首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of calcitonin gene-related peptide (CGRP) in the A10 dopamine (DA) cell group region of the ventral tegmental area (VTA) of the rat was examined using immunohistochemical techniques. CGRP-like immunoreactivity was localized to axons innervating the rostral and dorsal VTA. Direct administration of CGRP to the VTA of the rat resulted in a dose-related increase in DA utilization in the medial prefrontal cortex, but not other mesocortical, mesolimbic, or striatal DA terminal field regions. These data suggest that CGRP may function to selectively modulate the activity of VTA dopaminergic neurons which innervate the prefrontal cortex.  相似文献   

2.
The properties of the mesocortical dopaminergic neurons projecting to the pregenual and anterior supragenual cortices were examined 3–6 months after the degeneration of ascending noradrenergic pathways caused by bilateral multiple or single microinjections of 6-hydroxydopamine made laterally to the pedunculus cerebellaris superior. In all rats and in all cortical areas examined, noradrenaline levels were reduced by more than 75%. A similar decrease in noradrenaline levels was obtained in the ventral tegmental area. As indicated by the increases in cortical levels of dopamine and in [3H]dopamine specific uptake sites as well as by histochemical analysis, these lesions induced a collateral sprouting of the mesocortical dopaminergic neurons. The intensity of the effect varied from one animal to another and even from one anteromedial hemicortex to another. When present, the increase in dopamine levels was observed in all the cortical areas investigated. As suggested by the decreased ratio of the amount of dihydroxyphenylacetic acid to dopamine in the cortex, the activity of the mesocortical dopaminergic neurons was reduced in the rats with lesions. This effect was even seen in rats in which the cortical levels of dopamine were only slightly increased. Both the collateral sprouting and the reduced activity of the mesocortical dopaminergic neurons were related to the degeneration of the noradrenergic neurons and not to a non-specific effect of 6-hydroxydopamine, since both phenomena did not occur in rats pretreated with desipramine, a treatment which prevented the decline in noradrenaline levels.Thus, a lesion of the ascending noradrenergic pathways can lead to sprouting of dopaminergic neurons in the cortex and a reduced activity of these dopaminergic neurons. The respective role of the disappearance of the noradrenergic innervation in the cerebral cortex and in the ventral tegmental area in the collateral sprouting and in the reduced activity of the mesocortical dopaminergic neurons is discussed.  相似文献   

3.
Electrophysiological and biochemical techniques were used to study midbrain dopamine systems. In the electrophysiological studies, projection areas of individual dopaminergic cells were identified by antidromic activation. Dopamine cells which innervate the piriform cortex and those that innervate the caudate nucleus demonstrated their usual dose-dependent inhibitory response to both the intravenous administration of the direct-acting dopamine agonist apomorphine and the microiontophoretic application of dopamine. In contrast, the firing rate of dopamine neurons which project to the prefrontal cortex and of those terminating in the cingulate cortex was not altered by either the intravenous administration of low to moderate doses of apomorphine or microiontophoretically applied dopamine. The mean basal discharge rate and degree of burst firing was also different between these subgroups of midbrain dopaminergic neurons. Mesoprefrontal and mesocingulate dopamine neurons had mean firing rates of 9.3 and 5.9 spikes/s respectively, and showed intense burst activity. Mesopiriform and nigrostriatal dopamine cells had discharge rates of 4.3 and 3.1 spikes/s and displayed only moderate bursting. The dopaminergic nature of those mesocortical neurons insensitive to apomorphine and dopamine was confirmed using combined intracellular recording and catecholamine histofluorescence techniques. Thus, after the intracellular injection of colchicine and subsequent processing for glyoxylic acid-induced histofluorescence, the injected cells could be identified by their brighter fluorescences compared to the surrounding, normally fluorescing, non-injected dopamine neurons. Using biochemical techniques, subgroups of midbrain dopaminergic systems were again found to differ. The administration of gamma-butyrolactone increased dopamine levels in all areas sampled (prefrontal, cingulate and piriform cortices as well as the caudate nucleus). However, although this effect was readily reversed in both the piriform cortex and caudate nucleus by pretreatment with apomorphine, this treatment had no effect on the increased dopamine levels observed in the prefrontal and cingulate cortices. In addition, the decline in dopamine levels after synthesis inhibition with alpha-methyltyrosine was significantly faster in the prefrontal and cingulate cortices relative to the caudate nucleus. The piriform cortex showed an intermediate decline which was not significantly different from that observed in any of the other regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In order to assess the behavioral role of the dopaminergic mesocortical input to the prefrontal cortex, bilateral lesions were made in the ventral tegmental area (VTA). The possibility of a functional recovery by the administration of a dopamine agonist was examined. General activity, food hoarding, social-agonistic behavior, and spatial delayed alternation performance were recorded in rats with VTA lesions and in sham-operated animals. In the open field animals with VTA lesions were more active but showed less anxiety. Food hoarding was impaired. In dyadic interactions with sham-operated opponents, VTA rats were socially more active, whereas sham operates performed more keeping down and aggressive grooming. This behavioral deficit was partially recovered when apomorphine was administered prior to testing. VTA animals were impaired in the performance of a spatial delayed alternation task with an intertrial interval of 15 s, whereas no impairment was found with a 0-s intertrial interval. The theoretical implications of these findings are discussed.  相似文献   

5.
Although the issue of in vivo levodopa toxicity appears to be settled by now in the light of recent findings, a crucial aspect was not accounted for the experiments designed to tackle that question. Levodopa could in fact be non-toxic on surviving dopamine neurons, but that could not be the case when the drug is administered at the same time those neurons are undergoing degeneration, which is what happens in the clinical setting. Dopaminergic neurons could in that situation be more vulnerable to levodopa's potential toxic action. Our aim was to determine if oral administration of levodopa is toxic for mesencephalic dopaminergic neurons that are actively involved in a degenerative process. We induced delayed retrograde degeneration of the nigrostriatal system in rats by injecting 6-hydroxydopamine (6-OHDA) intrastriatally. Treatment was started the day after the injection. Dopaminergic markers were histologically studied at the striatal and nigral levels, to determine degree of damage of the nigrostriatal dopaminergic system in levodopa- and vehicle-treated rats. No significant differences between levodopa or vehicle-treated rats were found in: (i) striatal immunoautoradiographic labeling for tyrosine hydroxylase (TH) and the membrane dopamine transporter (DAT); (ii) cell counts of TH-immunoreactive (TH-ir) neurons remaining in the substantia nigra and ventral tegmental area (VTA); (iii) surface area of remaining TH-immunoreactive neurons in the substantia nigra. The present experiments demonstrate that levodopa does not enhance delayed retrograde degeneration of dopaminergic neurons induced by intrastriatal administration of 6-OHDA.  相似文献   

6.
A method for selectively activating the dopaminergic field of the prefrontal cortex would be highly useful for studies of mesocortical dopamine systems. When a rat ('witness' rat) is exposed to a rat that is undergoing footshock, prefrontocortical dopamine metabolism is selectively increased in the witness rat. Since the anxiogenic beta-carboline FG 7142 mimics many of the effects of footshock, we hypothesized that exposure of a witness-rat to a rat treated with FG 7142 would also increase dopamine metabolism in the prefrontal cortex. We found that while as expected, FG 7142 itself increased prefrontal cortex dopamine metabolism, there was no significant change in dopamine metabolism in the witness rat. Thus exposure to a rat treated with FG 7142 does not selectively activate the mesocortical dopamine system.  相似文献   

7.
Ejections of 10(-5)-10(-3)M neurotensin into the ventral tegmental area increased dopamine efflux measured by electrochemical approaches in the prefrontal cortex of anaesthetized rats. In the same conditions, the effects evoked on dopamine efflux by 10(-5)M neurotensin(8-13) and [D-Tyr(11)]neurotensin were different from each other and depended on the explored area: the prefrontal cortex and the caudal and rostral nucleus accumbens. In the prefrontal cortex, neurotensin(8-13) was as potent as neurotensin, whereas [D-Tyr(11)]neurotensin was ineffective. In the caudal nucleus accumbens, when considering the initial intensity of the effect, neurotensin(8-13) and neurotensin appeared more potent than [D-Tyr(11)]neurotensin. In contrast, in the rostral nucleus accumbens, neurotensin(8-13) was less potent than [D-Tyr(11)]neurotensin and neurotensin.These results support the differential involvement of two pharmacologically distinct neurotensin receptor entities on ventral tegmental area neurons in the modulation of mesolimbic and mesocortical dopaminergic activity.  相似文献   

8.
Tanaka S 《Neuroscience》2006,139(1):153-171
This article argues how dopamine controls working memory and how the dysregulation of the dopaminergic system is related to schizophrenia. In the dorsolateral prefrontal cortex, which is the principal part of the working memory system, recurrent excitation is subtly balanced with intracortical inhibition. A potent controller of the dorsolateral prefrontal cortical circuit is the mesocortical dopaminergic system. To understand the characteristics of the dopaminergic control of working memory, the stability of the circuit dynamics under the influence of dopamine has been studied. Recent computational studies suggest that the hyperdopaminergic state is usually stable but the hypodopaminergic state tends to be unstable. The stability also depends on the efficacy of the glutamatergic transmission in the corticomesencephalic projections to dopamine neurons. When this cortical feedback is hypoglutamatergic, the circuit of the dorsolateral prefrontal cortex tends to be unstable, such that a slight increase in dopamine releasability causes a catastrophic jump of the dorsolateral prefrontal cortex activity from a low to a high level. This may account for the seemingly paradoxical overactivation of the dorsolateral prefrontal cortex observed in schizophrenic patients. Given that dopamine transmission is abnormal in the brains of patients with schizophrenia and working memory deficit is a core dysfunction in schizophrenia, the concept of circuit stability would be useful not only for understanding the mechanisms of working memory processing but for developing therapeutic strategies to enhance cognitive functions in schizophrenia.  相似文献   

9.
Previous work from our laboratory showed deficits in tyrosine hydroxylase protein expression within the substantia nigra/ventral tegmental area (SN/VTA) in schizophrenia. However, little is known about the nature and specific location of these deficits within the SN/VTA. The present study had two aims: (1) test if tyrosine hydroxylase deficits could be explained as the result of neuronal loss; (2) assess if deficits in tyrosine hydroxylase are sub-region specific within the SN/VTA, and thus, could affect specific dopaminergic pathways. To achieve these objectives: (1) we obtained estimates of the number of dopaminergic neurons, total number of neurons, and their ratio in matched SN/VTA schizophrenia and control samples; (2) we performed a qualitative assessment in SN/VTA schizophrenia and control matched samples that were processed simultaneously for tyrosine hydroxylase immunohistochemistry. We did not find any significant differences in the total number of neurons, dopaminergic neurons, or their ratio. Our qualitative study of TH expression showed a conspicuous decrease in labeling of neuronal processes and cell bodies within the SN/VTA, which was sub-region specific. Dorsal diencephalic dopaminergic populations of the SN/VTA presented the most conspicuous decrease in TH labeling. These data support the existence of pathway-specific dopaminergic deficits that would affect the dopamine input to the cortex without significant neuronal loss. Interestingly, these findings support earlier reports of decreases in tyrosine hydroxylase labeling in the target areas for this dopaminergic input in the prefrontal and entorhinal cortex. Finally, our findings support that tyrosine hydroxylase deficits could contribute to the hypodopaminergic state observed in cortical areas in schizophrenia.  相似文献   

10.
Gronier B 《Neuroscience》2008,156(4):995-1004
Systemic administration of selective 5-HT1A agonists, such as 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT), stimulates the electrical activity of ventral tegmental area (VTA) dopamine neurons by a mechanism which remains unknown. We have examined if this activation is dependent on glutamatergic, serotonergic and GABAergic neurotransmission and if 5-HT1A receptors located within the VTA or within the prefrontal cortex (PFC) could contribute. In vivo electrophysiological recordings were obtained from VTA dopamine neurons from anesthetized rats. The i.v. administration of the 5-HT1A agonist 8-OHDPAT induced a strong stimulation of burst and firing activity of dopamine neurons. This activation remained unchanged in rats pre-treated with the 5-HT depleting agent parachlorophenylalanine. However, pre-administration of the GABAB receptor antagonist phaclophen, but not of the GABAA antagonist picrotoxin, significantly reduced the 8-OHDPAT-induced activation. The N-methyl-d-aspartate (NMDA) antagonist MK 801 (dizocilpine), but not the AMPA/kainate antagonist [1,2,3,4-tetrahydro-7-morpholinyl-2,3-dioxo-6-(fluoromethyl)quinoxalin-1-yl] methyl-phosphonate (ZK 200775), partially prevented or reversed the effects of 8-OHDPAT. However, only the combined pre-administration of the two glutamate antagonists did completely prevent the activatory response to 8-OHDPAT and even converted the effect of 8-OHDPAT into an inhibition, in half of the dopamine neurons tested. Inactivation of the local 5-HT1A receptors by the microinfusion within the VTA of the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY 100,635), or of pertussis toxin, reduced the ability of 8-OHDPAT to stimulate the firing of dopamine neurons but not their burst activity. On the other hand, burst activation elicited by 8-OHDPAT was strongly reduced following the inactivation of prefrontal 5-HT1A receptors achieved by the microinfusion of WAY 100,635 within the PFC. These results show that activation of midbrain dopamine neurons by the systemic administration of 5-HT1A agonists does involve the inactivation of a tonic GABAergic tone, involving mainly the GABAB receptors, probably leading to the stimulation of a glutamatergic excitatory drive from the PFC to the VTA and an increase in glutamate release. This will excite dopamine neurons, preferentially through NMDA receptors. Furthermore, our results suggest that some 5-HT1A receptors located within the VTA may also participate in this activation.  相似文献   

11.
Retrograde transport and immunohistochemical techniques were utilized to determine if cholecystokinin (CCK)-containing neurons of the primate ventral mesencephalon project to prefrontal cortex, and to examine what relation the CCK innervation of prefrontal cortex bears to the dopaminergic projection to this region. Following injections of Fast blue into monkey prefrontal cortex, retrogradely labeled, CCK-positive neurons were observed predominantly in rostromedial portions of the ventral mesencephalon; these CCK-containing projection neurons were not immunoreactive for tyrosine hydroxylase. Furthermore, dual-labeling studies in the prefrontal cortex revealed that CCK and tyrosine hydroxylase were present in separate populations of axons. These results demonstrate that the CCK innervation of monkey prefrontal cortex arises from both intrinsic and extrinsic sources; in contrast to the rat, the extrinsic CCK innervation of monkey prefrontal cortex is distinct from the dopaminergic mesocortical projection.  相似文献   

12.
The action of butorphanol, an opiate agonist/antagonist, was studied on dopamine (DA) metabolism in several mesocortical and mesolimbic areas and compared with its effects on the nigrostriatal DA pathway. While butorphanol had a bell-shaped dose-response relationship for elevation of DA metabolites in the striatum, it had no action on DA metabolites in the entorhinal, prefrontal, pyriform and cingulate cortices and in the olfactory tubercle. In all of these areas morphine stimulated dopamine metabolism (except for the entorhinal cortex). In contrast, in the nucleus accumbens, butorphanol increased the levels of dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT) with no increase in DA steady state levels. This effect was reversible by both opiate antagonists, naloxone and WIN 44441-3 and appears to be mu-opioid receptor-mediated.  相似文献   

13.
Cocaine administration increases AMPA GluR1 expression and receptor-mediated activation of the ventral tegmental area (VTA). Functionality is determined, however, by surface availability of these receptors in transmitter- and VTA-region-specific neurons, which may also be affected by cocaine. To test this hypothesis, we used electron microscopic immunolabeling of AMPA GluR1 subunits and tyrosine hydroxylase (TH), the enzyme needed for dopamine synthesis, in the cortical-associated parabrachial (PB) and in the limbic-associated paranigral (PN) VTA of adult male C57BL/6 mice receiving either a single injection (acute) or repeated escalating-doses for 14 days (chronic) of cocaine. Acute cocaine resulted in opposing VTA-region-specific changes in TH-containing dopaminergic dendrites. TH-labeled dendrites within the PB VTA showed increased cytoplasmic GluR1 immunogold particle density consistent with decreased AMPA receptor-mediated glutamatergic transmission. Conversely, TH-labeled dendrites within the PN VTA showed greater surface expression of GluR1 with increases in both synaptic and plasmalemmal GluR1 immunogold density after a single injection of cocaine. These changes diminished in both VTA subregions after chronic cocaine administration. In contrast, non-TH-containing, presumably GABAergic dendrites showed VTA-region-specific changes only after repeated cocaine administration such that synaptic GluR1 decreased in the PB, but increased in the PN VTA. Taken together, these findings provide ultrastructural evidence suggesting that chronic cocaine not only reverses the respective depression and facilitation of mesocortical (PB) and mesolimbic (PN) dopaminergic neurons elicited by acute cocaine, but also differentially affects synaptic availability of these receptors in non-dopaminergic neurons of each region. These adaptations may contribute to increased cocaine seeking/relapse and decreased reward that is reported with chronic cocaine use.  相似文献   

14.
Impaired ability to "gate out" sensory and cognitive information is considered to be a central feature of schizophrenia and is manifested, among others, in disrupted prepulse inhibition and latent inhibition. The present study investigated, in rats, the effects of increasing dopamine receptor activation within the medial prefrontal cortex by local administration of the dopamine receptor agonist apomorphine (9 microg/side) on prepulse inhibition and latent inhibition, as well as on spontaneous and amphetamine-induced activity. Apomorphine infusions decreased spontaneous locomotor activity and blocked amphetamine-induced increase in locomotor activity in the open field, which is in line with the suggestion that dopamine receptor activation in the medial prefrontal cortex inhibits mesolimbic dopamine activity. However, apomorphine infusions induced a disruption of prepulse inhibition, an effect associated with increased dopaminergic activity in the nucleus accumbens, and left the latent inhibition effect intact. While these results support previous evidence that the medial prefrontal cortex is a component of the neural circuitry mediating prepulse inhibition but plays no role in latent inhibition, they show that dopamine receptor activation in the medial prefrontal cortex of the rat produces behavioural outcomes that cannot be explained by postulating a simple reciprocal relationship between the mesocortical and mesolimbic dopamine systems.  相似文献   

15.
Sex differences in behavioral and neurobiological responses to stress are considered to modulate the prevalence of some psychiatric disorders, including major depression. In the present study, we compared dopaminergic neurotransmission and behavior in response to two different stress paradigms, the Forced Swim Test (FST) and the Chronic Mild Stress (CMS). Male and female rats were subjected to one session of swim stress for two consecutive days (FST) or to a variety of mild stressors alternating for six weeks (CMS). Subsequently, the tissue levels of dopamine (DA) and its metabolites (HVA and DOPAC) in the hippocampus, the hypothalamus, the prefrontal cortex and the striatum were measured using high-performance liquid chromatography (HPLC). The ratios HVA/DA and DOPAC/DA were also calculated as indices of the dopaminergic activity. Results from the FST determined that males exhibited lower immobility, higher climbing duration and increased dopaminergic activity in the prefrontal cortex and the hippocampus compared to females. CMS induced alterations in sucrose intake in both sexes, while it only decreased dopaminergic activity in the prefrontal cortex of females. These findings show that FST and CMS have different effects on the dopaminergic activity of discrete brain regions depending on the sex of the animal. These data support the growing evidence that females display a differential response and adaptation to stress than males.  相似文献   

16.
Adverse prenatal environment, such as intrauterine growth retardation (IUGR), increases the risk for negative neurobehavioral outcomes. IUGR, affecting approximately 10% of all US infants, is a known risk factor for attention deficit hyperactivity disorder (ADHD), schizophrenia spectrum disorders and addiction. Mouse dams were fed a protein deficient (8.5% protein) or isocaloric control (18% protein) diet through pregnancy and lactation (a well validated rodent model of IUGR). Dopamine-related gene expression, dopamine content and behavior were examined in adult offspring. IUGR offspring have six to eightfold over-expression of dopamine (DA)-related genes (tyrosine hydroxylase (TH) and dopamine transporter) in brain regions related to reward processing (ventral tegmental area (VTA), nucleus accumbens, prefrontal cortex (PFC)) and homeostatic control (hypothalamus), as well as increased number of TH-ir neurons in the VTA and increased dopamine in the PFC. Cyclin-dependent kinase inhibitor 1C (Cdkn1c) is critical for dopaminergic neuron development. Methylation of the promoter region of Cdkn1c was decreased by half and there was a resultant two to sevenfold increase in Cdkn1c mRNA expression across brain regions. IUGR animals demonstrated alterations in dopamine-dependent behaviors, including altered reward-processing, hyperactivity and exaggerated locomotor response to cocaine. These data describe significant dopamine-related molecular and behavioral abnormalities in a mouse model of IUGR. This animal model, with both face validity (behavior) and construct validity (link to IUGR and dopamine dysfunction) may prove useful in identifying underlying mechanisms linking IUGR and adverse neurobehavioral outcomes such as ADHD.  相似文献   

17.
In addition to classic motor symptoms, Parkinson's disease (PD) is characterized by cognitive and emotional deficits, which have been demonstrated to precede motor impairments. The present study addresses the question of whether a partial degeneration of dopaminergic neurons using 6-hydroxydopamine (6-OHDA) in rats is able to induce premotor behavioral signs. The time-course of nigrostriatal damage was evaluated by tyrosine hydroxylase immunohistochemistry and the levels of dopamine, noradrenaline, and 5-HT in various brain regions were analyzed by high performance liquid chromatography (HPLC). Behavioral tests that assessed a variety of psychological functions, including locomotor activity, emotional reactivity and depression, anxiety and memory were conducted on 6-OHDA lesioned rats. Bilateral infusion of 6-OHDA in the striatum of rats caused early (1 week) damage of dopaminergic terminals in striatum and in cell bodies in substantia nigra pars compacta. The nigrostriatal lesion was accompanied by early loss of dopamine in the striatum, which remained stable through a 3-week period of observation. In addition, a late (3 weeks) loss of dopamine in the prefrontal cortex, but not in the hippocampus, was seen. Additional noradrenergic and serotonergic alterations were observed after 6-OHDA administration. The results indicated that 6-OHDA lesioned rats show decreased sucrose consumption and an increased immobility time in the forced swimming test, an anhedonic-depressive-like effect. In addition, an anxiogenic-like activity in the elevated plus maze test and cognitive impairments were observed on the cued version of the Morris water maze and social recognition tests. These findings suggest that partial striatal dopaminergic degeneration and parallel dopaminergic, noradrenergic and serotonergic alterations in striatum and prefrontal cortex may have caused the emotional and cognitive deficits observed in this rat model of early phase PD.  相似文献   

18.
The medial prefrontal cortex of the rat receives dopamine and non-dopaminergic projections from the ventral tegmental area. Both electrical stimulation of the ventral tegmental area and local application of dopamine induce an inhibition of the spontaneous activity of most prefrontal cortical neurons, including efferent neurons. In the present study, the techniques of extracellular recording and microiontophoresis were used in anesthetized rats in order to determine whether these dopamine- and ventral tegmental area-induced inhibitory responses involve GABAergic components. Prefrontal cortex output neurons were identified by antidromic activation from subcortical structures. The inhibitory responses evoked by the local application of dopamine were blocked by the iontophoretic application of the D2 antagonist sulpiride, and the GABAA antagonist bicuculline in 89 and 57% of the cases, respectively. In addition, sulpiride and bicuculline abolished the inhibition induced by ventral tegmental area stimulation in 54 and 51% of the prefrontal cortical cells tested, respectively. The implication of a non-dopaminergic mesocortical system in the ventral tegmental area-induced inhibition was further analysed using rats pre-treated with alpha-methylparatyrosine to deplete dopamine stores. The proportion of prefrontal cortical cells inhibited by ventral tegmental area stimulation was markedly reduced (39%) in alpha-methylparatyrosine-treated rats, when compared to controls (86%). Remaining ventral tegmental area-induced inhibition was no longer affected by sulpiride, but in all cases blocked by the local microiontophoretic application of bicuculline. The present results suggest that: (1) the dopamine-induced inhibition of prefrontal cortex neurons could involve cortical GABAergic interneurones; (2) the non-dopaminergic mesocortical system exerts also an inhibitory influence on prefrontal cortical cells and appears to be GABAergic.  相似文献   

19.
An acute intraperitoneal injection of phencyclidine (PCP) caused a tetrodotoxin-reversible increase in extracellular release of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the dialysates from the medial frontal cortex of the rat. Moreover, there was an increase in the tissue content of DOPAC and HVA with acceleration of dopamine (DA), but not noradrenaline, utilization in the cortical area after systemic administration of PCP. These results suggest that PCP facilitates DA metabolism in the medial frontal cortex by increasing impulse flow in the DA neurons projecting to the prefrontal region.  相似文献   

20.
Increasing evidence shows that the rostral agranular insular cortex (RAIC) is important in the modulation of nociception in humans and rats and that dopamine and GABA appear to be key neurotransmitters in the function of this cortical region. Here we use immunocytochemistry and path tracing to examine the relationship between dopamine and GABA related elements in the RAIC of the rat. We found that the RAIC has a high density of dopamine fibers that arise principally from the ipsilateral ventral tegmental area/substantia nigra (VTA/SN) and from a different set of neurons than those that project to the medial prefrontal cortex. Within the RAIC, there are close appositions between dopamine fibers and GABAergic interneurons. One target of cortical GABA appears to be a dense band of GABAB receptor-bearing neurons located in lamina 5 of the RAIC. The GABAB receptor-bearing neurons project principally to the amygdala and nucleus accumbens with few or no projections to the medial prefrontal cortex, cingulate gyrus, the mediodorsal thalamic nucleus or contralateral RAIC. The current anatomical data, together with previous behavioral results, suggest that part of the dopaminergic modulation of the RAIC occurs through GABAergic interneurons. GABA is able to exert specific effects through its action on GABAB receptor-bearing projection neurons that target a few subcortical limbic structures. Through these connections, dopamine innervation of the RAIC is likely to affect the motivational and affective dimensions of pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号