首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of cytosolic free Ca2+ ([Ca2+]i) in hypoxic injury was investigated in rat proximal tubules. [Ca2+]i was measured using fura-2 and cell injury was estimated with propidium iodide (PI) in individual tubules using video imaging fluorescence microscopy. [Ca2+]i increased from approximately 170 to approximately 390 nM during 5 min of hypoxia. This increase preceded detectable cell injury as assessed by PI and was reversible with reoxygenation. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 100 microM) reduced [Ca2+]i under basal conditions (approximately 80 nM) and during hypoxia (approximately 120 nM) and significantly attenuated hypoxic injury. When [Ca2+]i and hypoxic cell injury were studied concurrently in the same individual tubules, the 10 min [Ca2+]i rise correlated significantly with subsequent cell damage observed at 20 min. 2 mM glycine did not block the rise in [Ca2+]i, yet protected the tubules from hypoxic injury. These results indicate that in rat proximal tubules, hypoxia induces an increase of [Ca2+]i which occurs before cell damage. The protective effect of BAPTA supports a role for [Ca2+]i in the initiation of hypoxic proximal tubule injury. The glycine results, however, implicate calcium-independent mechanisms of injury and/or blockade of calcium-mediated processes of injury such as activation of phospholipases or proteases.  相似文献   

2.
Proximal convoluted (S2) and straight (S3) renal tubule segments were studied to determine the effect of Ca on lumen-to-bath phosphate flux (JlbPO4). Increasing bath and perfusate Ca from 1.8 to 3.6 mM enhanced JlbPO4 from 3.3 +/- 0.7 to 6.6 +/- 0.6 pmol/mm per min in S2 segments (P less than 0.001) but had no effect in S3 segments. Decreasing bath and perfusate Ca from 1.8 to 0.2 mM reduced JlbPO4 from 3.7 +/- 0.6 to 2.2 +/- 0.6 in S2 segments. These effects were unrelated to changes in fluid absorption and transepithelial potential difference. Increasing cytosolic Ca with a Ca ionophore, inhibiting the Ca-calmodulin complex with trifluoperazine, or applying the Ca channel blocker nifedipine had no effect on JlBPO4 in S2 segments. Increasing only bath Ca from 1.8 to 3.6 mM did not significantly affect JlbPO4. However, increasing only perfusate Ca enhanced JlbPO4 from 3.4 +/- 0.7 to 6.1 +/- 0.7 pmol/mm per min (P less than 0.005). Inhibition of hydrogen ion secretion, by using a low bicarbonate, low pH perfusate, both depressed base-line JlbPO4 and abolished the stimulatory effect of raising perfusate Ca. Net phosphate efflux (JnetPO4) also increased after ambient calcium levels were raised, ruling out a significant increase in PO4 backflux. When net sodium transport was abolished by reducing the bath temperature to 24 degrees C, JnetPO4 at normal ambient calcium was reduced and increasing ambient calcium failed to increase it, ruling out a simple physicochemical reaction wherein phosphate precipitates out of solution with calcium. The present studies provide direct evidence for a stimulatory effect of Ca on sodium-dependent PO4 absorption in the proximal convoluted tubule, exerted at the luminal membrane. It is postulated that Ca modulates the affinity of the PO4 transporter for the anion.  相似文献   

3.
To assess the role of increased cytosolic free calcium (Caf) in the pathogenesis of acute proximal tubule cell injury and the protection afforded by exposure to reduced medium pH or treatment with glycine, fura-2-loaded tubules were studied in suspension and singly in a superfusion system. The Ca2+ ionophore, ionomycin, increased Caf to micromolar levels and rapidly produced lethal cell injury as indicated by loss of lactate dehydrogenase to the medium by suspended tubules and accelerated leak of fura and failure to exclude Trypan blue by superfused tubules. Decreasing medium Ca2+ to 100 nM prevented the ionomycin-induced increases of Caf and the injury. Reducing medium pH from 7.4 to 6.9 or adding 2 mM glycine to the medium also prevented the cell death, but did not prevent the increase of Caf to micromolar levels. Cells treated with 1799, an uncoupler of oxidative phosphorylation which produced severe adenosine triphosphate (ATP) depletion, did not develop increases of Caf until just before loss of viability. Preventing these increases of Caf with 100 nM Ca2+ medium did not protect 1799-treated cells. Reduced pH and glycine protected 1799-treated cells without ameliorating the increases of Caf. These data demonstrate the toxic potential of increased Caf in the proximal tubule and show that Caf does sharply increase prior to loss of viability in an ATP depletion model of injury, but this increase does not necessarily contribute to the outcome. The potent protective actions of decreased pH and glycine allow the cells to sustain increases of Caf to micromolar levels in spite of severe, accompanying cellular ATP depletion without developing lethal cell injury.  相似文献   

4.
5.
Several reports have focused on the ability of angiotensin II to amplify vascular contractile responses to norepinephrine, but none have determined whether norepinephrine enhances angiotensin II-induced vasoconstriction. Measuring isometric contraction in isolated rabbit femoral artery rings, we have found that the angiotensin II-induced contractile response was amplified in the presence of a threshold contraction to norepinephrine, as manifested by a 2.9-fold leftward shift of the midpoint of the concentration-response curve with no change in the maximal response. This amplification was attenuated markedly by nifedipine (0.1 microM), a calcium channel antagonist, implicating calcium channel activation in the amplification phenomenon. Precontracting the smooth muscle with a threshold concentration of angiotensin II had no enhancing effect on further angiotensin responses, indicating that the norepinephrine-induced amplification was due to a specific action of norepinephrine, rather than to a precontraction itself. In experiments in which the angiotensin II response was diminished by the presence of the noncompetitive angiotensin II antagonist [Sar1 Ala8]angiotensin II (0.3 microM), norepinephrine affected the angiotensin II response primarily by increasing the maximal response attainable. Prazosin (0.1 microM) both blocked the norepinephrine threshold contraction and abolished completely the amplification. However, when the norepinephrine concentration was increased until a threshold contraction was elicited in the presence of a fixed concentration of prazosin, amplification of the angiotensin II response was restored. These results indicate that norepinephrine exerts its amplifying effect on angiotensin II via activation of alpha-1 adrenoceptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Previous data suggested an active Cl- conductance in the renal proximal convoluted tubule, although single channel conductance and regulation were not found. We have investigated the presence and regulation of the Cl- channel in proximal convoluted tubules by patch clamp analysis. The current-voltage relationship of whole cells with 130 mM NaCl in the pipette was nonlinear. The addition of 1-34 PTH (10(-8) M), forskolin, or cAMP significantly increased whole cell Cl- conductance. We found a single Cl- channel in excised apical membranes possessing conductance of 33 picosiemens (pS) at positive and 22.5 pS at negative potential, which was blocked by 4,4'-diisothiocyanostilbene-2,2'- disulfonic acid (10(-4) M) and was selective to Cl- (Cl/Na = 10). The channel was activated by prolonged membrane depolarization, by a catalytic subunit of protein kinase A (PKA), or by purified kinase C (PKC), but not by Ca2+ (1 microM) inside the membrane. During cell-attached patch clamping, the channel was similarly activated by PTH, phorbol ester, or dibutyryl cAMP in a dose-dependent manner. To investigate second messenger contributions to the PTH-action, the PTH-evoked channels were modified further by the subsequent addition of several blockers of the second messengers. This suggested that PKA and PKC were involved in Cl- channel activation. We therefore conclude that renal proximal convoluted tubule cells possess an apical Cl- channel activated by PTH via the PKA and PKC pathways.  相似文献   

8.
Calcium transport was studied in isolated S2 segments of rabbit superficial proximal convoluted tubules. 45Ca was added to the perfusate for measurement of lumen-to-bath flux (JlbCa), to the bath for bath-to-lumen flux (JblCa), and to both perfusate and bath for net flux (JnetCa). In these studies, the perfusate consisted of an equilibrium solution that was designed to minimize water flux or electrochemical potential differences (PD). Under these conditions, JlbCa (9.1 +/- 1.0 peq/mm X min) was not different from JblCa (7.3 +/- 1.3 peq/mm X min), and JnetCa was not different from zero, which suggests that calcium transport in the superficial proximal convoluted tubule is due primarily to passive transport. The efflux coefficient was 9.5 +/- 1.2 X 10(-5) cm/s, which was not significantly different from the influx coefficient, 7.0 +/- 1.3 X 10(-5) cm/s. When the PD was made positive or negative with use of different perfusates, net calcium absorption or secretion was demonstrated, respectively, which supports a major role for passive transport. These results indicate that in the superficial proximal convoluted tubule of the rabbit, passive driving forces are the major determinants of calcium transport.  相似文献   

9.
There is evidence that angiotensin II is synthesized by the proximal tubule and secreted into the tubular lumen. This study examined the functional significance of endogenously produced angiotensin II on proximal tubule transport in male Sprague-Dawley rats. Addition of 10(-11), 10(-8), and 10(-6) M angiotensin II to the lumen of proximal convoluted tubules perfused in vivo had no effect on the rate of fluid reabsorption. The absence of an effect of exogenous luminal angiotensin II could be due to its endogenous production and luminal secretion. Luminal 10(-8) M Dup 753 (an angiotensin II receptor antagonist) resulted in a 35% decrease in proximal tubule fluid reabsorption when compared to control (Jv = 1.64 +/- 0.12 nl/mm.min vs. 2.55 +/- 0.32 nl/mm.min, P < 0.05). Similarly, luminal 10(-4) M enalaprilat, an angiotensin converting enzyme inhibitor, decreased fluid reabsorption by 40% (Jv = 1.53 +/- 0.23 nl/mm.min vs. 2.55 +/- 0.32 nl/mm.min, P < 0.05). When 10(-11) or 10(-8) M exogenous angiotensin II was added to enalaprilat (10(-4) M) in the luminal perfusate, fluid reabsorption returned to its baseline rate (Jv = 2.78 +/- 0.35 nl/mm.min). Thus, addition of exogenous angiotensin II stimulates proximal tubule transport when endogenous production is inhibited. These experiments show that endogenously produced angiotensin II modulates fluid transport in the proximal tubule independent of systemic angiotensin II.  相似文献   

10.
目的探讨灯盏花素对高糖诱导的原代大鼠近端小管上皮细胞(proximal tubule epithelial cells,PTEC)氧化应激的影响。方法原代培养大鼠PTEC并将其分为:正常对照组、高糖组、小剂量组、中剂量组、大剂量组,每组设6个复孔(n=6),作用72 h。测定PTEC培养液一氧化氮(nitrogen monoxidum,NO)、过氧化氢(hydrogen peroxide,H2O2)、过氧化氢酶(catalase,CAT)和还原型谷胱甘肽(reduced glutathione hormone,GSH)水平。结果高糖环境时PTEC NO水平明显升高(P〈0.05),小剂量组明显降低(P〈0.05),中剂量和大剂量组显著性降低(P〈0.01),高糖组PTEC H2O2水平显著升高(P〈0.01),小剂量明显升高(P〈0.05),中剂量组、大剂量组明显降低(P〈0.05);高糖组PTEC CAT显著低于NC组(P〈0.01),小剂量组仍明显低于高糖组(P〈0.05),大剂量组显著性高于高糖组(P〈0.01);高糖组PTEC GSH水平明显低于NC组(P〈0.05),小剂量组仍明显较NC组低(P〈0.05),中剂量组明显升高(P〈0.05),大剂量显著性升高(P〈0.01);结论灯盏花素对高糖诱导的原代PTEC的氧化应激增强有明显的抑制作用;灯盏花素对DN的防治作用可能部分通过抑制PTEC的氧化应激实现的。  相似文献   

11.
Despite the recognized physiological role of bradykinin (BK) in the kidney in maintaining glomerular and tubule function and its role in pathological states such as endotoxemia, diabetes, and other diseases, relatively little is known about the mechanisms by which BK can impact kidney function. Furthermore, the signaling of BK receptors in the murine nephron has not been fully characterized. The present studies were undertaken to examine BK-stimulated Ca(2+) signaling using Fura-2 in the murine proximal tubule epithelial cell line TKPTS. BK produced a concentration-dependent rise in intracellular Ca(2+) ([Ca(2+)])(i) (pEC(50) = 8.39 +/- 0.04). Selective antagonists showed the rise in [Ca(2+)](i) was mediated through B2 receptors. The rise in [Ca(2+)](i) was rapid and reversible and was maximally stimulated at 1 microM (697 +/- 70 nM above basal level of 115 +/- 6 nM). Studies with thapsigargin and EGTA showed Ca(2+) mobilization was dependent on two events: release and influx. Both U73122 (1-[6-[[17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) [a phospholipase C (PLC) inhibitor] and genistein (a tyrosine kinase inhibitor) partially inhibited BK-stimulated rise in [Ca(2+)](i). When combined, both agents produced a further decrease, suggesting multiple pathways for PLC activation may be involved. The ability of Ni(2+) to inhibit influx indicated the activation of a Ca(2+) release-activated channel (CRAC). Ca(2+) mobilization did not seem to be affected by cyclic nucleotides or protein kinase C. In summary, the TKPTS murine proximal tubule cell line expresses functional B2 receptors linked to Ca(2+) mobilization that is dependent on phospholipase C and activation of CRAC.  相似文献   

12.
To enhance our understanding of the physiological roles of heme oxygenase (HO) isozymes, HO-1 (inducible) and HO-2 (constitutive), we developed novel imidazole-based HO inhibitors. Unlike the metalloporphyrins, these imidazole-dioxolane compounds are selective for the in vitro inhibition of HO with minimal effects on other heme-dependent enzymes such as nitric oxide synthase and soluble guanylyl cyclase. In the current study, we tested the hypothesis that these novel HO inhibitors are effective in intact cells by extending their application to cultured, renal proximal tubule epithelial cells (LLC-PK1). HO-1 and HO-2 protein expression was enhanced by pretreatment of cells with hemin, transduction with adenovirus encoding human HO-1, and transfection with cDNA for HO-2, respectively. Total HO activity was measured by determining the formation of carbon monoxide (CO), whereas cell viability and apoptosis were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the expression of activated caspase-3. Gliotoxin/tumor necrosis factor-alpha (TNF-alpha) produced cytotoxicity in wild-type LLC-PK1 cells (P < 0.05) but not in HO-1 and HO-2 overexpressing or wild type cells pretreated with hemin (10 microM). The presence of imidazole-dioxolane HO inhibitors (2-25 microM) decreased cell viability (P < 0.05). A CO-releasing molecule reversed, in a dose-dependent manner, the cytotoxic effects and caspase-3 activation induced by the combination of gliotoxin/TNF-alpha and the HO inhibitors, suggesting an important role for CO in protection against renal toxicity. These data demonstrate a protective role of both HO-1 and HO-2 against gliotoxin/TNF-alpha-induced cytotoxicity in LLC-PK1 cells. The novel imidazole-dioxolane compounds can be used as effective inhibitors of HO activity in cell culture.  相似文献   

13.
The present in vitro microperfusion study examined whether insulin affects volume absorption (Jv) in the proximal convoluted tubule (PCT). PCT were perfused with an ultrafiltrate-like solution and were bathed in a serum-like albumin solution. Addition of a physiologic concentration of 10(-10) M insulin to the bathing solution resulted in a stimulation of Jv and a more negative transepithelial potential difference (PD). There was a progressive stimulation of the lumen negative PD and Jv with higher insulin concentrations. Maximal stimulation occurred at 10(-8) M bath insulin. The insulin-induced stimulation of volume reabsorption was also observed when glucose and amino acids were removed from the luminal perfusate. Direct examination of the effect of insulin on glucose, chloride, and bicarbonate absorption demonstrated that the transport of all these solutes was stimulated by insulin. Addition of insulin to the luminal perfusate had no affect on Jv. These data show that insulin has a direct effect to stimulate Jv in the proximal tubule.  相似文献   

14.
Although angiotensin II type 2 (AT2) receptor has recently been cloned, its functional role is not well understood. We tested the hypothesis that selective activation of AT2 receptor causes vasodilation in the preglomerular afferent arteriole (Af-Art), a vascular segment that accounts for most of the preglomerular resistance. We microperfused rabbit Af-Arts at 60 mmHg in vitro, and examined the effect of angiotensin II (Ang II; 10(-11)-10(-8) M) on the luminal diameter in the presence or absence of the Ang II type 1 receptor antagonist CV11974 (CV; 10(-8) M). Ang II was added to both the bath and lumen of preconstricted Af-Arts. Ang II further constricted Af-Arts without CV (by 74+/-7% over the preconstricted level at 10(-8) M; P < 0.01, n = 7). In contrast, in the presence of CV, Ang II caused dose-dependent dilation; Ang II at 10(-8) M increased the diameter by 29+/-2% (n = 7, P < 0.01). This dilation was completely abolished by pretreatment with an AT2 receptor antagonist PD123319 (10(-7) M, n = 6), suggesting that activation of AT2 receptor causes vasodilation in Af-Arts. The dilation was unaffected by inhibiting either nitric oxide synthase (n = 7) or cyclooxygenase (n = 7), however, it was abolished by either disrupting the endothelium (n = 10) or inhibiting the cytochrome P-450 pathway, particularly the synthesis of epoxyeicosatrienoic acids (EETs, n = 7). These results suggest that in the Af-Art activation of the AT2 receptor may cause endothelium-dependent vasodilation via a cytochrome P-450 pathway, possibly by EETs.  相似文献   

15.
Studies on microvillus membrane from rabbit kidney cortex suggest that chloride absorption may occur by chloride/formate exchange with recycling of formic acid by nonionic diffusion. We tested whether this transport mechanism participates in active NaCl reabsorption in the rabbit proximal tubule. In proximal tubule S2 segments perfused with low HCO-3 solutions, the addition of formate (0.25-0.5 mM) to the lumen and the bath increased volume reabsorption (JV) by 60%; the transepithelial potential difference remained unchanged. The effect of formate on JV was completely reversible and was inhibited both by ouabain and by luminal 4,4'-diisothiocyanostilbene-2,2'-disulfonate. Formate (0.5 mM) failed to stimulate JV in early proximal convoluted tubules perfused with high HCO-3 solutions. As measured by miniature glass pH microelectrodes, this lack of formate effect on JV was related to a less extensive acidification of the tubule fluid when high HCO-3 solutions were used as perfusate. These data suggest that chloride/formate exchange with recycling of formic acid by nonionic diffusion represents a mechanism for active, electroneutral NaCl reabsorption in the proximal tubule.  相似文献   

16.
Angiotensin II (Ang II) is an important regulator of proximal tubule salt and water reabsorption. Recent studies indicate that rabbit proximal tubule angiotensin II receptors are the type-1 (AT1R) subtype. We studied the effect of Ang II on proximal tubule receptor expression. Rabbits were treated with either angiotensin converting enzyme inhibitors or a low salt diet to modulate endogenous Ang II levels. In captopril-treated rabbits, liver and glomerular AT1R mRNA levels increased 242 +/- 125 and 141 +/- 60%, respectively (n = 6-7; P < 0.05), as determined by quantitative PCR. In contrast, proximal tubule AT1R mRNA levels decreased 40 +/- 11% (n = 6; P < 0.05). Binding of 125I Ang II to renal cortical basolateral membranes of captopril-treated rabbits decreased from 2.9 +/- 0.55 to 1.4 +/- 0.17 fmol/mg protein (n = 6; P < 0.025). In rabbits fed a sodium chloride-deficient diet for 4 wk, AT1R mRNA levels decreased 52 +/- 11% in liver and 43 +/- 7% in glomeruli (n = 4-5; P < 0.05), whereas they increased 141 +/- 85% (n = 5; P < 0.05) in proximal tubule. In basolateral membranes from rabbits on the sodium chloride-deficient diet, specific binding of 125I Ang II increased from 2.1 +/- 0.2 to 4.3 +/- 1.1 fmol/mg protein (n = 7; P < 0.05). To determine whether Ang II directly regulates expression of proximal tubule AT1 receptors, further studies were performed in cultured proximal tubule cells grown from microdissected S1 segments of rabbit proximal tubules and immortalized by transfection with a replication-defective SV40 vector. Incubation of these cells with Ang II (10(-11) to 10(-7) M) led to concentration-dependent increases in both AT1R mRNA levels and specific 125I Ang II binding. Pretreatment with pertussis toxin inhibited Ang II stimulation of AT1R mRNA. AT1R mRNA expression was decreased by either forskolin or a nonhydrolyzable cAMP analogue (dibutryl cAMP). Simultaneous Ang II administration overcame the inhibitory effect of forskolin but not dibutryl cAMP. These results indicate that proximal tubule AT1R expression is regulated by ambient Ang II levels, and Ang II increases AT1R mRNA at least in part by decreasing proximal tubule cAMP generation through a pertussis toxin-sensitive mechanism. Upregulation of proximal tubule AT1R by Ang II may be important in mediating enhanced proximal tubule sodium reabsorption in states of elevated systemic or intrarenal Ang II.  相似文献   

17.
Cystinosis is an autosomal recessive disorder characterized by a high intracellular cystine concentration. To establish an in vitro model of this disorder and examine the mechanism of the proximal tubule transport defect seen with elevated intracellular cystine concentrations, rabbit proximal convoluted tubules (PCT) were perfused in vitro. PCTs were loaded with cystine using cystine dimethyl ester, a permeative methyl ester derivative. Bath cystine dimethyl ester (0.5 mM) reduced volume absorption (Jv) (0.67 +/- 0.07 to 0.15 +/- 0.09 nl/mm.min, P less than 0.01), bicarbonate transport (JTCO2) (47.2 +/- 4.9 to 11.1 +/- 2.8 pmol/mm.min, P less than 0.001) and glucose transport (JGLU) (34.1 +/- 1.5 to 19.7 +/- 1.5 pmol/mm.min, P less than 0.001). The methyl esters of leucine (0.5 mM), and tryptophan (0.5 and 2.0 mM) had no effect on these parameters. To examine if intracellular reduction of cystine to cysteine could contribute to the inhibition in transport, the effect of bath cysteine methyl ester on proximal tubular transport was examined. Bath cysteine methyl ester (2 but not 0.5 mM) resulted in an inhibition in Jv, JGLU, and JTCO2. Cystine dimethyl ester had no effect on mannitol or bicarbonate permeability. These data are consistent with intracellular proximal tubular cystine accumulation resulting in an inhibition of active transport.  相似文献   

18.
Systemic and/or locally produced angiotensin II stimulates salt and water reabsorption in the renal proximal tubule. In vivo, dopamine (DA) may serve as a counterregulatory hormone to angiotensin II's acute actions on the proximal tubule. We examined whether dopamine modulates AT1 receptor expression in cultured proximal tubule cells (RPTC) expressing DA1 receptors. Dopamine decreased basal RPTC AT1 receptor mRNA levels by 67 +/- 7% (n = 10; P < 0.005) and decreased 125I-angiotensin II binding by 41 +/- 7% (n = 4; P < 0.05). The DA1-specific agonist, SKF38393 decreased basal AT1 receptor mRNA levels (65 +/- 5% inhibition; n = 5; P < 0.025), and the DA1-specific antagonist, SCH23390 reversed dopamine's inhibition of AT1 receptor mRNA expression (24 +/- 10% inhibition; n = 8; NS) and angiotensin II binding (5 +/- 15%; n = 4; NS). DA2-specific antagonists were ineffective. In rats given L-DOPA in the drinking water for 5 d, there were decreases in both proximal tubule AT1 receptor mRNA expression (80 +/- 5%; n = 6; P < 0.005) and specific [125I] Ang II binding (control: 0.74 +/- 0.13 fmol/mg pro vs. 0.40 +/- 0.63 fmol/mg pro; n = 5; P < 0.05). In summary, dopamine, acting through DA1 receptors, decreased AT1 receptor expression in proximal tubule, an effect likely mediated by increased intracellular cAMP levels. Local dopamine production also led to decreased AT1 receptor expression, suggesting dopamine may reset sensitivity of the proximal tubule to angiotensin II.  相似文献   

19.
To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption.  相似文献   

20.
The hyperbicarbonatemia of chronic respiratory acidosis is maintained by enhanced bicarbonate reabsorption in the proximal tubule. To investigate the cellular mechanisms involved in this adaptation, cell and luminal pH were measured microfluorometrically using (2",7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein in isolated, microperfused S2 proximal convoluted tubules from control and acidotic rabbits. Chronic respiratory acidosis was induced by exposure to 10% CO2 for 52-56 h. Tubules from acidotic rabbits had a significantly lower luminal pH after 1-mm perfused length (7.03 +/- 0.09 vs. 7.26 +/- 0.06 in controls, perfusion rate = 10 nl/min). Chronic respiratory acidosis increased the initial rate of cell acidification (dpHi/dt) in response to luminal sodium removal by 63% and in response to lowering luminal pH (7.4-6.8) by 69%. Chronic respiratory acidosis also increased dpHi/dt in response to peritubular sodium removal by 63% and in response to lowering peritubular pH by 73%. In conclusion, chronic respiratory acidosis induces a parallel increase in the rates of the luminal Na/H antiporter and the basolateral Na/(HCO3)3 cotransporter. Therefore, the enhanced proximal tubule reabsorption of bicarbonate in chronic respiratory acidosis may be, at least in part, mediated by a parallel adaptation of these transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号