首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model palladium‐mediated carbonylation reaction synthesizing N‐benzylbenzamide from iodobenzene and benzylamine was used to investigate the potential of four N‐heterocyclic carbenes (N,N′‐bis(diisopropylphenyl)‐4,5‐dihydroimidazolinium chloride ( I ), N,N′‐bis(1‐mesityl)‐4,5‐dihydroimidazolinium chloride ( II ), N,N′‐bis(1‐mesityl)imidazolium chloride ( III ) and N,N′‐bis(1‐adamantyl)imidazolium chloride ( IV )) to act as supporting ligands in combination with Pd2(dba)3. Their activities were compared with other Pd‐diphosphine complexes after reaction times of 10 and 120 min. Pd2(dba)3 and III were the best performing after 10 min reaction (20%) and was used to synthesize radiolabelled [11C]N‐benzylbenzamide in good radiochemical yield (55%) and excellent radiochemical purity (99%). A Cu(Tp*) complex was used to trap the typically unreactive and insoluble [11C]CO which was then released and reacted via the Pd‐mediated carbonylation process. Potentially useful side products [11C]N,N′‐dibenzylurea and [11C]benzoic acid were also observed. Increased amounts of [11C]N,N′‐dibenzylurea were yielded when PdCl2 was the Pd precursor. Reduced yields of [11C]benzoic acid and therefore improved RCP were seen for III /Pd2(dba)3 over commonly used dppp/Pd2(dba)3 making it more favourable in this case. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
[11C]MENET, a promising norepinephrine transporter imaging agent, was prepared by Suzuki cross coupling of 1 mg N‐t‐Boc pinacolborate precursor with [11C]CH3I in DMF using palladium complex generated in situ from Pd2(dba)3 and (o‐CH3C6H4)3P together with K2CO3 as the co‐catalyst, followed by deprotection with trifluoroacetic acid. This improved radiolabeling method provided [11C]MENET in high radiochemical yield at end of synthesis (EOS, 51 ± 3%, decay‐corrected from end of 11CH3I synthesis, n = 6), moderate specific activity (1.5–1.9 Ci/µmol at EOS), and high radiochemical (>98%) and chemical purity (>98%) in a synthesis time of 60 ± 5 min from the end of bombardment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Toluene derivatives are often found in drug‐like molecules, and are therefore desirable as radiolabelled moieties. The desire for an alternate to the Stille coupling led us to investigate the feasibility of the Suzuki coupling. We have found the Suzuki coupling route to be a robust alternative to the Stille coupling for the synthesis of functionalized [11C]toluene derivatives from [11C]methyl iodide. The avoidance of potentially toxic tin‐containing by‐products is an added advantage. The products synthesized via Suzuki coupling with [11C]methyl iodide were isolated in generally high yields (56–92%), with high radiochemical purity (>95%) and specific radioactivity (>4000 Ci/mmol) in less than 20 min following production of [11C]methyl iodide. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A new method for the reduction of no‐carrier‐added [11C]carbon dioxide into [11C]carbon monoxide ([11C]CO) is described, in which the reductant (zinc) is supported on fused silica particles. Using this setup, which allows for a reduction temperature (485°C) well above the melting point for zinc (420°C), radiochemical yields of up to 96% (decay‐corrected) were obtained. A slight decrease in radiochemical yield was observed upon repeated [11C]CO productions (93 ± 3%, n  = 20). The methodology is convenient and efficient and provides a straightforward path to no‐carrier‐added production of [11C]CO.  相似文献   

5.
Neuroinflammation, in particular activation of microglia, is thought to play an important role in the progression of neurodegenerative diseases. In activated microglia, the purinergic P2X7 receptor is upregulated. A‐740003, a highly affine and selective P2X7 receptor antagonist, is a promising candidate for the development of a radiotracer for imaging of neuroinflammation by positron emission tomography. For this purpose, [11C]A‐740003 was synthesised and evaluated in vivo with respect to both tracer metabolism and biodistribution. In plasma, a moderate metabolic rate was seen. In healthy rat brain, only marginal uptake of [11C]A‐740003 was observed and, therefore, metabolites in brain could not be determined. Whether the minimal brain uptake is due to the low expression levels of the P2X7 receptor in healthy brain or to limited transport across the blood–brain barrier has yet to be elucidated.  相似文献   

6.
This paper describes the radiosynthesis of 3‐[11C]methylthiophene, chosen as a model reaction for the preparation of heteroaromatic methylthienyl compounds. Labelling was performed from the corresponding lithiothiophene derivative and [11C]methyl iodide as the alkylating agent in THF at ?78°C. The conditions used were the following: (1) trapping for 2–3 min at ?78°C of the [11C]methyl iodide in the THF solution containing the freshly prepared 3‐lithiothiophene; (2) Hydrolysis of the reaction mixture by adding 0.5 ml of the HPLC mobile phase and (3) HPLC purification. 3‐[11C]Methylthiophene ([11C]‐ 1 ) was collected in high yield as the unique peak of the HPLC radiochromatogram. Non‐reacted [11C]methyl iodide was not present. Typically, 50–60 mCi (1.85–2.22 GBq) of 3‐[11C]methylthiophene ([11C]‐ 1 ) were obtained within 20 min of radiosynthesis (including HPLC purification) with specific radioactivities ranging from 0.6 to 1.0 Ci/μmol (22.2–37.0 GBq/μmol) starting from 180 to 200 mCi (6.66–7.40 GBq) of [11C]CO2 (10 μA, 10 min (6000 μC) irradiation). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
A method and an apparatus for preparing [11C]methyl iodide from [11C]methane and iodine in a single pass through a non‐thermal plasma reactor has been developed. The plasma was created by applying high voltage (400 V/31 kHz) to electrodes in a stream of helium gas at reduced pressure. The [11C]methane used in the experiments was produced from [11C]carbon dioxide via reduction with hydrogen over nickel. [11C]methyl iodide was obtained with a specific radioactivity of 412 ± 32 GBq/µmol within 6 min from approximately 24 GBq of [11C]carbon dioxide. The decay corrected radiochemical yield was 13 ± 3% based on [11C]carbon dioxide at start of synthesis. [11C]Flumazenil was synthesized via a N‐alkylation with the prepared [11C]methyl iodide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
[11C]paclitaxel, a potential solid tumor imaging agent, was synthesized by reacting [α11C]benzoyl chloride with the primary amine precursor of paclitaxel. The time for synthesis, purification, and formulation was 38 min from end of bombardment with an average specific radioactivity of 49.9 GBq/μmol (1349 mCi/μmol) at end of synthesis. The average decay corrected radiochemical yield was 7% with greater than 99% radiochemical purity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Histone deacetylases (HDACs) mediate epigenetic mechanisms implicated in a broad range of central nervous system dysfunction, including neurodegenerative diseases and neuropsychiatric disorders. [11C]Martinostat allows in vivo quantification of class I/IIb HDACs and may be useful for the quantification of drug–occupancy relationship, facilitating drug development for disease modifying therapies. The present study reports a radiosynthesis of [11C]martinostat using [11C]methyl triflate in ethanol, as opposed to the originally described synthesis using [11C]methyl iodide and DMSO. [11C]Methyl triflate is trapped in a solution of 2 mg of precursor 1 dissolved in anhydrous ethanol (400 μl), reacted at ambient temperature for 5 min and purified by high-performance liquid chromatography; 1.5–1.8 GBq (41–48 mCi; n = 3) of formulated [11C]martinostat was obtained from solid-phase extraction using a hydrophilic–lipophilic cartridge in a radiochemical yield of 11.4% ± 1.1% (nondecay corrected to trapped [11C]MeI), with a molar activity of 369 ± 53 GBq/μmol (9.97 ± 1.3 Ci/μmol) at the end of synthesis (40 min) and validated for human use. This methodology was used at our production site to produce [11C]martinostat in sufficient quantities of activity to scan humans, including losses incurred from decay during pre-release quality control testing.  相似文献   

10.
[11C]labeled (±)‐methyl jasmonate was synthesized using a C18 Sep Pak? at ~100°C to sustain a solid‐supported 11C‐methylation reaction of sodium (±)‐jasmonate using [11C]methyl iodide. After reaction, the Sep Pak was rinsed with acetone to elute the labeled product, and the solvent evaporated rendering [11C]‐(±)‐methyl jasmonate at 96% radiochemical purity. The substrate, (±)‐jasmonic acid, was retained on the Sep Pak so further chromatography was unnecessary. Total synthesis time was 25 min from the end of bombardment (EOB) which included 15 min to generate [11C]methyl iodide using the GE Medical Systems PET Trace MeI system, 5 min for reaction and extraction from the cartridge, and 5 min to reformulate the product for plant administration. An overall radiochemical yield (at EOB) of 17±4.3% was obtained by this process, typically producing 10 mCi of purified radiotracer. A specific activity of 0.5 Ci/µmol was achieved using a short 3 min cyclotron beam to produce the starting 11C. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The feasibility of synthesizing compounds containing the P–18F bond has been demonstrated by labelling the pesticide, cholinesterase inhibitor Dimefox (N,N,NN′‐tetramethylphosphorodiamidic fluoride) with F‐18. Radiolabelling was achieved in high radiochemical yield (96%) by nucleophilic substitution of the chloro group attached to phosphorus, in the oxidation state P(V), by 18F? (activated with tetrabutylammonium carbonate in acetonitrile). Given the large number of important biological molecules possessing phosphorus such as oligonucleotides, phospholipids as well as phosphorylated proteins, sugars and steroids, this new labelling chemistry may provide an additional route to radiolabelling these biologically important compounds for use in PET. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
[carbonyl11C]Benzyl acetate ([11C]1) has been proposed as a potential agent for imaging glial metabolism of acetate to glutamate and glutamine with positron emission tomography. [11C]1 was synthesized from [11C]carbon monoxide, iodomethane and benzyl alcohol via palladium‐mediated chemistry. The radiosynthesis was automated with a modified Synthia platform controlled with in‐house developed Labview software. Under production conditions, [11C]1 was obtained in 10% (n=6) decay‐corrected radiochemical yield from [11C]carbon monoxide in >96% radiochemical purity and with an average specific radioactivity of 2415 mCi/µmol. The total radiosynthesis time was about 45 min. Peak uptake of radioactivity in monkey brain (SUV=3.1) was relatively high and may be amenable to measuring uptake and metabolism of acetate in glial cells of the brain. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

13.
A method to prepare [1‐11C]propyl iodide and [1‐11C]butyl iodide from [11C]carbon monoxide via a three step reaction sequence is presented. Palladium mediated formylation of ethene with [11C]carbon monoxide and hydrogen gave [1‐11C]propionaldehyde and [1‐11C]propionic acid. The carbonylation products were reduced and subsequently converted to [1‐11C]propyl iodide. Labelled propyl iodide was obtained in 58±4% decay corrected radiochemical yield and with a specific radioactivity of 270±33 GBq/µmol within 15 min from approximately 12 GBq of [11C]carbon monoxide. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Butyl iodide was obtained correspondingly from propene and approximately 8 GBq of [11C]carbon monoxide, in 34±2% decay corrected radiochemical yield and with a specific radioactivity of 146±20 GBq/µmol. The alkyl iodides were used in model reactions to synthesize [O‐propyl‐1‐11C]propyl and [O‐butyl‐1‐11C]butyl benzoate. Propyl and butyl analogues of etomidate, a β‐11‐hydroxylase inhibitor, were also synthesized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2‐Methyl‐1‐[11C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 μmol) were needed. 1‐Iodo‐2‐[11C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1‐iodo‐2‐[11C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11C]2‐methyl‐1‐propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/μmol at the end of synthesis. Altogether, the syntheses of 1‐iodo‐2‐[11C]methylpropane and 2‐methyl‐1‐[11C]propanol were achieved and applied as proof of their applicability.  相似文献   

15.
A ceramic material, prepared from kaolin doped with silver ions in various concentrations, was evaluated as a catalyst for the conversion of [11C] methanol into [11C]formaldehyde in a gas flow system. Employment of [11C] methanol with a minimized water content, 300 mg of catalyst (20% of silver) at 500°C and a carrier gas flow rate of 40 mL/min resulted in a radiochemical decay‐corrected [11C]formaldehyde yield of 67% relative to [11C]methanol. Wet [11C]methanol under the same conditions gave 54% of [11C] formaldehyde. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A method is presented for preparing [1‐11C]ethyl iodide from [11C]carbon monoxide. The method utilizes methyl iodide and [11C]carbon monoxide in a palladium‐mediated carbonylation reaction to form a mixture of [1‐11C]acetic acid and [1‐11C]methyl acetate. The acetates are reduced to [1‐11C]ethanol and subsequently converted to [1‐11C]ethyl iodide. The synthesis time was 20 min and the decay‐corrected radiochemical yield of [1‐11C]ethyl iodide was 55 ± 5%. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Ethyl iodide was used in two model reactions, an O‐alkylation and an N‐alkylation. Starting with approximately 2.5 GBq of [11C]carbon monoxide, the isolated decay‐corrected radiochemical yields for the ester and the amine derivatives were 45 ± 0.5% and 25 ± 2%, respectively, based on [11C]carbon monoxide. Starting with 10 GBq of [11C]carbon monoxide, 0.55 GBq of the labelled ester was isolated within 40 min with a specific radioactivity of 36 GBq/µmol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Docetaxel (Taxotere®) is an accepted chemotherapeutic agent for the treatment of breast cancer and non‐small cell lung cancers. A potential means of predicting response is measuring tumor uptake of [11C]docetaxel using Positron Emission Tomography (PET). The synthetic approach to introduce the 11C isotope in the 2‐benzoyl moiety of docetaxel unfortunately was unsuccessful. The radiosynthesis of [11C]docetaxel ( 6b , Scheme 1), with the 11C isotope in the BOC moiety, was however, successful using a second synthetic approach. It started with the reaction of [11C]tert‐butanol with 1,2,2,2‐tetrachloroethyl chloroformate to give [11C]tert‐butyl‐l,2,2,2‐tetrachloroethyl carbonate in a good overall yield (62±9%). In the final step, the [11C]tert‐butoxycarbonylation of the free amine of docetaxel gave [11C]docetaxel 6b in a satisfactory decay corrected yield of 10±1% (from [11C]CO2). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The reduction of [11C]carbon dioxide to [11C]methanol with lithium aluminium hydride (LiAlH4) and subsequent conversion into [11C]methyl iodide is a standard way of producing the latter precursor for radiolabelling. However, it suffers from appreciable losses by incomplete reduction giving [11C]formate. We show that samarium diiodide (SmI2) can be used to improve the yield of [11C]methanol by its ability to efficiently reduce [11C]formate to [11C]methanol. This can be done either by making [11C]formate intentionally and treating it with SmI2 or by treating the LiAlH4‐reduced [11C]CO2 with SmI2. In the latter approach, sodium thiosulphate has a similar effect as SmI2. Hydriodic acid was also shown to exert some reducing action on [11C]formate too. [11C]Carbonate is reduced to a small extent by SmI2 under the mild conditions employed. In contrast to the very easy [11C]formate reduction, SmI2 had little effect on [11C]acetate and practically no [11C]ethanol could be produced. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The ultimate goal of this work was to relate nicotine kinetics in the brain after cigarette smoking to a feature of sensitization in drug addiction. To do this required a positron emission tomography study to measure the regional cerebral biodistribution kinetics of cigarette‐smoked nicotine. This in turn required a cigarette formulated with carbon‐11 labeled nicotine suitable for administration by single bolus inhalation. Here we report the development and validation of cigarettes formulated with [11C]nicotine that were successfully used for single bolus administration by smoking. We also report measurements of nicotine delivery from smoked cigarettes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Carbon‐11‐labelled (S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐[11C]‐one ([11C]SL25.1188), a promising reversibly binding radiotracer for imaging central monoamine oxidase B, was rapidly prepared via an intramolecular cyclization reaction in an automated one‐pot procedure directly from [11C]CO2, thereby precluding the use of [11C]COCl2. Formulated [11C]SL25.1188 was isolated in 12 ± 1% uncorrected radiochemical yield, based on starting [11C]CO2, with a specific activity of 37 ± 2 GBq/µmol at the end of synthesis (30 min; n = 3). Radiochemical and enantiomeric purities were both >99%. The methodology described herein offers an efficient production of [11C]SL25.1188 at ambient temperature and is suitable for human imaging studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号