首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both Williams syndrome and isolated supravalvular aortic stenosis (SVAS) are caused by mutations at the elastin locus. Deletion demonstrable by FISH is the hallmark of Williams syndrome, whereas the mutations reported so far in SVAS have been more subtle. FISH positive elastin hemizygosity has not been reported in isolated SVAS. This report records our experience of FISH for elastin deletion in isolated SVAS and specifically reports a patient with non-Williams related SVAS, positive for the elastin deletion by FISH.  相似文献   

2.
Williams syndrome (WS) is characterized by distinct facial changes, growth deficiency, mental retardation, and congenital heart defect (particularly supravalvular aortic stenosis), associated at times with infantile hypercalcemia. Molecular genetic studies have indicated that hemizygosity at the elastin locus (7q11.23) causes WS. The purpose of this study was to confirm that this regional deletion, involving the elastin locus, is the cause of WS in Japan, and to clarify the correlation between the phenotype and the elastin locus. Thirty-two patients with WS and thirty of their relatives were examined by fluorescent in situ hybridization (FISH), using the WS chromosome region (WSCR) probe. All patients had cardiovascular disease (100%), 30 had typical WS facial changes (94%), 31 had mental retardation or developmental delay (97%), 16 were small-for-date at birth (50%), 14 had short stature (44%), and 13 had dental anomalies (41%). No relatives showed any manifestation of WS. Hemizygosity for a region of 7q11.23, involving the elastin locus, was found in all WS patients, but was not found in the 30 relatives. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Williams syndrome (WS) is a multisystem developmental disorder associated with microdeletions at 7q11.23 that involve several genes, including the elastin gene. Using genomic DNA from a panel of normal individuals and WS patients with established hemizygosity of the elastin gene locus, we have developed a quantitative polymerase chain reaction (PCR)-based gene-dosage assay that rapidly detects the loss of one allele of the elastin gene. Using this procedure, we also studied a family in which the proband was previously diagnosed with WS and her mother with a balanced 7q translocation [t(7:11)(q34;q13)]. Using DNA isolated from buccal smears obtained from several individuals in this family we were able to establish normal disomy at 7q in all family members except for the proband, in which we established hemizygosity at the elastin gene locus. We were also able to successfully infer normal disomy in an unborn child in this family. The rapid diagnostic procedure described here may have a variety of applications, including fine mapping of deletion breakpoints at 7q11.23 associated with WS.  相似文献   

4.
Williams syndrome (WS) is a neurodevelopmental disorder with a variable phenotype. Molecular genetic studies have indicated that hemizygosity at the elastin locus (ELN) may account for the cardiac abnormalities seen in WS, but that mental retardation and hypercalcemia are likely caused by other genes flanking ELN. In this study, we defined the minimal critical deletion region in 63 patients using 10 microsatellite markers and 5 fluorescence in situ hybridization (FISH) probes on chromosome 7q, flanking ELN. The haplotype analyses showed the deleted cases to have deletions of consistent size, as did the FISH analyses using genomic probes for the known ends of the commonly deleted region defined by the satellite markers. In all informative cases deleted at ELN, the deletion extends from D7S489U to D7S1870. The genetic distance between these two markers is about 2 cM. Of the 51 informative patients with deletions, 29 were maternal and 22 were paternal in origin. There was no evidence for effects on stature by examining gender, ethnicity, cardiac status, or parental origin of the deletion. Heteroduplex analysis for LIMK1, a candidate gene previously implicated in the WS phenotype, did not show any mutations in our WS patients not deleted for ELN. LIMK1 deletions were found in all elastin-deletion cases who had WS. One case, who has isolated, supravalvular aortic stenosis and an elastin deletion, was not deleted for LIMK1. It remains to be determined if haploinsufficiency of LIMK1 is responsible in part for the WS phenotype or is simply deleted due to its close proximity to the elastin locus. Am. J. Med. Genet. 78:82–89, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Williams syndrome: from genotype through to the cognitive phenotype   总被引:10,自引:0,他引:10  
Williams syndrome, due to a contiguous gene deletion at 7q11.23, is associated with a distinctive facial appearance, cardiac abnormalities, infantile hypercalcemia, and growth and developmental retardation. The deletion is approximately 1.5Mb and includes approximately 17 genes. Large repeats containing genes and pseudogenes flank the deletion breakpoints, and the mutation mechanism commonly appears to be unequal meiotic recombination. Elastin hemizygosity is associated with supravalvular aortic stenosis and other vascular stenoses. LIM Kinase 1 hemizygosity may contribute to the characteristic cognitive profile. The relationship of the other deleted genes to phenotypic features is not known. People with Williams syndrome tend to be over friendly-though anxious-and lack social judgement skills. They exhibit an uneven cognitive-linguistic profile together with mild to severe mental retardation. Analysis of the cognitive phenotype based on analyses of the mental processes underlying overt behavior demonstrates major differences between normal and WS subjects although for some areas, such as face processing, WS subjects can achieve near normal scores. Cognitive analysis of patients with small deletions in 7q11.23 which include elastin and LIM Kinase 1 have revealed varying results and it is premature to draw genotype-phenotype correlations.  相似文献   

6.
Most individuals with Williams syndrome (WS) have a 1.6 Mb deletion in chromosome 7q11.23 that encompasses the elastin (ELN) gene, while most families with autosomal dominant supravalvar aortic stenosis (SVAS) have point mutations in ELN. The overlap of the clinical phenotypes of the two conditions (cardiovascular disease and connective tissue abnormalities such as hernias) is due to the effect of haploinsufficiency of ELN. SVAS families often have affected individuals with some WS facial features, most commonly in infancy, suggesting that ELN plays a role in WS facial gestalt as well. To find other genes contributing to the WS phenotype, we studied five families with SVAS who have small deletions in the WS region. None of the families had mental retardation, but affected family members had the Williams Syndrome Cognitive Profile (WSCP). All families shared a deletion of LIMK1, which encodes a protein strongly expressed in the brain, supporting the hypothesis that LIMK1 hemizygosity contributes to impairment in visuospatial constructive cognition. While the deletions from the families nearly spanned the WS region, none had a deletion of FKBP6 or GTF2I, suggesting that the mental retardation seen in WS is associated with deletion of either the centromeric and/or telomeric portions of the region. Comparison of these five families with reports of other individuals with partial deletions of the WS region most strongly implicates GTF2I in the mental retardation of WS.  相似文献   

7.
Williams syndrome (WS) is due to a deletion in the WS critical region at 7q11.23 which includes the elastin gene (ELN). One of the most characteristic features of this disorder is a harsh, brassy, or hoarse voice but the etiology of the vocal characteristics are unknown. We report two patients with WS who had bilateral vocal cord abnormalities, bringing to four the number of children with WS in whom such defects have been documented. We suggest that vocal cord abnormalities may be a far more common feature of WS than has been previously suspected, and that mild vocal cord dysfunction caused by abnormal vocal cord elastin may be the cause of the hoarse voice in this condition.  相似文献   

8.
Williams-Beuren syndrome (WBS) is generally the consequence of an interstitial microdeletion at 7q11.23, which includes the elastin gene, thus causing hemizygosity at the elastin gene locus. The origin of the deletion has been reported by many authors to be maternal in approximately 60% and paternal in 40% of cases. Segregation analysis of grandparental markers flanking the microdeletion region in WBS patients and their parents indicated that in the majority of cases a recombination between grandmaternal and grandpaternal chromosomes 7 at the site of the deletion had occurred during meiosis in the parent from whom the deleted chromosome stemmed. Thus, the majority of deletions were considered a consequence of unequal crossing-over between homologous chromosomes 7 (interchromosomal rearrangement) while in the remaining cases an intrachromosomal recombination (between the chromatids of one chromosome 7) may have occurred. These results suggest that the majority of interstitial deletions of the elastin gene region occur during meiosis, due to unbalanced recombination while a minority could occur before or during meiosis probably due to intrachromosomal rearrangements. The recurrence risk of the interchromosomal rearrangements for sibs of a proband with non-affected parents must be negligible, which fits well with the observation of sporadic occurrence of almost all cases of WBS.   相似文献   

9.
Cardiovascular manifestations in 75 patients with Williams syndrome   总被引:8,自引:0,他引:8  
Objective: The prevalence and types of various cardiovascular diseases in different age groups as well as the outcomes of cardiac surgery and other interventions were assessed in a population of 75 Williams syndrome (WS) patients aged 4 months to 76 years (median 22.7 years).

Study design: The diagnosis of WS was in each case confirmed by the clinical phenotype and by a FISH test showing elastin hemizygosity. Clinical and operative data were collected from all hospitals where the patients had been treated.

Results: Cardiovascular symptoms were evident in 35 of 75 (47%) WS children at birth. During follow up, 44 of 75 (53%) WS patients were found to have cardiovascular defects. Among them, the definitive diagnosis was made before 1 year of age in 23 (52%) infants, between 1 year and 15 years of age in 14 (32%) children, and older than 15 years of age in 7 (16%) adults. Multiple obstructive cardiovascular diseases were found in six infants. Supravalvular aortic stenosis (SVAS) was diagnosed in 32/44 (73%), pulmonary arterial stenosis (PAS) in 18/44 (41%), aortic or mitral valve defect in 5/44 (11 %) of cases, and tetralogy of Fallot in one (2%) case. Altogether, 17/44 (39 %) underwent surgery or intervention. Surgery was most frequently performed in the infant group (6% v 21% v 0%, p=0.004). After 1 year of age, seven patients underwent SVAS relief and two cases PAS relief. Postoperatively there was no mortality (median follow up time 6.9 years). Arterial hypertension was found in 55% of adults. In three adults, arterial vasculopathy was not diagnosed until necropsy.

Conclusions: Our data indicate the following in WS. Cardiac symptoms are common in neonates. Heart disease diagnosed in infancy frequently requires operation. After 1 year of age, PAS tends to improve and SVAS to progress. Life long cardiac follow up is necessary because of the risks of developing vasculopathy or arterial hypertension.

  相似文献   

10.
Congenital diaphragmatic hernia: is 15q26.1-26.2 a candidate locus?   总被引:2,自引:0,他引:2  
The authors report a female presenting with congenital heart defects, liver hemangiomas, and facial dysmorphisms admitted to hospital at 3 months of age because of feeding difficulties and poor growth. She had hypotonia and large tongue, "coarse" face, and umbilical hernia in presence of complex congenital cardiovascular malformations. In spite of normal neonatal screening we performed serum levels of thyroid hormones. Thyrotropin level was very high (>50 microU/ml; normal value 0.2-4 microU/ml), while serum free T(3) (FT3) and free T(4) (FT4) levels were normal (FT3 3.6 pg/ml, normal value 2.8-5.6 pg/ml; FT4 11.6 pg/ml, normal value 6.6-14 pg/ml); antithyroid autoantibodies were absent. Thyroid scintigraphy with sodium 99m Tc pertechnetate showed a small ectopic thyroid located in sublingual position, so treatment with L-thyroxine 37.5 microg/24 hr was started with rapid improvement of the clinical picture. At 17 months of age the patient developed the complete characteristic phenotype of Williams syndrome (WS); the clinical diagnosis was proven by fluorescent in situ hybridization (FISH) analysis which showed hemizygous deletion of the elastin gene on chromosome 7. Recently a case of thyroid hemiagenesis in a child with WS has been reported; our patient underscores the association of hypothyroidism and WS. Moreover, our case shows that clinical manifestations of hypothyroidism may be present and the treatment may be necessary as it is in isolated congenital hypothyroidism.  相似文献   

11.
Heat shock protein 27 (HSP27) is one of a number of actin-binding proteins that regulate actin polymerization. Three related HSP27 sequences had previously been mapped to chromosomes 3, 9, and X. We have used fluorescent in-situ hybridization (FISH) to correct and refine the map position of the transcribed HSP27 gene (locus HSPB1) to chromosome 7q11.23. This band also contains the site of the deletion associated with Williams syndrome (WS). To define the relationship between HSP27 and the WS deletion, we used two-color FISH on previously G-banded and photographed metaphase chromosomes from WS cell-lines and peripheral blood. Six WS patients with longer deletions that extend telomeric to the classical WS deletion region were analyzed for deletion length using HSP27, cosmids generated from P193O22 (cos11) and B350L10 (cos64 and 82), B350L10, B161A02, and B363M4. The BAC 363M4 was selected from the Washington University database and contains HSP27. Our results indicated that HSP27 was deleted in three patients and that HSP27 is telomeric to cos11, cos64, cos82, and B350L10. B363M4 was demonstrated to overlap the telomeric end of B161A02 and HSP27 may be contained partially within the telomeric end of B161A02. The possible role of HSP27 in the cognitive features of WS is discussed.  相似文献   

12.
Williams syndrome (WS) is associated with a deletion of the elastin gene in over 90% of cases. We report maternal serum alpha feto-protein (MSAFP) levels in 5 women whose fetuses were later diagnosed as having WS. MSAFP levels ranged from 0.5–0.8 multiples of the median (MOM). Although further confirmation is necessary, it appears that MSAFP levels are lower than the median in WS. This apparent association has implications for counselling women following maternal serum screening. Am. J. Med. Genet. 72:448–450, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Williams syndrome (WS) is a well-known genetic disorder caused by heterozygous microdeletions of the 7q11.23 chromosome region. The main clinical features of the syndrome are characteristic facial dysmorphisms, cardiovascular and endocrine anomalies, short stature, mild-to-moderate intellectual disability, and a recognizable cognitive and behavioral profile. Differently from large chromosomal imbalances and aneuploidies, mosaicism has only rarely been found in microdeletion syndromes, and mosaic cases with WS phenotype have never been reported. We here describe a 51-year-old female patient with the typical clinical features of WS, whose chromosomal microarray analysis and fluorescence in situ hybridization disclosed a 54%–68% germline mosaicism for 7q11.23 deletion.  相似文献   

14.
Interruption of the aortic arch (IAA) is a severe malformation of the heart with known association to DiGeorge syndrome (DGS) and 22q11.2 hemizygosity. The aim of this study was to establish incidence and significance of 22q11.2 hemizygosity in an unbiased sample of patients with IAA. All 15 children with IAA who were referred to our hospital in a 3-year period were tested by chromosome and fluorescence in situ hybridization (FISH) analysis with the probes D22S75, Tuple1, and cHKAD26 and by a set of 10 simple tandem repeat polymorphic (STRP) markers. In nine of 11 children with IAA type B, 22q11.2 hemizygosity was demonstrated by FISH and STRP analysis, but in none of the four children with type A. In all but one child, deletion size was ∼3 Mb. The girl with the smaller deletion of ∼1.5 Mb differed because of an Ullrich-Turner syndrome-like phenotype and severe T-cell defect. Additionally, in one patient with phenotypic signs of DGS, a small deletion distal to the known DGS region containing the marker D22S308 was suspected by STRP analysis. One deletion was shown to be inherited from a healthy father and one IAA type A recurred in a sib. T-cell anomalies were evident in eight of the nine children with classical deletion, five of whom suffered also from hypoparathyroidism. With respect to cause and clinical course, IAA type A and B were shown to represent different entities. This study showed that variable symptoms of 22q11.2 hemizygosity may cluster. Am. J. Med. Genet. 78:322–331, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Non-Hodgkin lymphoma in an 8-year-old boy with Williams syndrome is reported. Molecular DNA analysis showed a maternal deletion at 7q11.23, the locus of elastin and several other genes, including the BCL7B gene, involved in early development. To our knowledge, this is the second reported case of a lymphoma in a Williams syndrome patient and the first in a child.  相似文献   

16.
We present two patients with the full Williams syndrome (WS) phenotype carrying a smaller deletion than typically observed. The deleted region spans from the elastin gene to marker D7S1870. This observation narrows the minimal region of deletion in WS and suggests that the syntaxin 1A and frizzled genes are not responsible for the major features of this developmental disorder and provides important insight into understanding the genotype-phenotype correlation in WS.  相似文献   

17.
Fluorescence in situ hybridisation (FISH) and conventional chromosome analysis were performed on a series of 52 patients with classical Williams-Beuren syndrome (WBS), suspected WBS, or supravalvular aortic stenosis (SVAS). In the classical WBS group, 22/23 (96%) had a submicroscopic deletion of the elastin locus on chromosome 7, but the remaining patient had a unique interstitial deletion of chromosome 11 (del(11)(q13.5q14.2)). In the suspected WBS group 2/22 (9%) patients had elastin deletions but a third patient had a complex karyotype including a ring chromosome 22 with a deletion of the long arm (r(22)(p11-->q13)). In the SVAS group, 1/7 (14%) had an elastin gene deletion, despite having normal development and minimal signs of WBS. Overall, some patients with submicroscopic elastin deletions have fewer features of Williams-Beuren syndrome than those with other cytogenetic abnormalities. These results, therefore, emphasise the importance of a combined conventional and molecular cytogenetic approach to diagnosis and suggest that the degree to which submicroscopic deletions of chromosome 7 extend beyond the elastin locus may explain some of the phenotypic variability found in Williams-Beuren syndrome.  相似文献   

18.
A 2-month-old boy with a characteristic elfin face was diagnosed as having Williams syndrome by means of specific fluorescence in situ hybridization (FISH) analysis for a chromosomal microdeletion located in 7q11.23. He was suspected to have immunodeficiency because of a persistent enlargement of axillary lymphnodes after immunization with Bacille Calmette-Guerin (BCG) vaccine since 7 month-old of age. The nitroblue tetrazolium test (NBT) and the chemiluminescence test revealed an absence of superoxide production. Western blotting and DNA sequence analysis confirmed the diagnosis of p47-phox-deficient autosomal recessive chronic granulomatous disease (CGD) (A47 degrees CGD). The predominant genetic defect in A47 degrees CGD was a GT deletion at the beginning of exon 2 in neutrophil cytosol factor 1 gene (NCF1) located in 7q11.23. It suggests that CGD in this patient resulted from the hemizygosity of recessive genetic mutation in NCF1 located at 7q11.23 associated with Williams syndrome. In such a disease with the chromosomal microdeletion like Williams syndrome, we should consider a combination with autosomal recessive diseases, the genes of which are located in the hemizygous region.  相似文献   

19.
We read with great interest the paper of Riby et al. regarding atypical, unfamiliar face processing in Williams syndrome (WS; Riby, Doherty-Sneddon, & Bruce, 2008a). It offers considerable insight into the mechanism of facial perception in humans and a further elaboration of the hypersociability observed in patients with Williams syndrome. We would like to suggest that the neurologic mechanisms underlying the hypersociability in WS may be attributable to an impaired recognition of facial expressions of threat, a feature that localises to the amygdala.  相似文献   

20.
We read with great interest the paper of Riby et al. regarding atypical, unfamiliar face processing in Williams syndrome (WS; Riby, Doherty-Sneddon, & Bruce, 2008a). It offers considerable insight into the mechanism of facial perception in humans and a further elaboration of the hypersociability observed in patients with Williams syndrome. We would like to suggest that the neurologic mechanisms underlying the hypersociability in WS may be attributable to an impaired recognition of facial expressions of threat, a feature that localises to the amygdala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号