首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
3.
4.
5.
Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor. Recent studies have shown that the VEGF levels increase in several cell types, for example, macrophages and smooth muscle cells after LPS stimulation, suggesting that it is important in the initiation and development of sepsis. In particular, LPS-regulated contractility in lung pericytes may play an important role in mediating pulmonary microvascular fluid hemodynamics during sepsis. This study investigated the production of VEGF by rat lung pericytes in response to LPS. LPS was found to enhance VEGF mRNA expression in a concentration-dependent manner peaking 2 h after stimulation in pericytes. Vascular endothelial growth factor protein levels in conditioned medium and in cell lysate also increased on increasing LPS and peaked after 24 to 48 h. LPS also significantly augmented iNOS expression in lung pericytes within 6 h. However, iNOS mRNA induction occurred later than LPS-induced VEGF mRNA increases. Interestingly, attempted inhibition with nuclear factor-kappaB or tyrosine kinase did not suppress LPS-induced augmented VEGF mRNA expression in lung pericytes, although both inhibitors markedly inhibited LPS-induced iNOS mRNA expression. SB203580, a p38 MAP kinase inhibitor, repressed LPS-induced VEGF mRNA expression. Furthermore, LPS stimulated a rapid and sustained phosphorylation of p38 MAP kinase. These results show that pericytes produce VEGF in response to LPS stimulation, and that this may be partly mediated by the p38 MAP kinase pathway. More research should be done to establish the regulation of capillary hemodynamics and identify mechanisms of their regulation.  相似文献   

6.
Cytokine production is critical in sepsis. 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol, inhibits hypoxia-inducible factor 1α (HIF-1α) and is an antiangiogenic and antitumor agent. We investigated the effect of 2ME2 on cytokine production and survival in septic mice. Using i.p. LPS or cecal ligation and puncture (CLP), sepsis was induced in BALB/c mice that were simultaneously or later treated with 2ME2 or vehicle. Twelve hours after the LPS injection, serum and peritoneal fluid cytokine and nitric oxide (NO) levels were analyzed using enzyme-linked immunosorbent assay and the Griess reaction. Lung injuries were histologically analyzed, and liver and kidney injuries were biochemically analyzed. Survival was determined 7 days after LPS injection or CLP procedure. In vivo and in vitro effects of 2ME2 on LPS-induced macrophage inflammation were determined. The effect of 2ME2 on HIF-1α expression, nuclear factor κB (NF-κB), and inducible NO synthase (iNOS) in LPS-treated RAW264.7 cells, a murine macrophage cell line, was determined using Western blotting. 2-Methoxyestradiol treatment reduced LPS-induced lung, liver, and kidney injury. Both early and late 2ME2 treatment prolonged survival in LPS- and CLP-induced sepsis. 2-Methoxyestradiol significantly reduced IL-1β, IL-6, TNF-α, and NO levels in septic mice as well as in LPS-stimulated peritoneal macrophages. 2-Methoxyestradiol treatment also reduced the LPS-induced expression of HIF-1α, iNOS, and pNF-κB in RAW264.7 cells, as well as iNOS and pNF-κB expression in siHIF-1α-RAW264.7 cells. 2-Methoxyestradiol prolongs survival and reduces lung, liver, and kidney injury in septic mice by inhibiting iNOS/NO and cytokines through HIF-1α and NF-κB signaling.  相似文献   

7.
(R)-4-(3,4-Dihydro-8,8-dimethyl)-2H,8H-benzo[1,2-b:3,4-b']dipyran-3yl)-1,3-benzenediol (glabridin), a flavonoid present in licorice extract, is known to have antimicrobial, anti-inflammatory, and cardiovascular protective activities. In the present study, we report the inhibitory effect of glabridin on nitric oxide (NO) production and inducible nitric oxide (iNOS) gene expression in murine macrophages. Glabridin attenuated lipopolysaccharide (LPS)-induced NO production in isolated mouse peritoneal macrophages and RAW 264.7 cells, a mouse macrophage-like cell line. Moreover, iNOS mRNA expression was also blocked by glabridin treatment in LPS-stimulated RAW 264.7 cells. Further study demonstrated that the LPS-induced nuclear factor (NF)-kappaB/Rel DNA binding activity and NF-kappaB/Rel-dependent reporter gene activity were significantly inhibited by glabridin in RAW 264.7 cells and that this effect was mediated through the inhibition of inhibitory factor-kappaB degradation and p65 nuclear translocation. Moreover, reactive oxygen species generation was also suppressed by glabridin treatment in RAW 264.7 cells. In contrast, the activity of mitogen-activated protein kinases was unaffected by glabridin treatment. In animal model, in vivo administration of glabridin increased the rate of survival of LPS-treated mice and inhibited LPS-induced increase in plasma concentrations of nitrite/nitrate and tumor necrosis factor-alpha. Collectively, these data suggest that glabridin inhibits NO production and iNOS gene expression by blocking NF-kappaB/Rel activation and that this effect was mediated, at least in part, by inhibiting reactive oxygen species generation. Furthermore, in vivo anti-inflammatory effect of glabridin suggests a possible therapeutic application of this agent in inflammatory diseases.  相似文献   

8.
Curcumin, at high concentrations (>2 μM), inhibits the production of nitric oxide (NO) and the expression of inducible NO synthase (iNOS) through inactivation of nuclear factor (NF)-κB and, at low concentrations, induces the expression of heme oxygenase (HO)-1 in macrophages. Here, we demonstrated that curcumin at low concentrations (0.5–2 μM) can also inhibit NO production and iNOS expression in lipopolysaccharide (LPS)-activated RAW264.7 macrophages only when the cells were pretreated for at least 6 h with curcumin. Curcumin induced dose- and time-dependent HO-1 expression, and this was coincident with the inhibitory effects of low concentrations of curcumin on NO production and iNOS expression. Blockage of HO-1 activity or knockdown of HO-1 expression abolished the inhibitory effects of curcumin. Over-expression of HO-1 or exogenous addition of carbon monoxide, a byproduct derived from heme degradation, mimicked the inhibitory action of low concentrations of curcumin. Moreover, LPS-induced NF-κB was diminished in macrophages subjected to prolonged treatment with low concentrations of curcumin. Treatment with HO inhibitor abolished the inhibitory effect of curcumin on LPS-induced NF-κB activation. Collectively, we provide evidence to support the important role of HO-1 in inhibition of NO production and iNOS expression by curcumin even at low concentrations.  相似文献   

9.
10.
11.
Inducible nitric oxide (NO) produced by macrophages is cytotoxic to invading organisms and has an important role in host defense. Recent studies have demonstrated inducible NO production within the heart, and that cytokine-induced NO mediates alterations in cardiac contractility, but the cytotoxic potential of nitric oxide with respect to the heart has not been defined. To evaluate the role of inducible nitric oxide synthase (iNOS) on cardiac myocyte cytotoxicity, we exposed adult rat cardiac myocytes to either cytokines alone or to activated J774 macrophages in coculture. Increased expression of both iNOS message and protein was seen in J774 macrophages treated with IFN gamma and LPS and cardiac myocytes treated with TNF-alpha, IL-1 beta, and IFN gamma. Increased NO synthesis was confirmed in both the coculture and isolated myocyte preparations by increased nitrite production. Increased NO synthesis was associated with a parallel increase in myocyte death as measured by CPK release into the culture medium as well as by loss of membrane integrity, visualized by trypan blue staining. Addition of the competitive NO synthase inhibitor L-NMMA to the culture medium prevented both the increased nitrite production and the cytotoxicity observed after cytokine treatment in both the isolated myocyte and the coculture experiments. Because transforming growth-factor beta modulates iNOS expression in other cell types, we evaluated its effects on cardiac myocyte iNOS expression and NO-mediated myocyte cytotoxicity. TGF-beta reduced expression of cardiac myocyte iNOS message and protein, reduced nitrite production, and reduced NO-mediated cytotoxicity in parallel. Taken together, these experiments show the cytotoxic potential of endogenous NO production within the heart, and suggest a role for TGF-beta or NO synthase antagonists to mute these lethal effects. These findings may help explain the cardiac response to sepsis or allograft rejection, as well as the progression of dilated cardiomyopathies of diverse etiologies.  相似文献   

12.
13.
Guo F  Xing Y  Zhou Z  Dou Y  Tang J  Gao C  Huan J 《Shock (Augusta, Ga.)》2012,37(5):531-538
The development of sepsis is multifactorial. Tissue damage and organ dysfunction may be caused not only by the microorganisms but also by the inflammatory mediators released in response to the infection. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) levels in serum are well known to be upregulated in humans with sepsis and can be used to predict outcome. Using human umbilical vein endothelial cells, we analyzed the role of guanine-nucleotide exchange factor H1 (GEF-H1) on lipopolysaccharide (LPS)-dependent IL-6/TNF-α expression in endothelial cells. Lipopolysaccharide upregulated IL-6 secretion in a dose- and time-dependent manner. Specific inactivation of RhoA/Cdc42/Rac1 by Clostridium difficile toxin B-10463 (TcdB-10463) reduced LPS-induced nuclear factor κB (NF-κB) p65 phosphorylation, IL-6/TNF-α messenger RNA (mRNA), and IL-6/TNF-α protein productions. Guanine-nucleotide exchange factor H1 protein expression remained on a high level among 1 to 9 h in response to LPS challenge of endothelial cells. Inhibition of GEF-H1 by specific small interfering RNA or inactivation of Rho-associated kinase with Y-27632 not only significantly reduced LPS-induced p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) activities but also blocked LPS-induced NF-κB translocation and activation, thereby inhibiting IL-6/TNF-α mRNA and protein productions. Furthermore, SB203580 (p38 inhibitor) but not PD98059 (ERK1/2 inhibitor) blocked LPS-induced NF-κB activation; however, both inhibitors significantly suppressed IL-6/TNF-α mRNA and protein expression. In summary, our data suggest that LPS rapidly upregulates GEF-H1 expression. Activated Rho-associated kinase by GEF-H1 subsequently activates p38 and ERK1/2, thereby increasing IL-6/TNF-α expression in endothelial cells. P38 and ERK1/2 regulate LPS-induced IL-6/TNF-α expression through an NF-κB-dependent manner and an NF-κB-independent manner, respectively.  相似文献   

14.
OBJECTIVE: To examine whether inhaled nitric oxide (NO) affected the intrapulmonary production of NO, reactive oxygen species, and nuclear factor-kappaB in a lipopolysaccharide (LPS)-induced model of acute lung injury. DESIGN: Prospective, randomized, laboratory study. SETTING: Experimental laboratory at a biomedical institute. SUBJECTS: Twenty male rabbits weighing 2.5-3.5 kg. INTERVENTIONS: Saline or LPS (5 mg/kg of body weight) was administered intravenously with or without NO inhalation (10 ppm) in each group of five rabbits. MEASUREMENTS AND MAIN RESULTS: LPS increased the lung leak index, the neutrophils and NO levels in bronchoalveolar lavage fluid, and NO levels produced by resting and stimulated alveolar macrophages. Inhaled NO decreased the lung leak index, the neutrophils and NO levels as measured by nitrite levels in the lavage fluid, and NO produced by the resting and stimulated alveolar macrophages. Inhaled NO also blocked the activities of reactive oxygen species and nuclear factor-kappaB binding to DNA in lavage cells and in alveolar macrophages. CONCLUSION: Inhaled NO attenuates LPS-induced acute lung injury, possibly by decreasing NO production in the lungs. The mechanism of reducing NO production resulting from inhaled NO may involve, in part, the activities of reactive oxygen species and/or nuclear factor-kappaB.  相似文献   

15.
Florfenicol, an antibiotic commonly used to treat infections, has previously been shown to modulate lipopolysaccharide (LPS)‐induced early cytokine responses by blocking the nuclear factor‐κB (NF‐κB) pathway. In this study, we investigated the effects of florfenicol on nitric oxide (NO) and prostaglandin E2 (PGE2) production as well as on inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2) expression in LPS‐stimulated murine RAW 264.7 macrophages. We also analysed the effects of florfenicol on mitogen‐activated protein kinase (MAPK) pathways. Florfenicol significantly inhibited LPS‐induced NO and PGE2 production. Consistent with these observations, mRNA and protein expression of iNOS and COX‐2 were also inhibited by florfenicol in a dose‐dependent manner. Furthermore, phosphorylation of p38 and extracellular signal‐regulated kinase 1/2 (ERK1/2) in LPS‐stimulated RAW 264.7 cells was suppressed by florfenicol. However, c‐Jun N‐terminal kinase (JNK) phosphorylation remained unaffected. Using specific inhibitors of ERK and p38, we found that florfenicol may inhibit NO and PGE2 mostly through ERK and p38 pathway. These results suggest that florfenicol inhibits NO and PGE2 production in conjunction with an inhibition of iNOS and COX‐2 expression, at least partially via suppression of ERK1/2 and p38 MAPK phosphorylation.  相似文献   

16.
Nitric oxide (NO) is an important mediator of cytotoxicity caused by macrophages or by their resident counterpart in brain-glial cells. Modulation of NO release by both activated macrophages and glial cells has been reported in the presence of endogenous (peptide) and synthetic (non-peptide) agonists with kappa opioid-receptors (KOR) selectivity. The data obtained with macrophages and glial cells are contradictory: enhanced NO release by mouse macrophages was reported in the presence of synthetic agonist of KOR selectivity (Neuropeptides 32 (1998) 287), and decreased NO release by glial cells, in the presence of dynorphin-A((1-8)), endogenous opioid peptide with KOR selectivity (J. Biomed. Sci. 7 (2000) 241). In this study, we used a murine cell line J774 of macrophage origin and examined the effect of dynorphin-A((1-17)), endogenous opioid peptide with selectivity for KOR, on NO release induced with lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma). Dynorphin-A((1-17)) was chosen since in comparison to dynorphin-A((1-13)), it is more resistant to biodegradation (Peptides 17 (1996) 983), and its effects during prolonged treatment of cells could be more pronounced. The effect of dynorphin-A((1-17)) on NO release was compared to its effect on cytotoxicity, induced with LPS plus IFN-gamma. The data obtained have shown that activation-induced NO release by J774 cells is decreased in the presence of dynorphin-A((1-17)). This was associated with deceased LPS and IFN-gamma-induced cytotoxicity of J774 cells, suggesting their causal relationship. Neither of the observed effects of dynorphin-A((1-17)) could be prevented with the KOR selective antagonist, norbinaltorphimine, suggesting that they are mediated via non-opioid mechanism. By diminishing NO release dynorphin-A((1-17)) may affect cytotoxic ability of macrophages, but may also beneficially influence inflammation-induced damage of local tissue.  相似文献   

17.
Previously, we designed and synthesized a new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), and found that racemic DHMEQ inhibited cytokine secretion and phagocytosis by cells of the macrophage cell line RAW264.7. In the present research, we looked into the effect of optically active (−)-DHMEQ on the NO production, inflammatory cytokine secretion, and prostaglandin secretion in mouse bone marrow-derived macrophages (BMMs). We also studied the effect of (−)-DHMEQ on the differentiation of macrophages. DHMEQ inhibited lipopolysaccharide (LPS)-induced NF-κB activation. It also inhibited the expression of inducible NO synthase (iNOS) and NO production induced by LPS. Using enzyme-linked immunosorbent assays, we showed DHMEQ to inhibit LPS-induced secretion of IL-6 and TNF-α. It also inhibited COX-2 expression and prostaglandin E2 production and secretion. It did not inhibit the phagocytosis of fluorescently labeled Escherichia coli by BMMs treated with LPS, unlike in the case of RAW264.7 cells. Next we examined the effect of the inhibitor on M-CSF-induced differentiation of bone marrow cells to macrophages. DHMEQ showed no effect on the differentiation in terms of reactive oxygen species production and F4/80 expression. However, although BMM incorporated oxidized LDL to give rise to foam cells, the (−)-DHMEQ-treated bone marrow cells did not take up oxidized LDL. Taken together, our data show that (−)-DHMEQ inhibited LPS-induced activation of BMM in terms of NO and cytokine secretion, but its effect on phagocytosis differed between BMMs and RAW264.7 cells. We also found that the functional differentiation into macrophages was inhibited by (−)-DHMEQ.  相似文献   

18.
We tested the hypothesis that increased production of nitric oxide (NO.) associated with lipopolysaccharide (LPS)-induced systemic inflammation leads to functionally significant alterations in the expression and/or targeting of key tight junction (TJ) proteins in ileal and colonic epithelium. Wild-type or inducible NO. synthase (iNOS) knockout male C57B1/6J mice were injected intraperitoneally with 2 mg/kg Escherichia coli O111:B4 LPS. iNOS was inhibited using intraperitoneal L-N(6)-(1-iminoethyl)lysine (L-NIL; 5 mg/kg). Immunoblotting of total protein and NP-40 insoluble proteins revealed decreased expression and decreased TJ localization, respectively, of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and/or occludin in ileal mucosa and colonic mucosa (total protein only) after injection of C57B1/6J mice with LPS. Immunohistochemistry showed deranged distribution of ZO-1 and occludin in both tissues from endotoxemic mice. Endotoxemia was associated with evidence of gut epithelial barrier dysfunction evidenced by increased ileal mucosal permeability to fluorescein isothiocyanate-dextran (Mr=4 kDa) and increased bacterial translocation to mesenteric lymph nodes. Pharmacologic inhibition of iNOS activity using L-NIL or genetic ablation of the iNOS gene ameliorated LPS-induced changes in TJ protein expression and gut mucosal barrier function. These results support the view that at least one mechanism contributing to the pathogenesis of gastrointestinal epithelial dysfunction secondary to systemic inflammation is increased iNOS-dependent NO. production leading to altered expression and localization of key TJ proteins.  相似文献   

19.
Bacterial lipopolysaccharide (LPS) is known to induce endotoxic shock with inducible nitric oxide (NO) synthase (iNOS) expression and NO production. However, the major place for NO production in shock remains unclear. Although there is some literature about p38 mitogen-activated protein kinase (MAPK) in regulating LPS-induced iNOS expression, the results are contradictory. To interpret the precise cell mechanism and the role of p38 MAPK in the expression of iNOS during endotoxic shock, we carried out the following investigations. A severe endotoxic shock model was reproduced in mice 6 h after LPS injection. The plasma NO level was increased in a dose- and time-dependent manner after LPS stimulation and was suppressed by administration of SB203580 [4-(4-fluorophenyl)-2-4-methylsulfonylphenyl-5-(4-pyridyl) imidazole], a highly specific inhibitor of p38 MAPK. The iNOS expression was increased in many organs, including heart, liver, spleen, lung, gut, and kidney in endotoxic shock. Among them, the highest expression of iNOS mRNA and protein was in the lung, moderate expression was in the spleen and kidney, and the lowest expression was in the heart, gut, and liver. The level of expression in lung was 5.5 times that of iNOS mRNA and was 3.1 times that of iNOS protein than in heart, and 1.6 and 1.8 times that of iNOS mRNA and 1.7 and 1.4 times that of iNOS protein than in spleen and kidney, respectively. The p38 MAPK activity increased after LPS injection, and SB203580 markedly reduced LPS-induced expressions of iNOS protein and mRNA in the lung. The results indicates that lung, spleen, and kidney are the major places for iNOS expression in endotoxic shock and are important therapeutic target organs for attenuating NO production in shock treatment.  相似文献   

20.
O(2)-Vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO), a liver-selective nitric oxide (NO)-donating prodrug, is metabolized by hepatic enzymes to release NO within the liver. This study was undertaken to examine the effects of V-PYRRO/NO on D-galactosamine/lipopolysaccharide (GlaN/LPS)-induced liver injury in mice. Mice were given injections of V-PYRRO/NO (10 mg/kg, s.c. at 2-h intervals) before and after GlaN/LPS (700 mg/30 microg/kg, i.p.). V-PYRRO/NO administration dramatically reduced GlaN/LPS-induced hepatotoxicity, as evidenced by reduced serum alanine aminotransferase activity and improved pathology. To examine the mechanisms of the protection, cDNA microarray was performed to profile the gene expression pattern in livers of mice treated with GlaN/LPS, GlaN/LPS plus V-PYRRO/NO, or controls. V-PYRRO/NO administration greatly ameliorated GlaN/LPS-induced alterations in the expression of genes encoding the stress response, DNA damage/repair response, and drug-metabolizing enzymes in accordance with hepatoprotection. Gel shift assay and Western blot analysis supported microarray results, showing that V-PYRRO/NO suppressed GlaN/LPS-induced activation of nuclear factor-kappaB and GlaN/LPS-induced increases in caspase-1, caspase-8, tumor necrosis factor receptor 1 (TNFR1)-associated death domain, and TNF-related apoptosis-inducing ligand. Immunohistochemical analysis further revealed that GlaN/LPS-induced activation of TNFR1, caspase-3, and hepatocellular apoptosis was ameliorated by V-PYRRO/NO treatment. GlaN/LPS-induced elevation of hepatic caspase-3 activity was diminished by V-PYRRO/NO treatment. In addition, V-PYRRO/NO alone suppressed the basal expression of genes encoding inducible NO synthase and TNF-alpha-related components, as revealed by mouse 1.2 array. In summary, this study demonstrates that the liver-selective NO donor, V-PYRRO/NO, is effective in blocking GlaN/LPS-induced hepatotoxicity in mice, and that this protection appears to involve, at least in part, the suppression of the TNF-alpha-mediated cell death pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号