首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen J 《Health physics》2005,88(4):323-333
Radon is a naturally occurring radioactive gas. When inhaled, radon can cause mutations that lead to lung cancer. Some new epidemiologic studies indicate that indoor radon is a public health problem. The BEIR VI report outlined its preferred two risk models for the combined effects of smoking and exposure to radon progeny, and listed the estimated risk to ever-smokers and never-smokers of both sexes due to lifetime exposure. However, exposures for shorter periods of time are of practical interest since exposure to elevated levels of radon may occur and end at any age. This study aims to produce practical tables of lifetime relative risks for exposures between any two age intervals from 0 to 110, and for various radon concentrations found in homes from 100 to 1,000 Bq m(-3). The calculations are based on the risk model developed recently by U.S. Environmental Protection Agency. The EPA's risk model is a single model that gives risk values midway between those obtained from the two BEIR VI preferred models. The detailed tables provide a clearer view of the age groups at higher risk and the effect of exposure duration. The results will help radiation protection practitioners to better communicate indoor radon risk to members of the public.  相似文献   

2.
OBJECTIVES: A consideration of the effects of residential mobility produces much more realistic estimates of typical individuals' radon exposures and mortality risks than those of the Environmental Protection Agency (EPA). METHODS: A model linking residential mobility, the distribution of radon in US homes, and lung cancer risk is used to simulate lifetime radon exposure, with and without mitigation of high-radon homes, for typical mobile individuals. Radon-related lung cancer mortality risks are then estimated for smokers and never-smokers. RESULTS: Most individuals residing in high-radon homes have equivalent lifelong radon exposures well below those they are currently experiencing. Consequently, actual lung cancer risks are generally well below those implied in the EPA's radon risk charts. For most people who mitigate high-radon homes, risk reduction is modest. CONCLUSIONS: Radon may indeed be responsible for as large a population risk of lung cancer as the EPA estimates. However, caution must be used in interpreting the EPA's risk assessment for individuals; in many cases, mitigation will have little effect on residents' health risks.  相似文献   

3.
Recently there has been considerable public and regulatory concern that radon, produced by the decay of naturally occurring uranium, can accumulate in homes, offices, and schools at levels that may substantially increase the risk of lung cancer. The major cause of lung cancer is smoking, and radon appears to interact multiplicatively with smoking in causing lung cancer. Thus, the most effective way to reduce the increased risk of lung cancer resulting from radon exposure is to cease smoking. In this paper, a model for the risks associated with radon exposure that was developed by a committee of the National Academy of Sciences is used to calculate the benefits, in terms of reduction in lifetime risk of lung cancer, of ceasing to smoke, ceasing radon exposure, or ceasing both. Ceasing to smoke is considerably more beneficial than ceasing radon exposure, and thus policymakers addressing the health effects of radon should place priority on encouraging individuals to stop smoking.  相似文献   

4.
The mortality patterns of United Kingdom tin miners were examined in relation to calendar period and duration of underground work with particular attention to lung cancer and exposure to radon. Subjects were all men who had worked for at least one year between 1941 and 1984 at one of two United Kingdom tin mines and for whom a complete work history could be constructed from mine records. Standardised mortality ratios (SMRs) were calculated using national (England and Wales) rates. The pattern of SMRs in relation to potential explanatory variables was analysed using Poisson regression methods. Mortalities from lung cancer and silicosis (including silicotuberculosis) were significantly raised and showed a significant relation with duration of underground work (mortality from stomach cancer was raised in both underground and surface workers, but not significantly). Excess mortality from silica related disease declined steeply from 35% among workers first exposed before 1920 to 1% among those first exposed after 1950. Thirteen surface workers with known exposure to arsenic had high rates of lung and stomach cancer. The SMR for lung cancer showed a consistent pattern in relation to duration of underground exposure, rising from 83 (observed/expected = 8/9.6) for surface workers (without exposure to arsenic) to 447 (15/3.4) for workers with more than 30 years underground exposure. Examination of the SMR for lung cancer by total underground exposure, age, and time since last exposure gave rise to a model for the expression of risk which depends only on total exposure and time since exposure. The fitted model implies that the effect of exposure to radon in a given year has no effect on risk for 10 years, then rapidly rises to a maximum from which the excess risk then declines, halving every 4.3 years. There were no direct measurements of historic radon levels. A conservative estimate based on measurements taken since 1969 by the National Radiological Protection Board and the Mines and Quarries Inspectorate is that the annual dose to an underground worker was about 10 working level months (WLM). Given this assumption, the risk/exposure slope implied by the present data, and the model fitted to it, was somewhat lower than that given in the fourth Committee on the Biological Effects of Ionisation Radiation (BEIR IV) report (about 40% lower for lifetime exposures). The present data also imply different risks depending on the age at exposure, with relatively higher lifetime risks for exposure at older ages, and relatively lower risks for exposures at younger ages. In conclusion, there was a clear relation between exposure to radon and death from lung cancer. The relative risk of lung cancer due to exposure to radon was not constant in cessation of exposure. The lifetime excess risk of lung cancer implied by these data for 40 years exposure at the current statutory limit of four WLM a year starting at age 20, was about 8% (79 excess deaths per 1000 exposed), assuming average smoking habits among the exposed workers. Control of dust concentrations in the mines has substantially reduced--and may have eliminated--direct mortality from silica related disease.  相似文献   

5.
Mortality of a cohort of tin miners 1941-86   总被引:3,自引:0,他引:3  
The mortality patterns of United Kingdom tin miners were examined in relation to calendar period and duration of underground work with particular attention to lung cancer and exposure to radon. Subjects were all men who had worked for at least one year between 1941 and 1984 at one of two United Kingdom tin mines and for whom a complete work history could be constructed from mine records. Standardised mortality ratios (SMRs) were calculated using national (England and Wales) rates. The pattern of SMRs in relation to potential explanatory variables was analysed using Poisson regression methods. Mortalities from lung cancer and silicosis (including silicotuberculosis) were significantly raised and showed a significant relation with duration of underground work (mortality from stomach cancer was raised in both underground and surface workers, but not significantly). Excess mortality from silica related disease declined steeply from 35% among workers first exposed before 1920 to 1% among those first exposed after 1950. Thirteen surface workers with known exposure to arsenic had high rates of lung and stomach cancer. The SMR for lung cancer showed a consistent pattern in relation to duration of underground exposure, rising from 83 (observed/expected = 8/9.6) for surface workers (without exposure to arsenic) to 447 (15/3.4) for workers with more than 30 years underground exposure. Examination of the SMR for lung cancer by total underground exposure, age, and time since last exposure gave rise to a model for the expression of risk which depends only on total exposure and time since exposure. The fitted model implies that the effect of exposure to radon in a given year has no effect on risk for 10 years, then rapidly rises to a maximum from which the excess risk then declines, halving every 4.3 years. There were no direct measurements of historic radon levels. A conservative estimate based on measurements taken since 1969 by the National Radiological Protection Board and the Mines and Quarries Inspectorate is that the annual dose to an underground worker was about 10 working level months (WLM). Given this assumption, the risk/exposure slope implied by the present data, and the model fitted to it, was somewhat lower than that given in the fourth Committee on the Biological Effects of Ionisation Radiation (BEIR IV) report (about 40% lower for lifetime exposures). The present data also imply different risks depending on the age at exposure, with relatively higher lifetime risks for exposure at older ages, and relatively lower risks for exposures at younger ages. In conclusion, there was a clear relation between exposure to radon and death from lung cancer. The relative risk of lung cancer due to exposure to radon was not constant in cessation of exposure. The lifetime excess risk of lung cancer implied by these data for 40 years exposure at the current statutory limit of four WLM a year starting at age 20, was about 8% (79 excess deaths per 1000 exposed), assuming average smoking habits among the exposed workers. Control of dust concentrations in the mines has substantially reduced--and may have eliminated--direct mortality from silica related disease.  相似文献   

6.
The latency of occupational cancer was a key factor in the recent epidemic of lung cancer among U.S. uranium miners. A review of the epidemic and analysis of latency periods with a near lifetime follow-up found that among former and nonsmokers, the mean mid-induction latent period is nearly a constant at about 25 y, regardless of age at starting or magnitude of exposure. Among cigarette smokers, the mean is shorter (about 19 y). It is not influenced by age at start of smoking, amount smoked, or magnitude of exposure, but there is a marked shortening as the age at start of radiation exposure rises. These latency variables affect lifetime risk models. By disregarding the European radon mine exposures and waiting for strong evidence of lung cancer among U.S. uranium miners (ignoring the exposures occurring while waiting during the latency period), the epidemic became inevitable.  相似文献   

7.
OBJECTIVES: The purpose of this paper is to provide smokers with information on the relative benefits of mitigating radon and quitting smoking in reducing radon-related lung cancer risk. METHODS: The standard radon risk model, linked with models characterizing residential radon exposure and patterns of moving to new homes, was used to estimate the risk reduction produced by remediating high-radon homes, quitting smoking, or both. RESULTS: Quitting smoking reduces lung cancer risk from radon more than does reduction of radon exposure itself. CONCLUSIONS: Smokers should understand that, in addition to producing other health benefits, quitting smoking dominates strategies to deal with the problem posed by radon.  相似文献   

8.
Community-based cumulative risk assessment requires characterization of exposures to multiple chemical and non-chemical stressors, with consideration of how the non-chemical stressors may influence risks from chemical stressors. Residential radon provides an interesting case example, given its large attributable risk, effect modification due to smoking, and significant variability in radon concentrations and smoking patterns. In spite of this fact, no study to date has estimated geographic and sociodemographic patterns of both radon and smoking in a manner that would allow for inclusion of radon in community-based cumulative risk assessment. In this study, we apply multi-level regression models to explain variability in radon based on housing characteristics and geological variables, and construct a regression model predicting housing characteristics using U.S. Census data. Multi-level regression models of smoking based on predictors common to the housing model allow us to link the exposures. We estimate county-average lifetime lung cancer risks from radon ranging from 0.15 to 1.8 in 100, with high-risk clusters in areas and for subpopulations with high predicted radon and smoking rates. Our findings demonstrate the viability of screening-level assessment to characterize patterns of lung cancer risk from radon, with an approach that can be generalized to multiple chemical and non-chemical stressors.  相似文献   

9.
A case-control study nested in the cohort of French uranium miners took smoking information into account in investigating the effect of radon exposure on lung cancer risk. This study included 100 miners who died of lung cancer and 500 controls matched for birth period and attained age. Data about radon exposure came from the cohort study, and smoking information was retrospectively determined from a questionnaire and occupational medical records. Smoking status (never vs. ever) was reconstructed for 62 cases and 320 controls. Statistical analyses used conditional logistic regression. The effect of radon exposure on lung cancer risk was assessed with a linear excess relative risk model, and smoking was considered as a multiplicative factor. Mean cumulative radon exposures were 114.75 and 70.84 Working Level Months (WLM) among exposed cases and controls, respectively. The crude excess risk of lung cancer per 100 WLM was 0.98 (95% CI: 0.18-3.08%). When adjusted for smoking, the excess risk was 0.85 per 100 WLM (95% CI: 0.12-2.79%), which is still statistically significant. The relative risk related to smoking was equal to 3.04 (95% CI: 1.20-7.70). This analysis shows a relative risk of lung cancer related to smoking similar to that estimated from previous miners' cohorts. After adjustment for smoking, the effect of radon exposure on lung cancer risk persists, and its estimated risk coefficient is close to that found in the French cohort without smoking information.  相似文献   

10.
Radon is a well-established human carcinogen for which extensive data are available, extending into the range of exposures experienced by the general population. Mounting epidemiologic evidence on radon and lung cancer risk, now available from more than 20 different studies of underground miners and complementary laboratory findings, indicates that risks are linear in exposure without threshold. Radon is also a ubiquitous indoor air pollutant in homes, and risk projections imply that radon is the second leading cause of lung cancer after smoking. Recommended control strategies in the United States and other countries, which include testing of most homes and mitigation of those exceeding guideline levels, have been controversial. Further research is needed, drawing on molecular and cellular approaches and continuing the follow-up of the underground miner cohorts, and scientists should work toward constructing mechanistically based models that combine epidemiologic and experimental data to yield risk estimates with enhanced certainty.  相似文献   

11.
Background: Burning incense generates large amounts of air pollutants, many of which are confirmed or suspected human lung carcinogens.Objectives: We conducted a population-based case-referent study to examine the effect of incense smoke exposure on lung cancer risk among Chinese males and explored the joint effect of cigarette smoking and exposure to residential radon.Methods: We recruited 1,208 male lung cancer incident cases and 1,069 community referents from 2004 to 2006 and estimated their lifetime exposures to incense smoke and other residential indoor air pollutants based on self-reported information collected during interviews. We performed unconditional multivariable logistic regression analysis to estimate the odds ratio (OR) for lung cancer associated with exposure to incense smoke after adjusting for possible confounders. We conducted stratified analyses by smoking status and exposures to incense burning and residential radon and explored the potential additive-scale interactions.Results: We observed an association between incense exposure and lung cancer that was limited primarily to smokers. Cigarette smoking and high cumulative incense exposure at home appeared to have a synergistic effect on lung cancer (compared with never-smokers who never used incense, the OR for lung cancer for smokers who used incense ≥ 60 day-years = 5.00; 95% confidence interval: 3.34, 7.51). Power was limited, but we also found preliminary evidence suggesting that radon exposure may increase risk among smokers using incense.Conclusion: Our study suggests that exposure to incense smoke in the home may increase the risk of lung cancer among smokers and that exposure to radon may further increase risk.  相似文献   

12.
B L Cohen 《Health physics》1982,42(4):449-457
Radon exposures to U.S. uranium miners under present conditions average about 1.3 WLM per year approximately or equal to 60 WLM per full working lifetime. This is intermediate between (a) the lowest exposures for which there have been excess lung cancers reported among U.S. miners (120-240 WLM) and (b) average environmental radon exposures (16 WLM), so models based on these two situations are used to estimate expected effects on present uranium miners. In Model A, the loss of life expectancy is 45 days, the SMR (standardized mortality ratio) for lung cancer is 1.10, and the SMR for all causes between ages 18 and 65 is 1.013. In Model B these are 10 days, 1.03 and 1.002 respectively. It is shown that the radon exposures to miners are similar to those to millions of Americans from environmental exposure, and that miner health risks are comparable to those of other radiation workers. Their lung cancer risk from radon is 7-50 times less than their job-related accident mortality risk, and represents 0.7-4% of their total risk in mining. Miners suffer from many diseases with SMR very much larger than that for radon-induced lung cancer, and there are many other occupations and industries with far higher SMR for lung cancer than that from radon exposure to miners.  相似文献   

13.
OBJECTIVES: Exposure to the radioactive daughters of radon is associated with increased risk of lung cancer in mining populations. An investigation of incidence of lung cancer following a clinical survey of Ontario uranium miners was undertaken to explore whether risk associated with radon is modified by factors including smoking, radiographic silicosis, clinical symptoms, the results of lung function testing, and the temporal pattern of radon exposure. METHODS: Miners were examined in 1974 by a respiratory questionnaire, tests of lung function, and chest radiography. A random selection of 733 (75%) of the original 973 participants was followed up by linkage to the Ontario Mortality and Cancer Registries. RESULTS: Incidence of lung cancer was increased threefold. Risk of lung cancer among miners who had stopped smoking was half that of men who continued to smoke. There was no interaction between smoking and radon exposure. Men with lung function test results consistent with airways obstruction had an increased risk of lung cancer, even after adjustment for cigarette smoking. There was no association between radiographic silicosis and risk of lung cancer. Lung cancer was associated with exposures to radon daughters accumulated in a time window four to 14 years before diagnosis, but there was little association with exposures incurred earlier than 14 years before diagnosis. Among the men diagnosed with lung cancer, the mean and median dose rates were 2.6 working level months (WLM) a year and 1.8 WLM/year in the four to 14 year exposure window. CONCLUSIONS: Risk of lung cancer associated with radon is modified by dose and time from exposure. Risk can be substantially decreased by stopping smoking.  相似文献   

14.
An international cohort of asphalt workers was assembled to study cancer risk after bitumen exposure. This article describes the combination of the exposure assessment with the exposure-response for a quantitative risk assessment for lung cancer mortality within the Dutch component of the study. We identified a retrospective cohort of 3,709 workers with at least one season of employment. Semi-quantitative exposure to bitumen fume was estimated by a job-exposure matrix. Exposure-response relations were fitted by Poisson regression, and excess lifetime risks through age 75 were calculated by a life table method. Working lifetime cumulative exposure to bitumen fume was calculated under different scenarios, representing past and future exposures. For workers with exposures accumulated in the past, excess risks for lung cancer varied from 7.8 to 14.3%. Calculations for future exposures resulted in considerably lower excess risks ranging from 0.6 to 2.6%. The calculated excess risks for lung cancer mortality after working lifetime exposure to bitumen fume depend strongly on when exposure was experienced and to some extent on the exposure-response model chosen, while confounding by smoking cannot be ruled out. Nevertheless, the excess lifetime risk for lung cancer in this Dutch cohort of asphalt workers is above benchmark risks as applied by the Dutch Health Council. Current exposure levels have decreased this risk considerably, but further exposure control may be required.  相似文献   

15.
To calculate the radiation dose to the lungs from the inhalation of radon and its short-lived progeny, an accurate estimate of cumulative exposure is necessary. In this preliminary study, the content of 210Pb in the skeleton is used to obtain a measure of integrated exposure to the lungs of people living in homes with above average concentrations of radon. Measurements of skeletal 210Pb made in vivo allow the exposed individuals to become, in effect, their own "samplers" and "dosimeters" through the normal physical and physiological processes of inhalation, deposition, and retention. 210Pb measurements have been made on 40 subjects whose homes have above average levels of radon. These data are used to obtain their cumulative lung exposures, defined as RLM (Respiratory Level Months). RLM is calculated from the numbers of atoms of RaA, RaB, and RaC,C' deposited in their respiratory systems over the time periods lived in the surveyed homes. The RLM values obtained are not significantly different than conventional WLM exposures calculated for the same time periods.  相似文献   

16.
The lifetime cancer risks of exposure of cooks and food service workers, office workers, housewives, and schoolchildren in Hong Kong to volatile organic compounds (VOCs) in their respective indoor premises during normal indoor activities were assessed. The estimated cancer risk for housewives was the highest, and the second-highest lifetime cancer risk to VOC exposure was for the groups of food service and office workers. Within a certain group of the population, the lifetime cancer risk of the home living room was one to two orders of magnitude higher than that in other indoor environments. The estimated lifetime risks of food service workers were about two times that of office workers. Furthermore, the cancer risks of working in kitchen environments were approximately two times higher than the risks arising from studying in air-conditioned classrooms. The bus riders had higher average lifetime cancer risks than those travelling by Mass Transit Railway. For all target groups of people, the findings of this study show that the exposures to VOCs may lead to lifetime risks higher than 1 x 10(-6). Seven indoor environments were selected for the measurement of human exposure and the estimation of the corresponding lifetime cancer risks. The lifetime risks with 8-h average daily exposures to individual VOCs in individual environments were compared. People in a smoking home had the highest cancer risk, while students in an air-conditioned classroom had the lowest risk of cancer. Benzene accounted for about or more than 40% of the lifetime cancer risks for each category of indoor environment. Nonsmoking and smoking residences in Hong Kong had cancer risks associated with 8-h exposures of benzene above 1.8 x 10(-5) and 8.0 x 10(-5), respectively. The cancer risks associated with 1,1-dichloroethene, chloroform, methylene chloride, trichloroethene, and tetrachloroethene became more significant at selected homes and restaurants. Higher lifetime cancer risks due to exposure to styrene were only observed in the administrative and printing offices and air-conditioned classrooms. Higher lifetime cancer risks related to chloroform exposures were observed at the restaurant and the canteen.  相似文献   

17.
Radon in homes--a possible cause of lung cancer   总被引:3,自引:0,他引:3  
An earlier case-referent study [Scand j work environ & health 5 (1979) 10-15] has indicated a possible relationship between lung cancer and exposure to radon and radon daughters in dwellings. Indoor radon concentrations seem to depend on both building material and leakage of radon from the ground. This new study, in a rural area, is a further attempt to elucidate the etiology of lung cancer, taking into consideration type of house and ground conditions, as well as smoking habits. Although the choice of a rural study population helped to eliminate various confounding exposures in the urban environment, it limited the size of the study because of the rareness of lung cancer in rural populations. Long-term residents, 30 years or more in the same houses, were studied, and again an association was found between lung cancer and estimated exposure to radon and radon daughters in homes. The data also seem to indicate the possibility of a multiplicative effect between smoking and exposure to radon and radon daughters in homes, but there was also some confounding between these factors in the data.  相似文献   

18.
OBJECTIVES: To investigate risk of lung cancers associated with common established carcinogenic occupational exposures (asbestos, paint dust, polycyclic aromatic hydrocarbons, and welding fumes) in a prospective cohort study among the general population, and to estimate the proportion of lung cancer cases attributable to these occupational exposures. METHODS: A prospective cohort study on diet, other lifestyle factors, job history, and cancer risk that started in 1986 in The Netherlands on 58,279 men, aged 55-69 years. Based on information about job history obtained from a self-administered questionnaire, case by case expert assessment was carried out to assign to each study subject a cumulative probability of occupational exposure for each carcinogenic exposure. For analysis, a case-cohort approach was used, in which the person-years at risk were estimated from a randomly selected subcohort (n = 1688). After 4.3 years of follow up, 524 lung cancer cases with complete job history were available. RESULTS: After adjustment for age, each of the other occupational exposures, and for smoking habits and intake of vitamin C, beta-carotene, and retinol, significant associations were found between risk of lung cancer and cumulative probability of occupational exposure to asbestos (relative risk (RR) highest/no exposure = 3.49, 95% confidence interval (95% CI) 1.69 to 7.18, trend P < 0.01 or paint dust (RR highest/no exposure = 2.48, 95% CI 0.88 to 6.97, trend P < 0.01). The population attributable risks (PARs) for the four exposures based on the multivariately adjusted RRs for ever exposed versus never exposed workers were calculated. The PAR of lifetime occupational exposure to asbestos was calculated to be 11.6%. CONCLUSIONS: This prospective cohort study among the general population showed that occupational exposure to asbestos or paint dust is associated with higher RRs for lung cancer. This study shows that after adjustment for smoking and diet about 11.6% of the cases of lung cancer in men is attributable to lifetime occupational exposure to asbestos.  相似文献   

19.
Aims: To study the associations between occupational exposures and the risk of lung cancer in New Caledonia.

Methods: All cases diagnosed between January 1993 and December 1995 (228 lung cancers) and 305 population controls were included. Detailed information on lifetime job history, smoking, and other potential risk factors was collected by interview. Occupational exposures were assessed from the questionnaires by an industrial hygienist, without knowledge of case-control status.

Results: No significant association was found with exposures related to nickel mining and refining, the main industrial activity in the territory. Among men, an excess risk of lung cancer was found for bus and truck drivers. Increased risks were also observed in men with the highest level of cumulative exposure to cleaning products and inorganic fertilisers. Exposure to field dust was associated with lung cancer risk in both sexes, and risk increased with cumulative exposure level. In some areas tremolite asbestos derived from local outcroppings was used as a whitewash. The association between exposure to field dust and lung cancer was limited to men and women exposed to this whitewash—that is, living in areas where the soil may contain tremolite.

Conclusion: This study shows several associations between occupational exposures and lung cancer. The findings suggest that exposure to tremolite fibres from cultivated fields may increase the risk of lung cancer in New Caledonia.

  相似文献   

20.
Case-control analysis of deaths due to lung cancer (International Classification of Diseases, Eighth Revision, code 162) among persons who worked at the Portsmouth Naval Shipyard, Kittery, Maine, between 1952 and 1977 found elevated odds ratios for exposures to ionizing radiation, asbestos, and welding byproducts. The radiation-related excess was statistically significant in persons with cumulative lifetime exposures of 1.0-4.999 rem. When asbestos and welding histories were combined into a single risk factor, odds ratios for the combined exposure were significantly elevated for two of three duration-of-exposure categories examined. Further analysis of data on radiation exposure, controlling for exposures to asbestos and welding, found reductions in initial estimates of radiation risk at all levels of radiation exposure. This reduction suggests that radiation workers were more heavily exposed to asbestos and/or welding fumes than were other workers and that those exposures confounded the observed association between radiation and lung cancer. Analysis of mortality by time since first exposure to radiation revealed no pattern of progressive increase as latency increased. By contrast, odds ratios for asbestos/welding increased with latency. Data on cigarette smoking and socioeconomic status were not available. The results of this study do not preclude a possible association between radiation exposure at the Portsmouth Naval Shipyard and excess mortality from lung cancer. However, they provide no evidence in support of such a relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号