perimenopausal women. The study group (n= 3068) was comprised of a stratified population sample of women aged between 47 and 56 years. During the follow-up period of 3.6 years, 257 (8.4%) of the women sustained a total of 295 fractures. After adjustment for covariates, the relative risk (RR) of sustaining a fracture was found to be 1.4 [95% confidence interval (CI) 1.2–1.6] for a 1 standard deviation (SD) decrease in the spinal and femoral neck bone mineral density (BMD). Women with a previous fracture history were found to have an increased risk of fracture [RR 1.7 (95% CI 1.3–2.2)] and those reporting three or more chronic illnesses exhibited a RR of 1.4 (95% CI 1.0–1.9). Women not using hormone replacement therapy (HRT) had a RR of 1.5 (95% CI 1.1–2.2) for all fracture types. When osteoporotic fractures (vertebral, hip, proximal humerus and wrist fractures; n= 98) were used as an endpoint, the independent risk factors were found to be a low BMD (RR for a 1 SD decrease in both spinal and femoral neck BMD was 1.6, 95% CI 1.3–2.0), a previous fracture history (RR 1.9, 95% CI 1.3–2.9) and nonuse of HRT (RR 2.2, 95% CI 1.3–4.0). The independent risk factors for all other fractures (n = 158) were a low BMD (RR for a 1 SD decrease in the spinal BMD was 1.4, 95% CI 1.2–1.6 and in the femoral neck BMD was 1.3, 95% CI 1.1–1.5), a previous fracture history (RR 1.6, 95% CI 1.1–2.2), smoking (RR 1.8, 95% CI 1.1–2.7) and having had three or more chronic illnesses (RR 1.6, 95% CI 1.1–2.2). Weight, height, age, menopausal status, maternal hip fracture, use of alcohol, coffee consumption or dietary calcium intake were not independently associated with the development of any particular type of fracture. We conclude that the independent risk factors for perimenopausal fractures are a low bone density, previous fracture history, nonuse of HRT, having had three or more chronic illnesses and smoking, the gradient of risk being similar for spinal and femoral neck BMD measurements in the perimenopausal population. The risk factors are slightly different for perimenopausal osteoporotic than for other types of fractures. Received: 6 April 1999 / Accepted: 18 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号