首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Brain drug development is limited by the blood-brain barrier (BBB), which restricts the passage into the brain of >95% of all drug candidates intended for the CNS. The growth of future CNS drug development can be accelerated by fostering parallel growth in both CNS drug discovery and CNS drug delivery. One approach to solving the BBB problem is to target endogenous BBB transport systems, and to develop CNS drug delivery strategies that take advantage of these natural portals of entry into the brain.  相似文献   

3.
Drug discovery programmes to target or avoid the brain need to take into account the properties of the blood-brain barrier (BBB). The importance to CNS PK of the free drug concentration in brain is increasingly recognised, and assays for drug discovery programmes are being adjusted accordingly. In vitro models of the BBB continue to play an important role in this process. Good cell-based models using brain endothelium have been developed and validated for mechanistic studies, and some are suitable for medium to high throughput permeability screening and toxicology. Brain homogenate and brain slice methods allow estimation of drug partition into brain. In combination with in silico and in vivo models, the portfolio of methods establishing and predicting CNS drug PK is now very powerful, allowing much more accurate iterative feedback to chemists to optimise compound profiles through the drug discovery and development programme. The advantage of using models based on real BBB cellular anatomy and physiology is that they have the power to reveal and incorporate previously undiscovered properties, such as new transporters, metabolic enzymes and modulation, to form the basis for models mimicking neurological disorders as well as normal function, and to allow physiologically-based pharmacokinetic (PBPK) extrapolation from animal models to humans.  相似文献   

4.
The amount of drug achieved and maintained in the brain after systemic administration is determined by the agent's permeability at blood-brain barrier (BBB), potential involvement of transport systems, and the distribution, metabolism and elimination properties. Passive diffusion permeability may be predicted by an in silico method based on a molecule's structure property. In vitro cell culture is another useful tool for the assessment of passive permeability and BBB transports (e.g. PGP, MRP). In situ or in vivo techniques like carotid artery single injection or perfusion, brain microdialysis, autoradiography, and others are used at various stages of drug discovery and development to estimate CNS penetration and PK/PD correlation. Each technique has its own application with specific advantages and limitations.  相似文献   

5.
目的应用原代培养的大鼠脑微血管内皮细胞(brainmicrovessel endothelial cells,BMECs)与脑微血管周细胞(brain-microvessel pericytes,BMPC)、星形胶质细胞(astrocytes,AS)共培养建立可模拟在体状态的体外血脑屏障(blood-brain barrier,BBB)模型。方法原代分离、纯化和培养大鼠BMECs、BMPC和AS,通过细胞形态学和免疫细胞化学染色方法鉴定原代培养的细胞,应用Millicell细胞培养插(孔径0.4μm)建立5种不同类型的体外BBB模型,经跨内皮电阻值(transendothelial electrical resistance,TEER)、荧光素钠通透性(sodium fluorescent,Na-FLU)、碱性磷酸酶(AKP)和γ-谷氨酰转肽酶(γ-GT1)的表达测定以及阳性药在体内和体外BBB通透量的相似性,比较评价其屏障功能。结果原代培养的BMECs呈典型的铺路卵石样结构,BMPC胞体较大且呈分枝状,AS有细长突触,胞质较浅;免疫细胞化学染色证实原代细胞为目标细胞;BMECs与BMPC、AS共培养后TEER值可达(478±25)Ω·cm2,Na-FLU的表观渗透系数为[(8.23±0.78)×10-6]cm·s-1,AKP和γ-GT1表达分别为(6.90±0.27)金氏单位·g-1Pro,(4.39±0.32)μg·g-1Pro;阳性药在体外BBB的表观渗透系数(apparent permeability coefficient,Papp)与在体数据具有较好的相关性(R2=0.92)。结论原代培养的大鼠BMECs与BMPC、AS共培养建立的体外BBB模型在形态、结构及屏障功能方面具备BBB的基本特征,为研究BBB的生理学、病理学以及筛选化合物提供了一种有用工具。  相似文献   

6.
The pharmaceutical industry has been searching for an in vitro blood-brain barrier (BBB) model that preserves in vivo transporter functions in CNS drug discovery and development. The application of conditionally immortalized cell lines derived from transgenic animals harboring temperature-sensitive SV40 large T-antigen gene, is a rational and promising approach to such a workable in vitro BBB model. The established brain capillary endothelial cell lines retain the in vivo transport rate of several compounds and various forms of gene expression. Furthermore, this new approach has enabled the development of stable and reproducible co-culture models with a pericyte cell line and/or an astrocyte cell line.  相似文献   

7.
Immortalized porcine brain microvessel endothelial cells (PBMEC/C1-2) were used to develop a model for measurement of blood-brain barrier permeation of central nervous system active drugs. Previous studies showed that a system using C6 astrocyte glioma conditioned medium leads to cell layers with transendothelial electrical resistance values up to 300 Omega cm(2) and a permeability coefficient P(e) of 3.24 +/- 0.14 x 10(-4) cm/min for U-[(14)C]sucrose, which is in good agreement to published values and thus indicates the formation of tight junctions in vitro. However, commercially available inserts for the Transwell system were not permeable for highly lipophilic compounds, such as diazepam. Systematic studies with different insert showed, that inserts with a pore width of 1 microm proved to be optimal for permeation studies of lipophilic compounds. Permeability studies with a set of three benzodiazepines further supported this finding.  相似文献   

8.
There is a wide range of methods available for studying the transport of drugs across the blood-brain barrier (BBB) which is equipped with several systems to transport drugs as well as endogenous nutrients and waste products. The in vivo brain microdialysis technique, which allows direct sampling of the brain interstitial fluid (ISF), is a powerful means of characterizing influx and efflux transport across the BBB. In this paper, we review our results from the successful application of this technique to BBB drug transport studies. The drugs investigated include novel and CNS-active peptides, some agents that are actively removed from the brain ISF across the BBB, and a brain-directed prodrug.  相似文献   

9.
OBJECTIVE: The aim was to establish a flexible, abundantly available, reproducible and functionally characterized in vitro model of the blood-brain barrier (BBB). METHODS: In a first step, bovine brain capillaries and newborn rat astrocytes were isolated. Subsequently, a co-culture of primary brain capillary endothelial cells (BCEC) on semi-permeable filter inserts, with astrocytes on the bottom of the filter was established. The cell material was characterized on the basis of specific cell-type properties and (functional expression of) specific BBB properties. RESULTS: BCEC displayed: (1) characteristic endothelial cell morphology; (2) expression of endothelial cell markers (i.e., CD51, CD62P, CD71 and cadherin 5); (3) marginal F-actin localization; (4) tight junction formation between the cells; (5) expression of gamma-glutamyl-transpeptidase (gamma-GTP); (6) expression of P-glycoprotein (Pgp); (7) functional transendothelial transferrin transport and uptake; (8) restriction of paracellular transport; and (9) high transendothelial electrical resistance (TEER). Astrocytes displayed characteristic astrocyte morphology and expressed glial fibrillary acidic protein (GFAP). Co-culture with astrocytes increased TEER and decreased paracellular transport. In addition, expression of the glucocorticoid receptor (GR) was demonstrated in the endothelial cells of the BBB, while no expression of the mineralocorticoid receptor (MR) was found. CONCLUSIONS: A high quality and mass-production in vitro BBB model was established in which experiments with physiological (e.g., regulation of BBB permeability), pharmacological (e.g., pharmacokinetics and pharmacodynamics) and pathophysiological (e.g., disease influence on BBB permeability) objectives can be reproducibly performed.  相似文献   

10.
11.
Drugs vary in their ability to permeate the blood-retinal barrier (BRB), blood-aqueous humor barrier (BAB), and blood-brain barrier (BBB) and the factors affecting the drug permeation remain unclear. In this study, the permeability of various substances across BRB, BAB, and BBB in rats was determined using the brain uptake index (BUI), retinal uptake index (RUI), and aqueous humor uptake index (AHUI) methods. Lipophilic substances showed high permeabilities across BBB and BRB. The RUI values of these substances were approximately four-fold higher than the BUI values. The AHUI versus lipophilicity curve had a parabolic shape with AHUI(max) values at log D(7.4) ranging from -1.0 to 0.0. On the basis of the difference on the lipophilicities, verapamil, quinidine, and digoxin showed lower permeability than predicted from those across BBB and BRB, whereas only digoxin showed a lower permeability across BRB. These low permeabilities were significantly increased by P-glycoprotein inhibitors. Furthermore, anion transporter inhibition increased the absorption of digoxin to permeate into the retina and aqueous humor. In conclusion, this study suggests that efflux transport systems play an important role in the ocular absorption of drugs from the circulating blood after systemic administration.  相似文献   

12.
Targeting liposomes with protein drugs to the blood-brain barrier in vitro.   总被引:4,自引:0,他引:4  
In this study, we aim to target pegylated liposomes loaded with horseradish peroxidase (HRP) and tagged with transferrin (Tf) to the BBB in vitro. Liposomes were prepared with the post-insertion technique: micelles of polyethylene glycol (PEG) and PEG-Tf were inserted into pre-formed liposomes containing HRP. Tf was measured indirectly by measuring iron via atomic absorption spectroscopy. All liposomes were around 100 nm in diameter, contained 5-13 microg HRP per mumol phospholipid and 63-74 Tf molecules per liposome (lipo Tf) or no Tf (lipo C). Brain capillary endothelial cells (BCEC) were incubated with liposomes at 4 degrees C (to determine binding) or at 37 degrees C (to determine association, i.e. binding+endocytosis) and the HRP activity, rather than the HRP amount was determined in cell lysates. Association of lipo Tf was two- to three-fold higher than association of lipo C. Surprisingly, the binding of lipo Tf at 4 degrees C was four-fold higher than the association of at 37 degrees C. Most likely this high binding and low endocytosis is explained by intracellular degradation of endocytosed HRP. In conclusion, we have shown targeting of liposomes loaded with protein or peptide drugs to the BCEC and more specifically to the lysosomes. This is an advantage for the treatment of lysosomal storage disease. However, drug targeting to other intracellular targets also results in intracellular degradation of the drug. Our experiments suggest that liposomes release some of their content within the BBB, making targeting of liposomes to the TfR on BCEC an attractive approach for brain drug delivery.  相似文献   

13.
OBJECTIVE: The aim was to test the hypothesis that the assessment of basal and drug-induced changes in permeability of the blood-brain barrier (BBB) during in vitro drug transport assays is essential for an accurate estimation of the permeability coefficient of a drug. METHODS: An in vitro BBB model was used, comprising of brain capillary endothelial cells (BCEC) and astrocytes co-cultured on semi-permeable filter inserts. Experiments were performed under control and challenged experimental circumstances, induced to simulate drug effects. The apparent BBB permeability coefficient for two markers for paracellular drug transport, sodium fluorescein (P(app,FLU), M(w) 376 Da) and FITC-labeled dextran (P(app,FD4), M(w) 4 kDa), was determined. Transendothelial electrical resistance (TEER) was used to quantify basal and (simulated) drug-induced changes in permeability of the in vitro BBB. The relationship between P(app) and TEER was determined. Drug effects were simulated by exposure to physiologically active endogenous and exogenous substances (i.e., histamine, deferroxamine mesylate, adrenaline, noradrenaline, bradykinin, vinblastine, sodium nitroprusside and lipopolysaccharide). RESULTS: P(app,FLU) and P(app,FD4) in control experiments varied from 1.6 up to 17.6 (10(-6)cm/s) and 0.3 up to 7. 3 (10(-6)cm/s), respectively; while for individual filters P(app, FLU) was 4 times higher than P(app,FD4) (R(2)=0.97). As long as TEER remained above 131.Omega cm(2) for FLU or 122.Omega cm(2) for FD4 during the transport assay, P(app) remained independent from the basal permeability of the in vitro BBB. Below these TEER values, P(app) increased exponentially. This nonlinear relationship between basal BBB permeability and P(app) was described by a one-phase exponential decay model. From this model the BBB permeability status independent permeability coefficients for FLU and FD4 (P(FLU) and P(FD4)) were estimated to be 2.2+/-0.1 and 0.48+/-0.03 (10(-6)cm/s), respectively. In the experimentally challenged experiments, a reliable indication for P(FLU) and P(FD4) could be estimated only after the (simulated) drug-induced change in BBB permeability was taken into account. CONCLUSIONS: The assessment of basal BBB permeability status during drug transport assays was essential for an accurate estimation of the in vitro permeability coefficient of a drug. To accurately extrapolate the in vitro permeability coefficient of a drug to the in vivo situation, it is essential that drug-induced changes in the in vitro BBB permeability during the drug transport assay are determined.  相似文献   

14.
In vitro blood–brain barrier (BBB) models help predict brain uptake of potential central nervous system drug candidates. Current in vitro models are composed of brain microvascular endothelial cells (BMEC) that are isolated from rat, bovine, or porcine. However, most in vivo studies on drug transport through the BBB are performed in small laboratory animals, specially mouse and thus murine in vitro BBB models serve as better surrogates to correlate with these studies. Here we describe the functional characterization of a reproducible in vitro model composed of murine BMEC co-cultured with rat primary astrocytes in the presence of biochemical inducing agents. The co-cultures presented high TEER and low sodium fluorescein permeability. Expression of specific BBB tight junction proteins (occludin, claudin-5, ZO-1) and the functionality of transporters (Pgp, GLUT1) were detected by immunocytochemistry and Western blotting. These results indicated a 2.5-fold increase in the expression levels of these proteins in the presence of astrocytes. In addition, a high correlation coefficient (0.98) was obtained between the permeability of a series of hydrophobic and hydrophilic drugs and their corresponding in vivo values. These results together establish the utility of this murine model for future drug transport, pathological, and pharmacological characterizations of the BBB.  相似文献   

15.
The standard treatment of intoxication with organophosphorus (OP) compounds includes the administration of oximes acting as acetylcholinesterase (AChE) reactivating antidotes. However, the blood-brain barrier (BBB) restricts the rapid transport of these drugs from the blood into the brain in therapeutically relevant concentrations. Since human serum albumin (HSA) nanoparticles enable the delivery of a variety of drugs across the BBB into the brain, HI 6 dimethanesulfonate and HI 6 dichloride monohydrate were bound to these nanoparticles in the present study. The resulting sorption isotherms showed a better fit to Freundlich's empirical adsorption isotherm than to Langmuir's adsorption isotherm. At the pH of 8.3 maximum drug binding capacities of 344.8 μg and 322.6 μg per mg of nanoparticles were calculated for HI 6 dimethanesulfonate and HI 6 dichloride monohydrate, respectively. These calculated values are higher than the adsorption capacity of 93.5 μg/mg for obidoxime onto HSA nanoparticles determined in a previous study. In vitro testing of the nanoparticulate oxime formulations in primary porcine brain capillary endothelial cells (pBCEC) demonstrated an up to two times higher reactivation of OP-inhibited AChE than the free oximes. These findings show that nanoparticles made of HSA may enable a sufficient antidote OP-poisoning therapy with HI 6 derivatives even within the central nervous system (CNS).  相似文献   

16.
The aim of the present studies was to compare the transport of drugs using two in vitro models routinely used in our laboratories: a primary culture of brain microvessel endothelial cells and a coculture of brain capillary endothelial cells and astrocytes. For this purpose we selected a set of compounds corresponding to a wide range of lipid solubility. Additionally the in vitro results were compared to in vivo results obtained with the single carotid injection, and a good correlation between in vivo extraction ratios (Et) and in vitro permeability coefficients (Pe) was shown as indicated by the Spearman's correlation coefficient (r = 0.90 andr = 0.96 for primary culture and coculture, respectively). The studies show that the use of brain capillary endothelial cells together with astrocytes is slightly more predictive and significantly easier than the use of primary cultured brain microvessels.  相似文献   

17.
Blood-brain barrier (BBB) genomics enables the rapid discovery of novel transporters that are expressed at the brain capillary endothelium. The BBB transporters are potential conduits to the brain that therapeutic drugs may use to gain passage across the BBB. Due to the small volume of brain occupied by the endothelium (10(-3) parts of the brain), it is necessary to build a BBB genomics program that is separate from a whole-brain genomics analysis. It is estimated that approximately 15% of all genes selectively expressed at the BBB encode for transporter proteins, and that only approximately 50% of BBB transporters are currently known. The development of a BBB genomics program and the discovery of novel BBB transporters could lead to the invention of new approaches to solving the BBB drug delivery problem.  相似文献   

18.
19.
Silver nanoparticles (AgNPs) have been reported to penetrate the central nervous system (CNS) and induce neurotoxicity. However, there is a paucity of understanding of the toxicity of AgNPs and their effect on the blood-brain barrier (BBB) including the underlying molecular mechanism(s) of action. Such information is important for the formulation of new strategies for delivery of biological therapeutics to central nervous system (CNS) targets. Using an in vitro BBB model and mass spectrometry-based proteomics, we investigated alterations in the proteomes of brain endothelial cells and astrocytes at different time points after AgNPs exposure (24 and 48?h). Our data showed that several proteins involved in neurodisorders and neurodegeneration were significantly upregulated in endothelial cells (e.g. 7-dehydrocholesterol reductase, zinc transporters 1 and 6), while proteins responsible for maintaining brain homeostasis were significantly downregulated (e.g anti-oxidative proteins glutathione peroxidase 1 and glutathione peroxidase 4). Many inflammatory pathways were significantly upregulated at 24?h post-AgNPs exposure (C9 pathway), while at 48?h proteins involved in BBB damage and anti-inflammatory responses were upregulated (quinoneoxidoreductase1 and glutamate cysteine ligase catalytic subunit) suggesting that by the later time point, cellular protection pathways had been activated to rescue the cells from AgNPs-induced toxicity. Our study suggests that in the initial stage of exposure, AgNPs exerted direct cellular stress on the endothelial cells by triggering a pro-inflammatory cascade. This study provides detailed insight into the toxic potency of AgNPs on in vitro BBB model and adds to the understanding of the adaptive role of BBB with regards to AgNPs-mediated toxicity.  相似文献   

20.
In this study, in vitro blood-brain barrier (BBB) models composed of two different cell types were compared. The aim of our study was to find an alternative human cell line that could be used in BBB models. Inorganic and organic mercury and aluminum were studied as model chemicals in the testing of the system. BBB models were composed of endothelial RBE4 cell line or retinal pigment epithelial (RPE) cell line ARPE-19 and neuronal SH-SY5Y cells as target cells. Glial U-373 MG cells were included in part of the tests to induce the formation of a tighter barrier. Millicell CM filter inserts were coated with rat-tail collagen, and RBE4 or ARPE-19 cells were placed on the filters at the density of 3.5-4 × 105 cells/filter. During culture, the state of confluency was microscopically observed and confirmed by the measurement of electrical resistance caused by the developing cell layer. The target cells, SH-SY5Y neuroblastoma cells, were plated on the bottom of cell culture wells at the density of 100 000 cells/cm2. In part of the studies, glial U-373 MG cells were placed on the under side of the membrane filter. When confluent filters with ARPE-19 or RBE4 cells were placed on top of the SH-SY5Y cells, different concentrations of mercuric chloride, methyl mercury chloride, and aluminum chloride were added into the filter cups along with a fluorescent tracer. Exposure time was 24 h, after which the cytotoxicity in the SH-SY5Y cell layer, as well as in the ARPE-19 or RBE4 cell layer, was evaluated by the luminescent measurement of total ATP. The leakage of the fluorescent tracer was also monitored. The results showed that both barrier cell types were induced by glial cells. Inorganic and organic mercury caused a leakage of the dye and cytotoxicity in SH-SY5Y cells. Especially, methyl mercury chloride could exert an effect on target cells before any profound cytotoxicity in barrier cells could be seen. Aluminum did not cause any leakage in the barrier cell layer, and even the highest concentration (1 mM) of aluminum did not cause any cytotoxicity in the SH-SY5Y cells. In conclusion, BBB models composed of RBE4 and ARPE-19 cells were able to distinguish between different toxicities, and ARPE-19 cells are thus promising candidates for studies of drug penetration through the blood-brain barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号