首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve weeks after focal ventrolateral cerebrocortical suction lesions (ca. 12 X 4 mm) were made in rats, concentrations of the monoamines norepinephrine (NE), dopamine (DA), and serotonin (5-HT) and their metabolites were measured in several cortical and subcortical brain regions using high performance liquid chromatography with electrochemical detection. Widespread changes in the concentrations of monoamines, their metabolites, and metabolite:monoamine ratios were found in the hemisphere ipsilateral to unilateral (right) lesions, and bilaterally in animals with bilateral lesions. NE was decreased in undamaged dorsolateral cortex and hippocampus, and tended to be increased in striatum and midbrain ipsilateral to lesions. DA was increased in the hypothalamus of bilaterally lesioned animals, and also tended to be increased in striatum and midbrain. The changes of greatest magnitude and anatomical extent were found in the serotonin system: 5-HT was generally increased, and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and the 5-HIAA:5-HT ratio were decreased throughout the cerebral hemispheres ipsilateral to lesions. These widespread changes in cerebral 5-HT metabolism were qualitatively different and smaller than those previously found at 6 days after cortical lesions, and suggest a biphasic response of the ipsilateral 5-HT system to ventrolateral cortical injury.  相似文献   

2.
The present study measured the concentration of monoamines, metabolites and estimates of turnover rate in eighteen separate brain regions from controls and a rat model of Korsakoff's disease induced by a two week bout of pyrithiamine and thiamine deficient diet (PTD). A behaviorally tested control (n = 12) and PTD (n = 17) group, and a non-behaviorally tested PTD group (n = 8) were sacrificed 7 months after recovery from treatment. The brains were dissected into nine cortical areas and nine subcortical regions. In behaviorally tested PTD animals, a significant reduction of NE was observed in entorhinal cortex. Diminished norepinephrine (NE) concentration was also observed in entorhinal, hippocampal, septal and olfactory areas of the non-behaviorally tested PTD group. Serotonin and 5-hydroxyindoleacetic acid (5-HIAA) levels were increased in several brain areas, particularly midbrain-thalamus, striatum, of both groups of recovered PTD animals. These findings are discussed with respect to results and hypotheses presented in our previous study of this animal model. Significant differences in monoamine, metabolite and turnover estimates were also observed among cortical areas of the control animals. Entorhinal cortex contained the highest concentration of NE and 5-hydroxytryptamine (5-HT), while DA was highest in somatosensory cortex. The distribution of 5-HT and 5-HIAA were more homogeneous and displayed a rostral-caudal decline in concentration.  相似文献   

3.
Male Wistar rats were subjected to either bilateral aspiration lesions of the dorsal regions of the prefrontal cortex (PFC) or sham lesions and placed on a 6-week, modified sucrose-fading procedure. At the time of sacrifice, the size of the lesion, both in anterior-posterior and medial-lateral dimensions, was measured. Following sacrifice, levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE), and their metabolites were measured in the midbrain (raphe) and nucleus accumbens (NA). Lesioned animals had reductions in 5-HT in the NA, and DA and NE in the raphe. The lesioned group drank more of a solution of 5% alcohol than controls early in the sucrose fading, and less during the later stages. In the lesioned group, the size of the left- and right-hemisphere lesions predicted 5-HIAA levels in the NA, and 5-HT and 5-HIAA levels in the raphe. A laterality effect was noted, such that the size of left-hemisphere lesions were positively associated with raphe 5-HT and 5-HIAA levels, and negatively associated with 5-HT levels in the NA, while right-hemisphere lesions showed the opposite relationships. In addition, the width of the left-hemisphere lesion predicted some measures of alcohol intake. These results suggest that, in the rat, the dorsal PFC is involved in the regulation of monoamines in subcortical regions known to be important in the regulation of reinforced behaviors, and that this regulation differs between hemispheres and shows a laterality effect. In addition, the dorsal PFC appears to have a subtle involvement in the regulation of alcohol intake.  相似文献   

4.
Effects of neonatal Borna disease virus infection (BDV) on the postnatal development of brain monoaminergic systems in rats were studied. Tissue content of norepinephrine (NE), dopamine (DA) and its metabolite, 3,4-dihydroxyphenol acetic acid (DOPAC), and serotonin (5-HT) and its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed by means of HPLC-EC in frontal cortex, cerebellum, hippocampus, hypothalamus and striatum of neonatally BDV-infected and sham-inoculated male Lewis rats of 8, 14, 21, 60 and 90 days of age. Both NE and 5-HT concentrations were significantly affected by neonatal BDV infection. The cortical and cerebellar levels of NE and 5-HT were significantly greater in BDV-infected rats than control animals at postnatal days (PND) 60 and 90. Tissue content of NE in hippocampus was unaffected. In hippocampus, neonatally BDV-infected rats had lower 5-HT levels at PND 8 and significantly elevated levels at PND 21 and onwards. Neither striatal levels of 5-HT nor hypothalamic levels of 5-HT and NE were affected by neonatal BDV infection, suggesting that the monoamine systems in the prenatally maturing brain regions are less sensitive to effects of neonatal viral infection. 5-HIAA/5-HT ratio was not altered in BDV-infected rats indicating no changes in the 5-HT turnover in the brain regions damaged by the virus. Neither DA nor DOPAC/DA ratio was affected by neonatal BDV infection in any of the brain regions examined. The present data demonstrate significant and specific alterations in monoaminergic systems in neonatally BDV-infected rats. This pattern of changes is consistent with the previously reported behavioral abnormalities resulting from neonatal BDV infection.  相似文献   

5.
Asymmetrical effects of cortical ablation on brain monoamines in mice   总被引:1,自引:0,他引:1  
Neurochemical changes induced by right or left cortical ablation which have previously been described to have immunological effects were investigated in mice. Catecholamine and indolamine levels were determined in the contralateral cortex and in subcortical structures involved in immunoregulation 14 and 60 days after unilateral cortical ablation. Unilateral cortical ablation induced profound and widespread changes in the contralateral cortex but also in subcortical regions of both sides at 14 days after surgery. Lesions of the left neocortex appeared mainly to affect the activity of serotoninergic inputs to the right neocortex, whereas ablations of the right cortex influenced the activity of the catecholaminergic inputs to the left. Sixty days after surgery, modifications in monoamine levels were observed only in the ipsilateral, but not contralateral, subcortical regions, the only exception being that DA turnover in the tuberoinfundibular system remained lowered in both hemispheres after either right or left cortical ablations. Furthermore, some asymmetrical effects of cortical lesions depended on functional brain lateralization as assessed by paw preference. It may be hypothesized that some neurochemical modifications induced by unilateral cortical lesions are, at least partially, responsible for the immunological perturbations observed after cortical ablation.  相似文献   

6.
The effects on rat brain tissue monoamine and monoamine metabolite concentrations of chronic nicotine administration at two doses (3 and 12 mg/kg/day) using constant infusion were studied. After 21 days of treatment, tissue concentrations of dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and several metabolites in striatum, hypothalamus, and frontal cortex were determined by high performance liquid chromatography with electrochemical detection. Compared with a control group, nicotine treatment significantly decreased NE in frontal cortex but not in other regions. The concentration of 5HT also was decreased in frontal cortex but increased in the hypothalamus at the higher dose of nicotine. The 5HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) was not significantly altered in any region. The 5HT index (5-HIAA/5-HT) was significantly decreased in the hypothalamus and increased in frontal cortex at the higher dose. Concentrations of DA and the metabolite homovanillic acid (HVA) were not significantly altered by nicotine. Nevertheless, significant decreases in the DA metabolite dihydroxyphenyl-acetic acid (DOPAC) were observed in both striatum and hypothalamus. Moreover, the DA index [(DOPAC + HVA)/DA] was significantly decreased in all three brain regions. In contrast to other studies using acute dose and in vitro perfusion paradigms that have reported increased CNS catecholamine release stimulated by nicotine, chronic administration appears to be associated with decreased catecholamine turnover in some brain regions.  相似文献   

7.
Summary An increasing number of studies have indicated that neuronal metabolism of serotonin (5-HT) and other monoamines may be altered in patients with affective disorders and in completed suicides. However, studies have yielded discordant results. The purpose of this study was to determine the regional variation of 5-hydroxyindolacetic acid (5-HIAA), homovanillic acid (HVA), (5-HT) and 5-HT uptake sites within the human cerebral cortex.Our sample consisted of 19 patients who died suddenly and accidently. Cortical concentrations of 5-HIAA, HVA and 5-HT were measured in six regions using an HPLC. 5-HT uptake sites in cortex were examined using [3H] Paroxetine.5-HT values within each brain were fairly constant in cortical regions studied except for the posterior parietal areas. By contrast, 5-HIAA values showed a trend towards a rostro-caudal increase, with peak values seen at sections corresponding to the post-central gyrus and the occipital pole. Using the ratio of 5-HIAA/5-HT as a crude index of 5-HT turnover, there was a progressive rostro-caudal increase of values which achieved statistical significance: the posterior superior parietal area and the occipital pole displayed a greater ratio than the other four cortical regions. HVA values were highest in the pre-central region and decreased both rostrally and caudally. 5-HIAA and HVA values were correlated positively in 5 of 6 cortical areas, while 5-HIAA and 5-HT were correlated in areas 4 and 5. Results obtaining using [3H]-Paroxetine suggest that 5-HT uptake sites in the human cortex are distributed rather uniformally and are not correlated with 5-HT levels.  相似文献   

8.
Two classic animal behavior despair tests--the Forced Swimming Test (FST) and the Tail Suspension Test (TST) were used to evaluate the antidepressant activity of liquiritin and isoliquiritin from Glycyrrhiza uralensis in mice. It was observed that both liquiritin and isoliquiritin at doses of 10, 20 and 40 mg/kg significantly reduced the immobility time in the FST and TST in mice 30 min after treatment. Measurement of locomotor activity indicated that liquiritin and isoliquiritin had no central nervous system (CNS)-stimulating effects. The main monoamine neurotransmitters and their metabolites in mouse brain regions were also simultaneously determined by HPLC-ECD. It was found that these two compounds significantly increased the concentrations of the main neurotransmitters 5-HT and NE in the hippocampus, hypothalamus and cortex. Liquiritin and isoliquiritin also significantly reduced the ratio of 5-HIAA/5-HT in the hippocampus, hypothalamus and cortex, slowing down 5-HT metabolism compared with mice treated with vehicle+stress. In conclusion, liquiritin and isoliquiritin produced significant antidepressant-like effects, and their mechanism of action may be due to increased 5-HT and NE in the mouse hippocampus, hypothalamus and cortex.  相似文献   

9.
Norepinephrine (NE) has been implicated in recovery of function following traumatic brain injury (TBI). While bilateral decreases in brain NE turnover occur at 6–24 h after TBI, it is unknown what effects unilateral TBI might have on brain NE turnover over the first few minutes after injury. Here male Sprague-Dawley rats had unilateral contusions of either the right or left somatosensory cortex produced by an air driven piston. At 30min after TBI, brain NE turnover was assessed by measuring the ratio of 3-methoxy-4-hydroxyphenylglycol (MHPG) to NE levels in various brain regions. Both right and left TBI produced 32–103% increases in NE turnover at the injury site and in the ipsilateral cerebral cortex surrounding, rostral and caudal to the injury as compared to the contralateral, uninjured site or to the homologous sites in uninjured controls. NE turnover was also altered selectively in some brain areas not affected by right TBI. Left TBI decreased NE turnover by 29% in the frontal cortex contralateral to the injury and by 24% bilaterally in the hypothalamus while increasing locus coeruleus NE turnover by 72% compared to uninjured controls. Thus, unilateral cortical TBI produced predominantly ipsilateral increases in cortical NE turnover but variable, bilateral changes in NE turnover in subcortical areas which were dependent upon the side of injury. These subcortical differences may explain some of the lateralized effects of cortical injury on post-injury behavior.  相似文献   

10.
A method is described that permits the simultaneous quantitation of norepinephrine (NE), dopamine (DA) serotonin (5-HT) and their respective major metabolites, 3-methoxy-4-hydroxy phenylglycol (MHPG), 3-methoxytyramine (3-MT), dihydroxyphenyl acetic acid (DOPAC) and 5-hydroxyindole acetic acid (5-HIAA) in discrete brain regions. The ratio of MHPG/NE, DOPAC/DA and 5-HIAA/5-HT was used to assess the effects of the chronic administration of the narcotic antagonist, naltrexone, and its withdrawal on the regional activity of neurons that contain NE, DA and 5-HT respectively. Chronic administration of naltrexone (8 days) is associated with a significant increase in the ratio of 5-HIAA/5-HT and DOPAC/DA in the frontal cortex and dorsal hippocampus respectively. Under this condition the thalamic concentration of 3-MT in 4 of 8 animals is also significantly elevated. In contrast, the mesolimbic forebrain exhibited a decrease in the MHPG/NE ratio (4 out of 8 animals). One day following naltrexone pellet removal the above ratios, as well as the mean content of 3-MT in the thalamus, returned to control values. At this time the content of 3-MT in the thalamus (5 of 5 animals) and frontal cortex (3 of 9 rats) was appreciably elevated, while its content in the dorsal hippocampus was significantly reduced (6 of 9 rats). These data suggest that the activity of several central monoaminergic neuronal systems are regulated by an opioid input that is tonically active.  相似文献   

11.
Thirteen patients with dementia of Alzheimer type and nine age-matched control subjects were examined by a battery of neuropsychological tests and by positron emission tomography (PET) with 11C-deoxyglucose as a tracer for regional glucose metabolism in the brain. Concentrations of the monoamine metabolites HVA, MHPG and 5-HIAA were determined in the CSF from patients and controls. In the patients there was a diminished glucose metabolism in posterior parietal and superior temporal cortex areas to 60% of control levels. Other cortical areas showed similar changes, whereas the pre- and postcentral area, the cerebellum, the hippocampus and the basal ganglia showed less or no change. The decline in cortical metabolism in the patients was symmetrical but the variation in the left/right ratio was greater than in the controls. The CSF levels of monoamine metabolites did not differ between patients and controls. High levels of the metabolites were associated with low rates of glucose metabolism, possibly due to inhibitory influences of monoaminergic pathways upon cortical and subcortical neurons. The rate of glucose metabolism correlated positively with the neuropsychological test performance in both patients and controls. Verbal and memory performances were associated with greater left hemisphere metabolism in the patients, but not in the controls, whereas non-verbal abilities tended to be associated with right hemisphere metabolic dominance.  相似文献   

12.
The concentrations of bioamines and their metabolites have been determined in March and April during arousal from hibernation in the cerebral cortex of the little brown bat (Myotis lucifugus). The patterns during arousal for dopamine and serotonin (5-HT) were similar with a significant fall in concentrations by 1 h of arousal, and an inverse relationship with their respective metabolites, 3,4-dihydroxyphenylacetic acid and 5-hydroxyindolacetic acid (5-HIAA). This suggests an acute release and metabolism of these bioamines with onset of arousal. During arousal, cerebral cortical concentrations of norepinephrine (NE) were not significantly changed. Levels of homovanillic acid were markedly depressed during hibernation and rose acutely with arousal. After arousal and 4 days of feeding in April, there was an increase in all bioamines and their metabolites studied except for NE. Of note is the marked decrease in the hibernating level of 5-HT and increase in its metabolite 5-HIAA from March to April, which may herald the natural termination of hibernation. Our results suggest that the brain of hibernators undergoes complex changes in the modulation of neurotransmitter systems which are consistent with both down- and up-regulation of neuronal activity in the maintenance of hibernation and the initiation of the arousal process.  相似文献   

13.
The concentrations of bioamines and their metabolites have been determined in March and April during arousal from hibernation in the cerebral cortex of the little brown bat (Myotis lucifugus). The patterns during arousal for dopamine and serotonin (5-HT) were similar with a significant fall in concentrations by 1 h of arousal, and an inverse relationship with their respective metabolites, 3,4-dihydroxyphenylacetic acid and 5-hydroxyindolacetic acid (5-HIAA). This suggests an acute release and metabolism of these bioamines with onset of arousal. During arousal, cerebral cortical concentrations of norepinephrine (NE) were not significantly changed. Levels of homovanillic acid were markedly depressed during hibernation and rose acutely with arousal. After arousal and 4 days of feeding in April, there was an increase in all bioamines and their metabolites studied except for NE. Of note is the marked decrease in the hibernating level of 5-HT and increase in its metabolite 5-HIAA from March to April, which may herald the natural termination of hibernation. Our results suggest that the brain of hibernators undergoes complex changes in the modulation of neurotransmitter systems which are consistent with both down- and up-regulation of neuronal activity in the maintenance of hibernation and the initiation of the arousal process.  相似文献   

14.
A permanent hyperkinetic syndrome, characterized by excitation, choreiform head and neck movements and circling, which has led to it being called collectively the "ECC-syndrome," is induced in rats by the daily IP administration of beta, beta'-iminodipropionitrile (IDPN), 300 mg/kg, for 7 days. The levels of the biogenic amines, norepinephrine (NE), dopamine (DA), serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), were measured in the striatum, midbrain, medulla, cortex, and cerebellum on the day the syndrome appeared (day 7) and one week later (day 14). The biogenic amine most affected by IDPN administration was 5-HT. On day 7, striatal 5-HT levels increased and 5-HIAA levels decreased while in the medulla and midbrain, 5-HIAA levels increased. On day 14, significant reductions in both 5-HT, in the midbrain, striatum, and cortex, and 5-HIAA, in all regions except the cortex, were observed. NE was markedly increased in the medulla, midbrain, and striatum on day 7, whereas on day 14 it was found to be within the normal range in these same regions. With the exception of a slight, but significant, increase in the cortex on day 7, DA levels in all regions were found to be relatively unaffected by IDPN administration on both day 7 and day 14. In an attempt to detect degenerative changes which might be taking place in the brain and which might provide an explanation for the permanency of the behavioral disturbances, the uptake of [3H]-labeled NE, DA, and 5-HT into synaptosomal-rich preparations of striatum and the uptake of NE and 5-HT into the midbrain area were compared between normal and syndromized rats on both day 7 and day 14. Small changes were observed but they were not statistically significant. The alterations of 5-HT and 5-HIAA levels in several regions of the brain under the conditions examined may indicate that IDPN's neurotoxicity primarily affects 5-HT-containing neurones. The active membrane transporting system of the nerve endings studied, however, remained relatively intact. This latter finding eliminates the possibility that neuronal degeneration in these areas is responsible for the decreased 5-HT and 5-HIAA levels or is the pathology underlying the permanency of the syndrome. These results are evaluated in terms of a possible model for hyperkinetic disorders.  相似文献   

15.
抑郁症患者自杀与脑脊液单胺代谢产物的关系   总被引:6,自引:2,他引:4  
目的:探讨抑郁症患者自杀与脑脊液单胺代谢产物之间的关系。方法:应用高效液相色谱法,测定24例抑郁症患者(自杀组10例,无自杀组14例)及25例对照组5-羟色胺(5-HT)代谢产物5-羟吲哚乙酸(5-HIAA),去甲肾上腺素(NE)代谢产物3-甲基-4-羟苯乙二醇(MHPG)及多巴胺(DA)代谢产物高香草酸(HVA)的浓度。结果:抑郁症自杀组5-HIAA浓度显著低于对照组,男性自杀组5-HIAA浓度、HVA浓度和HVA/MHPG比值均显著低于男性对照组,女性则无显著差异:结论:抑郁症患者自杀可能与5-HT和DA功能低下以及DA和NE之间的关系改变有关。  相似文献   

16.
The influence of long-term hypoxia (10% O2, 14 days) on in vivo activity of tryptophan hydroxylase and on 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentration in discrete brain regions of rats was assessed. The activity of tryptophan hydroxylase was determined through 5-hydroxytryptophan accumulation (5-HTPacc) following the administration of NSD 1015. The 5-HTPacc was significantly decreased in the dorsal and median raphe (56 and 42%, respectively) and in the striatum (62%). Both 5-HTPacc and the ratio of the concentrations of 5-HIAA to 5-HT were decreased in the nucleus raphe magnus (46 and 27%, respectively), the dorsomedian medulla oblongata (52 and 51%), the locus coeruleus (62 and 40%) and the anterior hypothalamic nucleus (30 and 50%). In contrast, 5-HTPacc was increased in the ventrolateral medulla oblongata (55%) and the preoptic area (83%), but the 5-HIAA/5-HT ratio was lower in these two regions. Finally, 5-HIAA/5-HT ratio was also decreased in the periventricular nucleus and in the frontal cortex. Since various patterns of variations in 5-HTPacc and in 5-HIAA/5-HT ratio were observed, the factors affecting serotonin metabolism in hypoxic rats can be different among brain regions. These results show that, in the rat, long-term hypoxia induces changes in in vivo activity of tryptophan hydroxylase and in 5-HT and 5-HIAA content of some brain structures; some of these biochemical changes may be linked to adaptative mechanisms.  相似文献   

17.
Monoamine quantification in peripheral sensory receptors, such as the cochlea, is of major interest since monoamines could play a role in neurotransmission. A three-step biochemical protocol was developed to analyze monoamine content within the cochlea. Removal of the blood by aortic perfusion was carried out with an anticoagulant solution prior to the dissection of the cochlea from the temporal bone. The cochlear monoamines and some of their metabolites were then quantified, from homogenated cochlear tissue, by a new application of high performance liquid chromatography coupled to electrochemical detection. This method demonstrated enough sensitivity to detect norepinephrine (NE), dopamine (DA), serotonin (5-HT) and some of their metabolites (3,4-dihydroxyphenylacetic acid, DOPAC; homovanillic acid, HVA; and 5-hydroxyindole-3-acetic acid, 5-HIAA). Furthermore, it enabled the demonstration of noise-induced changes in the cochlear concentrations of NE, DA, DOPAC and HVA. In addition, the aortic perfusion allowed removal of the blood-borne 5-HT from the cochlea without inducing systemic alterations or monoamine degradation, as shown by the absence of effects on NE, DA, DOPAC, HVA or 5-HIAA concentrations. The present methodology may constitute a useful strategy to analyze monoamine turnover in the cochlea and other peripheral sensory receptors.  相似文献   

18.
The effects of ketamine on the levels of dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT, serotonin) and their metabolites were examined in discrete brain regions in mice. A high dose of ketamine (150 mg/kg, i.p.) did not change DA metabolism in the frontal cortex, nucleus accumbens, striatum and hippocampus, but did decrease it in the brainstem during anesthesia. In contrast, during recovery from the ketamine anesthesia, the high dose increased the level of homovanillic acid (HVA) in all brain regions. A low subanesthetic dose of ketamine (30 mg/kg, i.p.) increased the concentrations of both 3,4-dihydroxyphenylacetic acid (DOPAC) and HVA only in the nucleus accumbens. The DA level was not affected by any ketamine treatment. During ketamine anesthesia, the content of 3-methoxy-4-hydroxy-phenylglycol (MHPG) was decreased in the brainstem, whereas during recovery from anesthesia, the MHPG level was increased in the frontal cortex, nucleus accumbens and brainstem. The NE content was not altered in any region by ketamine treatment. The concentration of 5-hydroxyindoleacetic acid (5-HIAA) was reduced in the frontal cortex, striatum, hippocampus and brainstem during ketamine anesthesia. The 5-HT level was unaltered in all regions except the brainstem where it was reduced. In contrast, after anesthesia, the concentrations of both 5-HT and 5-HIAA were increased in the striatum. During the subanesthetic phase, however, the levels of NE, 5-HT and their metabolites were unchanged. These neurochemical results are consistent with the electrophysiological findings that a high dose of ketamine does not change the basal firing rates of nigrostriatal DA neurons during anesthesia, while low subanesthetic doses significantly increase those of ventral tegmental DA neurons.  相似文献   

19.
The direct effects of L-deprenyl, a monoamine oxidase inhibitor, on the hypothalamus of male Sprague-Dawley rats was investigated by measuring the efflux of norepinephrine (NE), dopamine (DA), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) using a combination of high performance liquid chromatography with electrochemical detection and an in vitro incubation system. After measuring basal efflux by incubating the hypothalami with Krebs-Ringers Henseleit (KRH) alone during the first incubation period, hypothalami were incubated either with the medium, KRH alone (0 mM), or KRH containing 0.1, 1, and 10 mM L-deprenyl. During the third incubation period, hypothalami were again incubated with KRH alone to measure the residual effects if any. During the final incubation period, the hypothalami were stimulated with high K(+) KRH. Deprenyl produced a dose-dependent increase in the efflux of NE, DA, and 5-HT from the hypothalami. Neurotransmitter efflux returned to pretreatment levels when L-deprenyl was removed from the medium. In contrast to NE, DA, and 5-HT, the efflux of the metabolites DOPAC and 5-HIAA was inhibited in a dose-dependent fashion after incubation with L-deprenyl. Results from this study demonstrate that L-deprenyl is capable of stimulating the efflux of neurotransmitters in vitro by a direct action on the hypothalamus.  相似文献   

20.
Aging is a risk factor of human depression. Middle-aged or older men are vulnerable to adverse life events and an absence of social contact and easily become depressed. In the present study, we investigated the influence of aging on responses to life events in socially isolated conditions. We applied isolation-rearing (4 W) to two age groups, older (18 M) and younger (11 W), of male F344 rats that had been reared in a group and then examined responses to novelty stress (20 min). Changes in brain monoamines and their metabolites such as dopamine (DA), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), homovanilic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in six regions: the prefrontal cortex, nucleus accumbens, hippocampus, amygdala, midbrain, and raphe nuclei. MANOVA was carried out for rearing condition, age, and novelty stress. Isolation significantly changed monoamines and their metabolites, except in amygdala and raphe nuclei. Aging significantly altered them in all regions, although novelty stress did not. In the amygdala and midbrain, isolation significantly changed monoamine biosynthesis, with monoamine turnover remaining unchanged. In the prefrontal cortex and nucleus accumbens, aging significantly altered turnover, while biosynthesis remained unchanged. Novelty stress significantly varied only the turnover in the prefrontal cortex. The interaction between isolation and aging indicated that aging influences changes in turnover and biosynthesis elicited by isolation primarily at the center of the mesolymbic DA system, the midbrain, and in raphe nuclei of the 5-HT system. In peripheral regions of the mesolymbic system, aging primarily affects changes in turnover induced by isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号