首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Epothilone B is a novel nontaxane antimicrotubule agent that is active even against paclitaxel (Taxol)-resistant cancer cells. The present study further explores the mechanisms underlying epothilone B-mediated cytotoxicity in human breast cancer cells. We show that BMS-247550 (EpoB), a novel epothilone B analogue, induces cell cycle arrest at the G(2)-M phase transition and subsequent apoptotic cell death of MDA-MB-468 (468) cells. Treating cells with EpoB triggers a conformational change in the Bax protein and its translocation from the cytosol to the mitochondria, which is accompanied by cytochrome c release from the inter-membrane space of mitochondria into the cytosol. Overexpression of Bcl-2 delays Bax conformational change, cytochrome c release, and apoptosis induced by EpoB. Conversely, the Bcl-2 antagonist Bak-BH3 peptide or HA14-1 compound abrogates the antiapoptotic effects of Bcl-2 and enhances apoptosis of 468 cells pretreated with EpoB (to induce mitotic arrest). In synchronized 468 cells, EpoB is more potent in inducing Bax conformational change and apoptosis at G(2)-M phase compared with G(1)-S phase of the cell cycle. Taken together, these findings demonstrate that EpoB induces apoptosis through a Bcl-2-suppressible pathway that controls a conformational change of the proapoptotic Bax protein. The enhanced cytotoxicity of EpoB by blocking Bcl-2 at mitochondria implies a potential application of the combination of EpoB and Bcl-2 antagonists in the treatment of human breast cancer.  相似文献   

2.
The aim of this study was to determine the efficacy of sagopilone (ZK-EPO), a novel epothilone, compared with other anticancer agents in orthotopic models of human primary and secondary brain tumors. Autoradiography and pharmacokinetic analyses were performed on rats and mice to determine passage across the blood-brain barrier and organ distribution of sagopilone. Mice bearing intracerebral human tumors (U373 or U87 glioblastoma, MDA-MB-435 melanoma, or patient-derived non-small-cell lung cancer [NSCLC]) were treated with sagopilone 5-10 mg/kg, paclitaxel 8-12.5 mg/kg (or temozolomide, 100 mg/kg) or control (vehicle only). Tumor volume was measured to assess antitumor activity. Sagopilone crossed the blood-brain barrier in both rat and mouse models, leading to therapeutically relevant concentrations in the brain with a long half-life. Sagopilone exhibited significant antitumor activity in both the U373 and U87 models of human glioblastoma, while paclitaxel showed a limited effect in the U373 model. Sagopilone significantly inhibited the growth of tumors from CNS metastasis models (MDA-MB-435 melanoma and patient-derived Lu7187 and Lu7466 NSCLC) implanted in the brains of nude mice, in contrast to paclitaxel or temozolomide. Sagopilone has free access to the brain. Sagopilone demonstrated significant antitumor activity in orthotopic models of both glioblastoma and CNS metastases compared with paclitaxel or temozolomide, underlining the value of further research evaluating sagopilone in the treatment of brain tumors. Sagopilone is currently being investigated in a broad phase II clinical trial program, including patients with glioblastoma, NSCLC, breast cancer, and melanoma.  相似文献   

3.
Zhang S  Ong CN  Shen HM 《Cancer letters》2004,211(2):175-188
Parthenolide is a sesquiterpene lactone responsible for the bioactivities of Feverfew. Besides its potent anti-inflammatory effect, this compound has recently been reported to induce apoptosis in cancer cells, possibly through mitochondrial dysfunction. In the present study, we attempted to examine parthenolide-mediated cell death signaling pathway by focusing on the involvement of Bcl-2 family members. Using a human colorectal cancer cell line COLO205, we first demonstrated that parthenolide acted through the cell death receptor pathway to activate caspase 8. Following caspase 8 activation, Bid, a proapoptotic Bcl-2 member, was cleaved and this cleavage then triggered Bax conformational changes and Bax translocation from cytosol to mitochondrial membrane. Meanwhile, another proapoptotic protein, Bak, was up-regulated and oligomerized on the mitochondrial membrane. All these alterations were found to be prerequisite for the subsequent release of proapopototic mitochondrial proteins, including cytochrome c and Samc, in parthenolide-treated cells. Moreover, selective inhibition of caspase 8 activity by a synthetic caspase inhibitor (IETD-FMK) or overexpression of a viral protein (CrmA) suppressed the cleavage of Bid, conformational changes of Bax, cytochrome c release, and apoptosis. Therefore, the proapoptotic Bcl-2 family members are important mediators relaying the cell death signaling elicited by parthenolide from caspase 8 to downstream effector caspases such as caspase 3, and eventually to cell death.  相似文献   

4.
Renal cancer is one of the most chemoresistant tumor types. Using a panel of 10 established renal cancer cell lines that have not been subjected to prior drug selection, the range of functional resistance phenotypes to the tubulin-binding agents paclitaxel, vinblastine, vincristine and patupilone (epothilone B, EPO906) was determined, together with expression of P-glycoprotein (PgP), multidrug resistance associated protein-2 (MRP2) and major vault protein (MVP) proteins. The IC(50) values for vincristine correlated positively with PgP expression (r = 0.73; p = 0.031), with values for paclitaxel and vinblastine just failing to reach significance. A significant positive correlation was observed for sensitivity to paclitaxel and MRP2 expression only (r = 0.8; p = 0.013). MVP expression did not correlate with sensitivity to any of the drugs examined. All cell lines exhibited much greater sensitivity to patupilone, demonstrating for the first time the potential use of patupilone in this cancer. In tissue samples from chemotherapy-naive renal cell carcinoma (RCC) patients, marked downregulation or absence of PgP in many tumor cells with expression levels more similar to sensitive cell lines rather than the resistant lines was seen. Similarly, MRP2 was absent or only weakly present in tumor cells, whereas MVP was very strongly upregulated in most tumor samples. This study illustrating discrepancies between results exclusively based on studies in cell lines and findings in vivo suggests that the role of PgP and MRP2 in intrinsic resistance in RCC in vivo may be less than expected from the in vitro findings and supports a potential role for MVP on the basis of in vivo expression studies.  相似文献   

5.
Purpose  Ixabepilone, a semisynthetic analog of natural epothilone B, was developed for use in cancer treatment. This study extends previous findings regarding the efficacy of ixabepilone and its low susceptibility to tumor resistance mechanisms and describes the pharmacokinetics of this new antineoplastic agent. Methods  The cytotoxicity of ixabepilone was assessed in vitro in breast, lung, and colon tumor cell lines and in vivo in human xenografts in mice. Antitumor activities of ixabepilone and taxanes were compared in multidrug-resistant models in vivo. Differential drug uptake of ixabepilone and paclitaxel was assessed in a P-glycoprotein (P-gp)-resistant colon cancer model in vitro. The pharmacokinetic profile of ixabepilone was established in mice and humans. Results  Ixabepilone demonstrated potent cytotoxicity in a broad range of human cancer cell lines in vitro and in a wide range of xenografts in vivo. Ixabepilone was ~3-fold more potent than docetaxel in the paclitaxel-resistant Pat-21 xenograft model (resistant due to overexpression of βIII-tubulin and a lack of βII-tubulin). Ixabepilone activity against P-gp-overexpressing breast and colon cancer was confirmed in in vivo models. Cellular uptake of ixabepilone, but not paclitaxel, was established in a P-gp-overexpressing model. The pharmacokinetics of ixabepilone was characterized by rapid tissue distribution and extensive tissue binding. Conclusions  Cytotoxicity studies against a range of tumor types in vitro and in vivo demonstrate that ixabepilone has potent and broad-spectrum antineoplastic activity. This is accompanied by favorable pharmacokinetics. Ixabepilone has reduced susceptibility to resistance due to P-gp overexpression, tubulin mutations, and alterations in β-tubulin isotype expression.  相似文献   

6.
BackgroundSagopilone (ZK219477) is a new and fully synthetic epothilone with activity against multi-drug resistant tumour cell lines. It has demonstrated clinical activity in several solid tumours like ovarian cancer and melanoma. Data about clinical efficacy of sagopilone in small-cell lung cancer are lacking. Here we report the first phase-I trial of sagopilone in combination with cisplatin in previously untreated metastatic small-cell lung cancer patients.MethodsChemonaive patients with metastatic small-cell lung cancer (SCLC) received sagopilone in four different dosing schedules ranging from 12 to 22 mg/m2 (on day 1 as 3-h infusion) followed by a fixed dose of cisplatin of 75 mg/m2 as 1-h infusion on day 1. Chemotherapy was administered every 3 weeks to a maximum of six cycles. The primary objective was determination of dose-limiting toxicities (DLTs) and the maximum-tolerated dose (MTD) in this setting. Secondary objectives were assessment of objective response rates (ORR) as well as investigation of sagopilone pharmacokinetics.ResultsTwenty-six patients received a total of 107 treatment cycles of the platinum–sagopilone doublet. The recommended phase-II dose (RD) and schedule was found to be 19 mg/m2 sagopilone followed by 75 mg/m2 cisplatin. Peripheral neuropathy turned out as dose-limiting toxicity when the combination was administered over a median of four cycles. Objective responses were observed in six out of seven SCLC patients (85.7%) treated with the RD.ConclusionsSagopilone and cisplatin can be safely combined in the first-line treatment of metastasised SCLC. This combination demonstrated preliminary efficacy and should be further evaluated within phase-II trials.  相似文献   

7.
Phenethyl isothiocyanate (PEITC) is a highly promising cancer chemopreventive constituent of cruciferous vegetables (e.g., watercress) with in vivo efficacy in experimental rodent cancer models. Research thus far implicates apoptosis induction in cancer chemopreventive response to PEITC, but the mechanism of proapoptotic effect is not fully understood. The present study demonstrates that p53 upregulated modulator of apoptosis (PUMA)-independent apoptosis by PEITC is mediated by B-cell lymphoma 2 interacting mediator of cell death (Bim). Exposure of a cell line (BRI-JM04) derived from spontaneously developing mammary tumor of a MMTV-neu transgenic mouse to pharmacological concentrations of PEITC resulted in decreased cell viability coupled with apoptosis induction, characterized by release of histone-associated DNA fragments into the cytosol and cleavage of poly-(ADP-ribose)-polymerase and procaspase-3. The PEITC-induced apoptosis in BRI-JM04 cells was associated with up-regulation of Bak, PUMA, and Bim (long and short forms of Bim), increased S65 phosphorylation of BimEL (extra-long form), and down-regulation of Bcl-xL and Bcl-2. On the other hand, a non-tumorigenic human mammary epithelial cell line (MCF-10A) was significantly more resistant to PEITC-induced apoptosis compared with BRI-JM04 despite induction of Bax and PUMA due to concomitant overexpression of anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1. Wild-type HCT-116 cells and its isogenic PUMA knockout variant exhibited comparable sensitivity to PEITC-induced apoptosis. On the other hand, small interfering RNA knockdown of Bim protein imparted partial but statistically significant protection against PEITC-induced apoptosis in BRI-JM04, MCF-7, and MDA-MB-231 cells. In conclusion, the present study provides novel insight into the mechanism of PEITC-induced apoptosis involving Bim.  相似文献   

8.
Epothilone A, a novel macrolide antibiotic, is produced by the myxobacterium Sorangium cellulosum. Similarly to paclitaxel (Taxol), epothilone A inhibits cell proliferation and induces apoptosis by binding to tubulin and stabilizing of microtubuli. Like paclitaxel, epothilone A induced apoptosis in neuroblastoma cells which exhibit constitutive cytoplasmic sequestration of p53 and, hence, an impaired DNA-damage-dependent apoptosis. However, in contrast to paclitaxel, epothilone A was also effective against a constitutively Pgp-expressing, multidrug resistant neuroblastoma cell line (SK-N-SH). Moreover, the efficacy of epothilone A was not impaired even though the Pgp level was further increased during treatment with the drug.  相似文献   

9.
The epothilones are a new class of non-taxane tubulin polymerization agents obtained by natural fermentation of the myxobacteria Sorangium cellulosum. The cytotoxic activities of the epothilones, like those of the taxanes, have been linked to stabilization of microtubules, but they also have important differences. Among the epothilone family, ixabepilone (BMS247550) is a semisynthetic derivative of the natural product epothilone B. Ixabepilone was evaluated in vivo in a panel of human and rodent tumour models, the majority of which were chosen because of their known, well-characterized resistance to paclitaxel, and seems able to overcome the over-expression of multidrug resistance and to be unaffected by mutations in the beta tubulin gene. The interest of ixabepilone was clinically confirmed in clinical studies of phase II which demonstrated a strong activity at the patients with metastatic breast cancer resistant to taxanes and in patients suffering of other types of chemoresistant tumors.  相似文献   

10.
In a previous study, we found that the small-molecule epidermal growth factor receptor (EGFR) inhibitor gefitinib (ZD1839, Iressa) blocked cell proliferation at biologically relevant concentrations in approximately one third (6 of 17) of human bladder cancer cell lines examined. Here, we studied the effects of gefitinib on apoptosis in a representative subset of the same panel of cells. The drug had modest effects on DNA fragmentation as a single agent at concentrations that produced strong growth inhibition (< or =1 micromol/L) and also failed to promote apoptosis induced by conventional chemotherapeutic agents (gemcitabine and paclitaxel). However, gefitinib did interact with recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce high levels of apoptosis in gefitinib-responsive but not gefitinib-unresponsive lines. The molecular mechanisms involved down-regulation of active AKT and X-linked inhibitor of apoptosis protein (XIAP) expression and were mimicked by chemical inhibitors of the phosphatidylinositol 3-kinase/AKT pathway but not of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK pathway. Furthermore, direct small interfering RNA-mediated knockdown of AKT resulted in down-regulation of XIAP and TRAIL sensitization, and knockdown of XIAP itself was sufficient to reverse TRAIL resistance. Together, our results show that EGFR pathway activation limits TRAIL-induced apoptosis via an AKT- and XIAP-dependent mechanism in EGFR-dependent human bladder cancer cells, providing the conceptual framework for a further evaluation of the combination in relevant preclinical in vivo models.  相似文献   

11.
Kutuk O  Letai A 《Cancer research》2008,68(19):7985-7994
Paclitaxel is a microtubule-targeting antineoplastic drug widely used in human cancers. Even when tumors are initially responsive, progression of disease despite continued taxane therapy is all too common in the treatment of many of the most common epithelial cancers, including breast cancer. However, the mechanisms underlying paclitaxel resistance in cancer cells are not completely understood. Our hypothesis is that changes in the intrinsic (or mitochondrial) cell death pathway controlled by the BCL-2 family are key to the development of acquired paclitaxel resistance. Here we show that paclitaxel activates the mitochondrial apoptosis pathway, which can be blocked by BCL-2 overexpression. Treatment with ABT-737, a small-molecule BCL-2 antagonist, restores sensitivity to paclitaxel in BCL-2-overexpressing cells. To investigate the importance of changes in the intrinsic apoptotic pathway in the absence of enforced BCL-2 expression, we generated two independent breast cancer cell lines with acquired resistance to apoptosis induced by paclitaxel. In these lines, acquired resistance to paclitaxel is mediated either by increased antiapoptotic BCL-2 proteins or decreased proapoptotic BCL-2 proteins. In both cases, ABT-737 can engage the mitochondrial apoptosis pathway to restore sensitivity to paclitaxel to cell lines with acquired paclitaxel resistance. In summary, these findings suggest that alterations in the intrinsic apoptotic pathway controlled by BCL-2 protein family members may be crucial to causing paclitaxel resistance. Furthermore, our results suggest that combining small-molecule BCL-2 antagonists with paclitaxel may offer benefit to patients with paclitaxel-resistant tumors, an oncologic problem of great prevalence.  相似文献   

12.
Liu JW  Chandra D  Tang SH  Chopra D  Tang DG 《Cancer research》2002,62(10):2976-2981
BH3 (Bcl-2 homology 3)-only proteins of the Bcl-2 family play an essential role in apoptosis. In this study, a novel human BH3-only protein, Bcl-2-interacting mediator (Bim)gamma, was identified during our study of regulation of prostate cancer cell death by Bcl-2 family proteins. Bimgamma shares the highest amino acid sequence homology to BimEL and BimL, two proapoptotic BH3-only Bcl-2 proteins derived from alternative mRNA splicing. Genomic studies indicate that Bimgamma is a novel splice variant of Bim and is generated as a result of the retention of a 126-bp intron of the bim gene. Bimgamma mRNA displays a tissue-specific expression pattern distinct from those of the other Bim isoforms. Subcellular fractionation studies indicate that Bimgamma is localized both in intracellular membranes and cytosol. Interestingly, Bimgamma mRNA, similar to the BimEL protein, is up-regulated in the majority of the prostate cancer cell lines studied, whereas several other proapoptotic Bcl-2 proteins, including Bax, Bak, and Bad, are down-regulated in prostate cancer cells. Functional studies indicate that Bimgamma inhibits clonal growth in prostate cancer cells and promotes apoptosis, which is inhibited by overexpressing Bcl-2. Because both Bimgamma and BimEL are proapoptotic BH3-only proteins and both are up-regulated in prostate cancer cells, they may play a unique role in prostate cancer development.  相似文献   

13.
We have previously reported that the microtubule stabilizing agents (MSAs) paclitaxel, epothilone B and discodermolide induce caspase-independent cell death in non-small cell lung cancer (NSCLC) cells. Here we present two lines of evidence indicating a central role for the lysosomal protease cathepsin B in mediating cell death. First, inhibition of cathepsin B, and not of caspases or other proteases, such as cathepsin D or calpains, results in a strong protection against drug-induced cell death in several NSCLC cells. Second, MSAs trigger disruption of lysosomes and release and activation of cathepsin B. Interestingly, inhibition of cathepsin B prevents the appearance of multinucleated cells, an early characteristic of MSA-induced cell death, pointing to a central, proximal role for cathepsin B in this novel cell death pathway.  相似文献   

14.
The purpose of this study was to determine activity of temozolomide combined with paclitaxel or epothilone B in vitro, and to investigate the combination of temozolomide with paclitaxel in a Phase I clinical trial. Melanoma cell lines A375P and DX3 were treated with temozolomide and either paclitaxel or epothilone B. Combination indices were determined to assess the degree of synergism. In a clinical study, 21 patients with malignant melanoma were treated with increasing doses of temozolomide (orally, days 1-5), in combination with a fixed dose of paclitaxel (i.v. infusion day 1), followed by dose escalation of the latter drug. Cycles of treatment were repeated every 3 weeks. Pharmacokinetics of both agents were determined on day 1, with temozolomide pharmacokinetics also assessed on day 5. All three compounds were active against the melanoma cell lines, with epothilone B being the most potent. There was a strong degree of synergism between temozolomide and either paclitaxel or epothilone B. In the clinical study, no pharmacokinetic interaction was observed between temozolomide and paclitaxel. Dose escalation of both drugs to clinically active doses was possible, with no dose-limiting toxicities observed at 200 mg m(-2) day(-1) temozolomide and 225 mg m(-2) day(-1) paclitaxel. There were two partial responses out of 15 evaluable patients. One patient remains alive and symptom-free at 4 years after treatment. Temozolomide and paclitaxel may be administered safely at clinically effective doses. Further evaluation of these combinations in melanoma is warranted.  相似文献   

15.
Inhibition or downregulation of Bcl-2 represents a new therapeutic approach to by-pass chemoresistance in cancer cells. Therefore, we explored the potential of this approach in breast cancer cells. Cisplatin and paclitaxel induced apoptosis in a dose-dependent manner in MCF-7 (drug-sensitive) and MDA-MB-231 (drug-insensitive) cells. Furthermore, when we transiently silenced Bcl-2, both cisplatin and paclitaxel induced apoptosis more than parental cells. Dose dependent induction of apoptosis by drugs was enhanced by the pre-treatment of these cells with HA14-1, a Bcl-2 inhibitor. Although the effect of cisplatin was significant on both cell lines, the effect of paclitaxel was much less potent only in MDA-MB-231 cells. To further understand the distinct role of drugs in MDA-MB-231 cells pretreated with HA14-1, caspases and Bcl-2 family proteins were studied. The apoptotic effect of cisplatin with or without HA14-1 pre-treatment is shown to be caspase-dependent. Among pro-apoptotic Bcl-2 proteins, Bax and Puma were found to be up-regulated whereas Bcl-2 and Bcl-xL were down-regulated when cells were pretreated with HA14-1 followed by paclitaxel or cisplatin. Enforced Bcl-2 expression in MDA-MB-231 cells abrogated the sensitizing effect of HA14-1 in cisplatin induced apoptosis. These results suggest that the potentiating effect of HA14-1 is drug and cell type specific and may not only depend on the inhibition of Bcl-2. Importantly, alteration of other pro-apoptotic or anti-apoptotic Bcl-2 family members may dictate the apoptotic response when HA14-1 is combined with chemotherapeutic drugs.  相似文献   

16.
Anticancer drugs docetaxel and vinorelbine suppress cell growth by altering microtubule assembly and activating the proapoptotic signal pathway. Vinorelbine and docetaxel have been approved for treating several advanced cancers. However, their efficacy in the management of advanced hormone-refractory prostate cancer remains to be clarified. Microtubule damage by some anticancer drugs can activate the ERK survival pathway, which conversely compromises chemotherapeutic efficacy. We analyzed the effect of ERK inhibitors PD98059 and U0126 on vinorelbine- and docetaxel-induced cell growth suppression of androgen-independent prostate cancer cells. In androgen-independent C-81 LNCaP cells, inhibition of ERK by PD98059, but not U0126, plus docetaxel resulted in enhanced growth suppression by an additional 20% compared to the sum of each agent alone (p < 0.02). The combination treatment of docetaxel plus PD98059 also increased cellular apoptosis, which was in part due to the inactivation of Bcl-2 by increasing phosphorylated Bcl-2 by more than 6-fold and Bax expression by 3-fold over each agent alone. At these dosages, docetaxel alone caused only marginal phosphorylation of Bcl-2 (10%). Docetaxel plus U0126 had only 20% added effect on Bcl-2 phosphorylation compared to docetaxel alone. Nevertheless, both U0126 and PD98059 exhibited an enhanced effect on docetaxel-induced growth suppression in PC-3 cells. No enhanced effect was observed for vinorelbine plus PD98059 or U0126. Thus, the combination therapy of docetaxel plus PD98059 may represent a new anticancer strategy, requiring lower drug dosages compared to docetaxel monotherapy. This may lower the cytotoxicity and enhance tumor suppression in vivo. This finding of a combination effect could be of potential clinical importance in treating hormone-refractory prostate cancer.  相似文献   

17.
Sagopilone is a novel, fully synthetic epothilone that has shown promising preclinical activity in a range of tumor models, including platinum-resistant ovarian cancer and metastatic breast cancer (MBC). This open-label, multicenter, Phase II study investigated the efficacy, safety, and tolerability of sagopilone administered to patients with MBC. Women with MBC whose previous chemotherapy regimen included a taxane and an anthracycline received sagopilone 16 or 22 mg/m2 as a 3-h intravenous infusion every 21 days. Efficacy (using modified Response Evaluation Criteria in Solid Tumors), safety, and tolerability were assessed in this population. A total of 65 patients received sagopilone at either 16 mg/m2 (N = 39) or 22 mg/m2 (N = 26). Patients received a median of two cycles of sagopilone. Among the 65 patients who were evaluable for efficacy, there were three confirmed tumor responses over both treatment arms; however, the primary target of the study was not reached. The main treatment-related adverse events were sensory neuropathy (81.5%) and fatigue (44.6%). There were no deaths related to the study drug. Sagopilone was moderately tolerated in both treatment arms and showed limited activity in heavily pre-treated patients with MBC.  相似文献   

18.
Purpose: Clinically, the administration of paclitaxel for ovarian cancer on a dose-dense weekly schedule, rather than the conventional every-3-week schedule, might demonstrate greater tumor-cell death. Here, we investigate the pharmacokinetics and the pharmacodynamics of weekly paclitaxel in cancer cells in vivo and in vitro. Experimental design: Paclitaxel concentrations were measured by HPLC, and apoptotic cells were detected by TUNEL assay in paclitaxel-pretreated cervical cancer cells treated with paclitaxel (10 ng/ml) and in the tissues of cervical cancer patients treated with weekly paclitaxel (60 mg/m2/week). Polymerized tubulin was detected with a tubulin polymerization assay, and the BrdU cell proliferation assay was used to assess the effect of paclitaxel. Results: Paclitaxel remained in the cancer tissues of six patients for 6 days after the last medication. In vitro, paclitaxel was retained in all cell lines for 24 h after its removal from the medium, and paclitaxel was still detectable in CaSki cells on day 7. Simultaneous treatment with depolymerizing drugs inhibited the retention of paclitaxel in cells and paclitaxel-induced polymerization of tubulin. After paclitaxel treatment, apoptotic cells were detected in cancer tissues and CaSki cells for 1 week. Under high magnification, apoptotic cells on day 7 after paclitaxel treatment showed multinucleation. Conclusions: Paclitaxel is unusual in that it accumulates especially in cancer cells and induces apoptosis for 1 week in vivo and in vitro. On the other hand, paclitaxel could not be detected in cancer tissues after 2 weeks. The administration of paclitaxel on a weekly schedule, rather than the standard every-3-week schedule, might produce greater tumor-cell death.  相似文献   

19.
20.
BACKGROUND: Increased expression of the bcl-2 gene has been observed in prostate cancer cells after androgen withdrawal and has been associated with the development of androgen independence and chemoresistance. The objective of this study was to determine whether antisense Bcl-2 oligodeoxynucleotides could enhance paclitaxel cytotoxicity and delay androgen-independent progression. METHODS: Northern and western blot analyses were used to measure changes in Bcl-2 expression in mouse Shionogi tumor cells after treatment with antisense Bcl-2 oligodeoxynucleotides and/or paclitaxel. Growth inhibition and induction of apoptotic cell death were assessed with the use of standard methods. All P values are two-sided. RESULTS: Treatment of Shionogi tumor cells with 500 nM antisense Bcl-2 oligodeoxynucleotides decreased expression of Bcl-2 messenger RNA (mRNA) by approximately 85%. Paclitaxel treatment induced Bcl-2 protein phosphorylation but did not alter Bcl-2 mRNA expression. Antisense Bcl-2 oligodeoxynucleotide treatment substantially enhanced paclitaxel chemosensitivity in a dose-dependent manner. Characteristic apoptotic DNA laddering and cleavage of poly(adenosine diphosphate-ribose) polymerase were demonstrated only after combined treatment. Adjuvant in vivo administration of antisense Bcl-2 oligodeoxynucleotides and micellar paclitaxel following castration resulted in a statistically significant delay of androgen-independent, recurrent tumors compared with administration of either agent alone (P<.001, Mantel-Cox log-rank test). Combination therapy also statistically significantly inhibited the growth of established hormone-refractory tumors compared with treatment with either agent alone (P<.001, Student's t test). CONCLUSIONS. Combined treatment with antisense Bcl-2 oligodeoxynucleotides and paclitaxel could be a novel and attractive strategy to inhibit progression to androgen-independent disease as well as growth of hormone-refractory prostate cancer through deprivation of Bcl-2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号