共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《European journal of medical genetics》2020,63(4):103848
An increasing number of developmental and epileptic encephalopathies have been correlated with variants of ion channel genes, and in particular of potassium channels genes, such as KCNA1, KCNA2, KCNB1, KCNQ2, KCTD7 and KCNT1.Here we report a child with an early severe developmental and epileptic encephalopathy, spastic tetraplegia, opisthotonos attacks. The whole exome sequencing showed the de novo heterozygous variant c.1411G > C (p.Val471Leu) in the KCNC2 gene.Although this is, to our knowledge, the first case of encephalopathy associated with a KCNC2 gene variant, and further confirmatory studies are needed, previous preclinical and clinical evidence seems to suggest that KCNC2 is a new candidate epilepsy gene. 相似文献
4.
《European journal of medical genetics》2014,57(4):181-184
Whole exome sequencing made it possible to identify novel de novo mutations in genes that might be linked to human syndromes (genotype first analysis). We describe a female patient with a novel de novo SPOCK1 variant, which has not been previously been associated with a human phenotype. Her features include intellectual disability with dyspraxia, dysarthria, partial agenesis of corpus callosum, prenatal-onset microcephaly and atrial septal defect with aberrant subclavian artery. Previous genetic, cytogenomic and metabolic studies were unrevealing. At age 13 years, exome sequencing on the patient and her parents revealed a de novo novel missense mutation in SPOCK1 (coding for Testican-1) on chromosome 5q31: c.239A>T (p.D80V). This mutation affects a highly evolutionarily conserved area of the gene, replacing a polar aspartic acid with hydrophobic nonpolar valine, and changing the chemical properties of the protein product, likely representing a pathogenic variant. Previous microdeletions of 5q31 including SPOCK1 have suggested genes on 5q31 as candidates for intellectual disability. No mutations or variants in other genes potentially linked to her phenotype were identified. Testicans are proteoglycans belonging to the BM-40/SPARC/osteonectin family of extracellular calcium-binding proteins. Testican-1 is encoded by the SPOCK1 gene, and mouse models have been shown it to be strongly expressed in the brain and to be involved in neurogenesis. We hypothesize that because this gene function is critical for neurogenesis, mutations could potentially lead to a phenotype with developmental delay and microcephaly. 相似文献
5.
《European journal of medical genetics》2020,63(4):103804
Heterotrimeric G proteins are composed of α, β, and γ subunits and are involved in integrating signals between receptors and effector proteins. The 5 human Gβ proteins (encoded by GNB1, GNB2, GNB3, GNB4, and GNB5) are highly similar. Variants in GNB1 were identified as a genetic cause of developmental delay. De novo variant in GNB2 has recently been reported as a cause of sinus node dysfunction and atrioventricular block but not as a cause of developmental delay. Trio-based whole-exome sequencing was performed on an individual with global developmental delay, muscle hypotonia, multiple congenital joint contractures and dysmorphism such as brachycephalus, thick eyebrows, thin upper lip, micrognathia, prominent chin, and bilateral tapered fingers. We identified a de novo GNB2 variant c.229G>A, p.(Gly77Arg). Notably, pathogenic substitutions of the homologous Gly77 residue including an identical variant (p.Gly77Arg, p.Gly77Val, p.Gly77Ser, p.Gly77Ala) of GNB1, a paralog of GNB2, was reported in individuals with global developmental delay and hypotonia. Clinical features of our case overlap with those of GNB1 variants. Our study suggests that a GNB2 variant may be associated with syndromic global developmental delay. 相似文献
6.
Nelson M Quinonez S Ackley T Iyer RK Innis JW 《American journal of medical genetics. Part A》2011,155(3):612-617
We describe a patient with multiple congenital anomalies including tracheobronchomalacia, CT-proven metopic craniosynostosis, glandular hypospadias and severe ventral chordee, torticollis, esotropia, strabismus, fifth finger clinodactyly, hallux valgus, and global developmental delay. Using high resolution chromosomal microarray analysis, we identified a de novo deletion of 555 kb on chromosome 16p13.3, 444 kb telomeric to the CREBBP gene and 623 kb centromeric of PKD1. Review of the literature revealed numerous reports of individuals with deletions involving adjacent regions including CREBBP, but only one overlapping with this isolated region of 16p13.3. Haploinsufficiency for one or more of the 25 candidate genes in the deleted genomic region may be responsible for these clinical features. No copy number variants (CNVs) span the entire region, but several small CNVs within the 555 kb genomic region reduce the likelihood for effects due to haploinsufficiency to 18 genes. 相似文献
7.
Céline Poirsier-Violle Azzedine Abourra Clarisse Baumann Laurence Perrin Yline Capri Cyril Mignot Sandrine Passemard Séverine Drunat Alain Verloes 《European journal of medical genetics》2013,56(4):226-228
We report a boy with severe developmental delay, microcephaly and characteristic facial dysmorphism consisting in round face, hypertelorism, upslanted palpebral fissures, small nose, large mouth, micrognathia, sparse hair and eyelashes. Array-CGH revealed a de novo duplication of 103 kb within 17q21.2 not reported to date. The duplication includes 8 genes: DHX58, KAT2A, HSPB9, RAB5C, KCNH4, HCRT, GHDC and STAT5B. Three genes (KATA2, KCNH4, and STAT5B) may contribute to intellectual deficiency. Further observations will be necessary to confirm the specificity of the facial Gestalt. 相似文献
8.
Nina B. Gold Dong Li Anna Chassevent Frank J. Kaiser Ilaria Parenti Tim M. Strom Feliciano J. Ramos Beatriz Puisac Juan Pié Kirsty McWalter Maria J. Guillen Sacoto Hong Cui Reem Saadeh-Haddad Constance Smith-Hicks Lance Rodan Edward Blair Elizabeth Bhoj 《Clinical genetics》2020,98(6):571-576
The gamma-1 isoform of casein kinase 1, the protein encoded by CSNK1G1, is involved in the growth and morphogenesis of cells. This protein is expressed ubiquitously among many tissue types, including the brain, where it regulates the phosphorylation of N-methyl-D-aspartate receptors and plays a role in synaptic transmission. One prior individual with a de novo variant in CSNK1G presenting with severe developmental delay and early-onset epilepsy has been reported. Here we report an updated clinical history of this previously published case, as well as four additional individuals with de novo variants in CSNK1G1 identified via microarray-based comparative genomic hybridization, exome, or genome sequencing. All individuals (n = 5) had developmental delay. At least three individuals had diagnoses of autism spectrum disorder. All participants were noted to have dysmorphic facial features, although the reported findings varied widely and therefore may not clearly be recognizable. None of the participants had additional major malformations. Taken together, our data suggest that CSNK1G1 may be a cause of syndromic developmental delay and possibly autism spectrum disorder. 相似文献
9.
A PIGH mutation leading to GPI deficiency is associated with developmental delay and autism 下载免费PDF全文
Thi Tuyet Mai Nguyen Sonal Mahida Constance Smith‐Hicks Philippe M. Campeau 《Human mutation》2018,39(6):827-829
We identified an individual with a homozygous missense variant (p.Ser103Pro) in a conserved residue of the glycosylphosphatidylinositol (GPI) biosynthesis gene PIGH. This gene encodes an essential component of the phosphatidylinositol N‐acetylglucosaminyltransferase complex, in the first step of the biosynthesis of GPI, a glycolipid anchor added to more than one hundred human proteins, several being critical for embryogenesis and neurological functions. The affected individual had hypotonia, moderate developmental delay, and autism. Unlike other reported individuals with GPI deficiency, the proband did not have epilepsy; however, he did have two episodes of febrile seizures. He had normal alkaline phosphatase and no brachytelephalangy. Upon analysis of the surface expression of GPI‐anchored proteins on granulocytes, he was demonstrated to have GPI deficiency. This suggests that PIGH mutations may cause a syndrome with developmental delay and autism, but without an epileptic encephalopathy, and should increase the awareness of the potentially deleterious nature of biallelic variants in this gene. 相似文献
10.
Rujirabanjerd S Suwannarat W Sripo T Dissaneevate P Permsirivanich W Limprasert P 《American journal of medical genetics. Part A》2007,143(3):271-276
We report on a case of satellited 15q with subtelomeric deletion in a girl with delayed development and severe growth retardation. The patient also has a triangular face, downturned angles of the mouth, micrognathia, and minor limb malformations including mild talipes equinovarus, genu recurvatum, and increased dorsiflexion of both limbs. Cytogenetic analysis using standard GTG banding showed a female karyotype with a satellited-like structure at the distal long arm of one chromosome 15. Silver staining of the nucleolar organizing region (AgNOR) confirmed the presence of a satellite DNA translocation at the lesion. Analysis using fluorescent in situ hybridization (FISH) detected a subtelomeric deletion of the terminal 15q. Additional molecular analysis using microsatellite markers along the long arm of chromosome 15 defined a maximally deleted region at approximately 4.7 Mb. Haploinsufficiency of the IGF1R gene expression is thought to be the cause of growth delay in all 15q terminal deletion including our patient. 相似文献
11.
KIF5A de novo mutation associated with myoclonic seizures and neonatal onset progressive leukoencephalopathy 下载免费PDF全文
J. Kosinska T. Tomasik A. Sobczak A. Pollak I. Herman‐Sucharska A. Walczak P. Kwinta R. Płoski 《Clinical genetics》2017,91(5):769-773
The KIF5A gene (OMIM 602821) encodes a neuron‐specific kinesin heavy chain involved in intracellular transport of mitochondria and other cargoes. KIF5A protein comprises the N terminal motor domain, the stalk domain and the C‐terminal cargo binding domain. The binding between KIF5A and its cargoes is mediated by kinesin adaptor proteins such as TRAK1 and TRAK2. Numerous missense KIF5A mutations in the motor and stalk domains cause spastic paraplegia type 10 (SPG10, OMIM 604187). Conversely, the role of loss‐of‐function mutations, especially those affecting the cargo binding domain, is unclear. We describe a novel de novo KIF5A p.Ser974fs/c.2921delC mutation found by whole exome sequencing in a patient with a congenital severe disease characterized by myoclonic seizures and progressive leukoencephalopathy. Since this phenotype differs considerably from the KIF5A/SPG10 disease spectrum we propose that the KIF5A p.Ser974fs and possibly other mutations which lead to truncation of the C‐terminal tail of the protein cause a novel disorder. We speculate that the unique effect of the C‐terminal truncating KIF5A mutations may result from the previously described complex role of this protein domain in binding of the TRAK2 and possibly other kinesin adaptor protein(s). 相似文献
12.
Brittany P. Todd 《Journal of neurogenetics》2013,27(4):313-315
Homozygous recessive mutations in the PRICKLE1 gene were first described in three consanguineous families with myoclonic epilepsy. Subsequent studies have identified neurological abnormalities in humans and animal models with both heterozygous and homozygous mutations in PRICKLE1 orthologs. We describe a 7-year-old with a novel de novo missense mutation in PRICKLE1 associated with epilepsy, autism spectrum disorder and global developmental delay. 相似文献
13.
14.
Erik G. Puffenberger Robert N. Jinks Heng Wang Baozhong Xin Christopher Fiorentini Eric A. Sherman Dominick Degrazio Calvin Shaw Carrie Sougnez Kristian Cibulskis Stacey Gabriel Richard I. Kelley D. Holmes Morton Kevin A. Strauss 《Human mutation》2012,33(12):1639-1646
We studied a unique phenotype of cognitive delay, autistic behavior, and gait instability segregating in three separate sibships. We initiated genome‐wide mapping in two sibships using Affymetrix 10K SNP Mapping Arrays and identified a homozygous 8.2 Mb region on chromosome 15 common to five affected children. We used exome sequencing of two affected children to assess coding sequence variants within the mapped interval. Four novel homozygous exome variants were shared between the two patients; however, only two variants localized to the mapped interval on chromosome 15. A third sibship in an Ohio Amish deme narrowed the mapped interval to 2.6 Mb and excluded one of the two novel homozygous exome variants. The remaining variant, a missense change in HERC2 (c.1781C>T, p.Pro594Leu), occurs in a highly conserved proline residue within an RCC1‐like functional domain. Functional studies of truncated HERC2 in adherent retinal pigment epithelium cells suggest that the p.Pro594Leu variant induces protein aggregation and leads to decreased HERC2 abundance. The phenotypic correlation with the mouse Herc1 and Herc2 mutants as well as the phenotypic overlap with Angelman syndrome provide further evidence that pathogenic changes in HERC2 are associated with nonsyndromic intellectual disability, autism, and gait disturbance. Hum Mutat 33:1639–1646, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
15.
Mohandas TK Park JP Spellman RA Filiano JJ Mamourian AC Hawk AB Belloni DR Noll WW Moeschler JB 《American journal of medical genetics》1999,82(4):294-300
Interstitial duplications of proximal 15q containing the Prader-Willi syndrome/Angelman syndrome (PWS/AS) region have been found in patients with autism or atypical autism. In these cases with an abnormal phenotype, the duplications were maternally derived. Paternal origin of the duplication has been associated with a normal phenotype. We report on a patient who presented with nonspecific developmental delay and partial agenesis of the rostral corpus callosum. Fluorescence in situ hybridization (FISH) studies using probes specific for the PWS/AS region demonstrated a double signal on one chromosome 15, indicating the presence of an interstitial duplication of proximal 15q involving the PWS/ AS region in the patient. Parental chromosomes were normal with FISH studies. Methylation analysis at exon alpha of the SNRPN locus showed a maternal band at 4.2 kb and a paternal band of apparent double intensity at 0.9 kb, suggestive of one copy of the maternal allele and two copies of the paternal allele in the patient. Microsatellite analysis was informative at the GABRB3 locus in the family, which showed the inheritance of two different paternal alleles and a maternal allele in the patient consistent with the origin of this duplication from an unequal crossing over between the two chromosome 15 homologs in the father. This is the first report of an abnormal phenotype associated with a paternally derived duplication of proximal 15q shown to contain the PWS/AS region by molecular techniques. 相似文献
16.
Der Kaloustian VM Russell L Aradhya S Richard G Rosenblatt B Melançon S 《American journal of medical genetics. Part A》2011,(10):2538-2542
We report on a patient with an interstitial deletion at 13q12.11. He had mild developmental delay, craniofacial dysmorphism, a pectus excavatum, narrow shoulders, malformed toes, and café-au-lait spots. Array CGH analysis disclosed a de novo deletion spanning 2.1 Mb,within cytogenetic band 13q12.11.The deletion produces hemizygozity for 16 known genes, among which GJA3, GJB2, GJB6, IFT88, LATS2, and FGF9 have potential clinical significance. The observed phenotype may be due to mutation in one of the 16 genes, or to a combination of deletion and/or mutation in a number of them. 相似文献
17.
18.
19.
Shinawi M Sahoo T Maranda B Skinner SA Skinner C Chinault C Zascavage R Peters SU Patel A Stevenson RE Beaudet AL 《American journal of medical genetics. Part A》2011,155(6):1272-1280
Genomic copy number imbalances are being increasingly identified as an important cause of intellectual disability and behavioral abnormalities. The typical deletion in WAGR syndrome encompasses the PAX6 and WT1 genes, but larger deletions have been associated with neurobehavioral abnormalities and obesity. We identified four patients with overlapping interstitial deletions on 11p14.1 and extending telomeric to the WAGR critical domain. The minimal overlapping critical chromosomal region was 2.3 Mb at 11p14.1. The deletions encompass the BDNF and LIN7C genes that are implicated in the regulation of development and differentiation of neurons and synaptic transmission. All patients with this deletion exhibit variable degrees of developmental delay, behavioral problems, and obesity. Our data show that ADHD, autism, developmental delay, and obesity are highly associated with deletion involving 11p14.1 and provide additional support for a significant role of BDNF in obesity and neurobehavioral problems. 相似文献
20.
Kraus C Kastl S Günther K Klessinger S Hohenberger W Ballhausen WG 《Journal of medical genetics》1999,36(12):919-921
Hereditary non-polyposis colon cancer (HNPCC) is a heterogeneous group of tumour predisposition syndromes caused by germline mutations in at least four different mismatch repair genes. HNPCC patients are prone to the development of carcinomas of the intestinal tract and other specific sites. Identification of presumptive HNPCC patients is primarily based on a positive family history of colorectal cancer in at least two generations. In the course of mutation screening of the MLH1 and MSH2 genes in patients manifesting a carcinoma of the HNPCC tumour spectrum before the age of 45 years, we identified a germline MSH2 344delA frameshift mutation in a male proband. This index patient, at the age of 25 years, initially developed a large rectal adenoma that was removed by polypectomy. Ten years later he was operated on for an invasive right sided colon carcinoma in the caecum (International Union Against Cancer (UICC) stage III). The mother and father, aged 61 and 66 years, respectively, were healthy and had no family history of colorectal cancer. Subsequent molecular analyses excluded the germinal MSH2 344delA alteration identified in their son and at the same time paternity was confirmed with a set of informative polymorphic markers. Thus, the genetic alteration identified in our patient definitely represented a de novo germline mutation in one of the major HNPCC genes. This case report of a patient with colorectal cancer at a relatively young age with no family history is intended to encourage mutation screening of the MSH2 and MLH1 genes in similar cases to find out whether this group of patients contains an increased proportion of de novo mutations in mismatch repair genes. 相似文献