首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
The current study demonstrates that N-n-alkylnicotinium analogs with increasing n-alkyl chain lengths from 1 to 12 carbons have varying affinity (Ki = 90 nM-20 microM) for S-(-)-[3H]nicotine binding sites in rat striatal membranes. A linear relationship was observed such that increasing n-alkyl chain length provided increased affinity for the alpha4beta2* nicotinic acetylcholine receptor (nAChR) subtype, with the exception of N-n-octylnicotinium iodide (NONI). The most potent analog was N-n-decylnicotinium iodide (NDNI; Ki = 90 nM). In contrast, none of the analogs in this series exhibited high affinity for the [3H]methyllycaconitine binding site, thus indicating low affinity for the alpha7* nAChR. The C8 analog, NONI, had low affinity for S-(-)-[3H]nicotine binding sites but was a potent inhibitor of S-(-)-nicotine-evoked [3H]dopamine (DA) overflow from superfused striatal slices (IC50 = 0.62 microM), thereby demonstrating selectivity for the nAChR subtype mediating S-(-)-nicotine-evoked [3H]DA overflow (alpha3alpha6beta2* nAChRs). Importantly, the N-n-alkylnicotinium analog with highest affinity for the alpha4beta2* subtype, NDNI, lacked the ability to inhibit S-(-)-nicotine-evoked [3H]DA overflow and, thus, appears to be selective for alpha4beta2* nAChRs. Furthermore, the present study demonstrates that the interaction of these analogs with the alpha4beta2* subtype is via a competitive mechanism. Thus, selectivity for the alpha4beta2* subtype combined with competitive interaction with the S-(-)-nicotine binding site indicates that NDNI is an excellent candidate for studying the structural topography of alpha4beta2* agonist recognition binding sites, for identifying the antagonist pharmacophore on the alpha4beta2* nAChR, and for defining the role of this subtype in physiological function and pathological disease states.  相似文献   

2.
Lobeline, a nicotinic receptor antagonist and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for methamphetamine abuse. meso-Transdiene (MTD), a lobeline analog, lacks nicotinic receptor affinity, retains affinity for vesicular monoamine transporter 2 (VMAT2), and, surprisingly, has enhanced affinity for dopamine (DA) and serotonin transporters [DA transporter (DAT) and serotonin transporter (SERT), respectively]. In the current study, MTD was evaluated for its ability to decrease methamphetamine self-administration in rats relative to food-maintained responding. MTD specifically decreased methamphetamine self-administration, extending our previous work. Classical structure-activity relationships revealed that more conformationally restricted MTD analogs enhanced VMAT2 selectivity and drug likeness, whereas affinity at the dihydrotetrabenazine binding and DA uptake sites on VMAT2 was not altered. Generally, MTD analogs exhibited 50- to 1000-fold lower affinity for DAT and were equipotent or had 10-fold higher affinity for SERT, compared with MTD. Representative analogs from the series potently and competitively inhibited [(3)H]DA uptake at VMAT2. (3Z,5Z)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-106), the 3Z,5Z-2,4-dichlorophenyl MTD analog, had improved selectivity for VMAT2 over DAT and importantly inhibited methamphetamine-evoked DA release from striatal slices. In contrast, (3Z,5E)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-105), the 3Z,5E-geometrical isomer, inhibited DA uptake at VMAT2, but did not inhibit methamphetamine-evoked DA release. Taken together, these results suggest that these geometrical isomers interact at alternate sites on VMAT2, which are associated with distinct pharmacophores. Thus, structural modification of the MTD molecule resulted in analogs exhibiting improved drug likeness and improved selectivity for VMAT2, as well as the ability to decrease methamphetamine-evoked DA release, supporting the further evaluation of these analogs as treatments for methamphetamine abuse.  相似文献   

3.
Structural simplification of N-n-alkylnicotinium analogs, antagonists at neuronal nicotinic acetylcholine receptors (nAChRs), was achieved by removal of the N-methylpyrrolidino moiety affording N-n-alkylpyridinium analogs with carbon chain lengths of C1 to C20. N-n-Alkylpyridinium analog inhibition of [3H]nicotine and [3H]methyllycaconitine binding to rat brain membranes assessed interaction with alpha4beta2* and alpha7* nAChRs, respectively, whereas inhibition of nicotine-evoked 3H overflow from [3H]dopamine ([3H]DA)-preloaded rat striatal slices assessed antagonist action at nAChR subtypes mediating nicotine-evoked DA release. No inhibition of [3H]methyllycaconitine binding was observed, although N-n-alkylpyridinium analogs had low affinity for [3H]nicotine binding sites, i.e., 1 to 3 orders of magnitude lower than that of the respective N-n-alkylnicotinium analogs. These results indicate that the N-methylpyrrolidino moiety in the N-n-alkylnicotinium analogs is a structural requirement for potent inhibition of alpha4beta2* nAChRs. Importantly, N-n-alkylpyridinium analogs with n-alkyl chains < C10 did not inhibit nicotine-evoked [3H]DA overflow, whereas analogs with n-alkyl chains ranging from C10 to C20 potently and completely inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.12-0.49 microM), with the exceptions of N-n-pentadecylpyridinium bromide (C15) and N-n-eicosylpyridinium bromide (C20), which exhibited maximal inhibition of approximately 50%. The mechanism of inhibition of a representative analog of this structural series, N-n-dodecylpyridinium iodide, was determined by Schild analysis. Linear Schild regression with slope not different from unity indicated competitive antagonism at nAChRs mediating nicotine-evoked [3H]DA overflow and a KB value of 0.17 microM. Thus, the simplified N-n-alkylpyridinium analogs are potent, selective, and competitive antagonists of nAChRs mediating nicotine-evoked [3H]DA overflow, indicating that the N-methylpyrrolidino moiety is not a structural requirement for interaction with nAChR subtypes mediating nicotine-evoked DA release.  相似文献   

4.
Lobelane, a chemically defunctionalized saturated analog of lobeline, has increased selectivity for the vesicular monoamine transporter 2 (VMAT2) compared with the parent compound. Lobelane inhibits methamphetamine-evoked dopamine (DA) release and decreases methamphetamine self-administration. Unfortunately, tolerance develops to the ability of lobelane to decrease these behavioral effects of methamphetamine. Lobelane has low water solubility, which is problematic for drug development. The aim of the current study was to determine the pharmacological effect of replacement of the N-methyl moiety with a chiral N-1,2-dihydroxypropyl (N-1,2-diol) moiety, which enhances water solubility, altering the configuration of the N-1,2-diol moiety and incorporating phenyl ring substituents into the analogs. To determine VMAT2 selectivity, structure-activity relationships also were generated for inhibition of DA and serotonin transporters. Analogs with the highest potency for inhibiting DA uptake at VMAT2 and at least 10-fold selectivity were evaluated further for ability to inhibit methamphetamine-evoked DA release from superfused striatal slices. (R)-3-[2,6-cis-di(4-methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-793A), the (R)-4-methoxyphenyl-N-1,2-diol analog, and (R)-3-[2,6-cis-di(1-naphthylethyl)piperidin-1-yl]propane-1,2-diol (GZ-794A), the (R)-1-naphthyl-N-1,2-diol analog, exhibited the highest potency (K(i) ~30 nM) inhibiting VMAT2, and both analogs inhibited methamphetamine-evoked endogenous DA release (IC(50) = 10.6 and 0.4 μM, respectively). Thus, the pharmacophore for VMAT2 inhibition accommodates the N-1,2-diol moiety, which improves drug-likeness and enhances the potential for the development of these clinical candidates as treatments for methamphetamine abuse.  相似文献   

5.
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.  相似文献   

6.
The complex effect of lobeline on [(3)H]norepinephrine ([(3)H]NE) release was investigated in this study. Lobeline-induced release of [(3)H]NE from the vas deferens was strictly concentration-dependent. In contrast, electrical stimulation-evoked release was characterized by diverse effects of lobeline depending on the concentration used: at lower concentration (10 microM), it increased the release and at high concentration (100 and 300 microM), the evoked release of [(3)H]NE was abolished. The effect of lobeline on the basal release was [Ca(2+)]-independent, insensitive to mecamylamine, a nicotinic acetylcholine receptor antagonist, and to desipramine, a noradrenaline uptake inhibitor. However, lobeline-induced release was temperature-dependent: at low temperature (12 degrees C), at which the membrane carrier proteins are inhibited, lobeline failed to increase the basal release. Lobeline dose dependently inhibited the uptake of [(3)H]NE into rat hippocampal synaptic vesicles and purified synaptosomes with IC(50) values of 1.19 +/- 0.11 and 6.53 +/- 1.37 microM, respectively. Lobeline also inhibited Ca(2+) influx induced by KCl depolarization in sympathetic neurons measured with the Fura-2 technique. In addition, phenylephrine, an alpha(1)-adrenoceptor agonist, contracted the smooth muscle of the vas deferens and enhanced stimulation-evoked contraction. Both effects were inhibited by lobeline. Our results can be best explained as a reversal of the monoamine uptake by lobeline that is facilitated by the increased intracellular NE level after lobeline blocks vesicular uptake. At high concentrations, lobeline acts as a nonselective Ca(2+) channel antagonist blocking pre- and postjunctional Ca(2+) channels serving as a counterbalance for the multiple transmitter releasing actions.  相似文献   

7.
Lobeline interacts with the dopamine transporter and vesicular monoamine transporter, presynaptic proteins involved in dopamine storage and release. This study used rodent models to assess lobeline-induced inhibition of the neurochemical and behavioral effects of amphetamine. Rat striatal slices were preloaded with [(3)H]dopamine and superfused with lobeline for 30 min, and then with d-amphetamine (0.03-3.00 microM) plus lobeline for 60 min. As predicted, lobeline (1-3 microM) intrinsically increased (3)H overflow but did not inhibit d-amphetamine-evoked (3)H overflow. Consequently, the effect of lobeline on d-amphetamine-evoked endogenous dopamine and dihydroxyphenylacetic acid overflow was assessed. Lobeline (0.1-1 microM) inhibited d-amphetamine (1 microM)-evoked dopamine overflow but did not inhibit electrically evoked (3)H overflow, indicating a selective inhibition of this effect of d-amphetamine. To determine whether the in vitro results translated into in vivo inhibition, the effect of lobeline (0.3-10.0 mg/kg) pretreatment on d-amphetamine (0.1-1.0 mg/kg)-induced hyperactivity in rats and on d-methamphetamine (0.1-3.0 mg/kg)-induced hyperactivity in mice was determined. Doses of lobeline that produced no effect alone attenuated the stimulant-induced hyperactivity. Lobeline also attenuated the discriminative stimulus properties of d-methamphetamine in rats. Acute, intermittent, or continuous in vivo administration of lobeline (1-30 mg/kg) did not deplete striatal dopamine content. Thus, lobeline inhibits amphetamine-induced neurochemical and behavioral effects, and is not toxic to dopamine neurons. These results support the hypothesis that lobeline redistributes dopamine pools within the presynaptic terminal, reducing pools available for amphetamine-induced release. Collectively, the results support a role for lobeline as a potential pharmacotherapy for psychostimulant abuse.  相似文献   

8.
Bupropion, an efficacious antidepressant and smoking cessation agent, inhibits dopamine and norepinephrine transporters (DAT and NET, respectively). Recently, bupropion has been reported to noncompetitively inhibit alpha3beta2, alpha3beta4, and alpha4beta2 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes or established cell lines. The present study evaluated bupropion-induced inhibition of native alpha3beta2* and alpha3beta4* nAChRs using functional neurotransmitter release assays, nicotine-evoked [(3)H]overflow from superfused rat striatal slices preloaded with [(3)H]dopamine ([(3)H]DA), and nicotine-evoked [(3)H]overflow from hippocampal slices preloaded with [(3)H]norepinephrine ([(3)H]NE). The mechanism of inhibition was evaluated using Schild analysis. To eliminate the interaction of bupropion with DAT or NET, nomifensine or desipramine, respectively, was included in the superfusion buffer. A high bupropion concentration (100 microM) elicited intrinsic activity in the [(3)H]DA release assay. However, none of the concentrations (1 nM-100 microM) examined evoked [(3)H]NE overflow and, thus, were without intrinsic activity in this assay. Moreover, bupropion inhibited both nicotine-evoked [(3)H]DA overflow (IC(50) = 1.27 microM) and nicotine-evoked [(3)H]NE overflow (IC(50) = 323 nM) at bupropion concentrations well below those eliciting intrinsic activity. Results from Schild analyses suggest that bupropion competitively inhibits nicotine-evoked [(3)H]DA overflow, whereas evidence for receptor reserve was obtained upon assessment of bupropion inhibition of nicotine-evoked [(3)H]NE overflow. Thus, bupropion acts as an antagonist at alpha3beta2* and alpha3beta4* nAChRs in rat striatum and hippocampus, respectively, across the same concentration range that inhibits DAT and NET function. The combination of nAChR and transporter inhibition produced by bupropion may contribute to its clinical efficacy as a smoking cessation agent.  相似文献   

9.
Cigarette smoking is strongly implicated in the development of cardiovascular disorders. Recently identified nicotinium analogs may have therapeutic benefit as smoking cessation therapies but may have restricted entry into the central nervous system by the blood-brain barrier (BBB) due to their physicochemical properties. Using the in situ perfusion technique, lobeline, choline, and nicotinium analogs were evaluated for binding to the BBB choline transporter. Calculated apparent K(i) values for the choline transporter were 1.7 microM N-n-octyl choline, 2.2 microM N-n-hexyl choline, 27 microM N-n-decylnicotinium iodide, 31.9 microM N-n-octylpyridinium iodide, 49 microM N-n-octylnicotinium iodide (NONI), 393 microM lobeline, and >/=1000 microM N-methylnicotinium iodide. Nicotine and N-methylpyridinium iodide, however, do not apparently interact with the BBB choline transporter. Given NONI's apparent K(i) value determined in this study and its ability to inhibit nicotine-evoked dopamine release from superfused rat brain slices, potential brain entry of NONI via the BBB choline transporter was evaluated. [(3)H]NONI exhibited a BBB transfer coefficient value of approximately 1.6 x 10(-3) ml/s/g and a K(m) of approximately 250 microM. Unlabeled choline addition to the perfusion fluid reduced [(3)H]NONI brain uptake. We hypothesize the N-n-octyl group on the pyridinium nitrogen of NONI facilitates brain entry via the BBB choline transporter. Thus, NONI may have utility as a smoking cessation agent, given its ability to inhibit nAChRs mediating nicotine-evoked dopamine release centrally, and to be distributed to brain via the BBB choline transporter.  相似文献   

10.
The objective of this study was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of phosphoinositide-specific phospholipase C (PLC) in rabbit platelets. Saturation binding curves for [3H]PAF indicated that the PAF receptor has a dissociation constant (KD) of 28.72 nM. In comparison, PAF-stimulated PLC activity, as monitored by [3H]inositol triphosphate production, increased at lower concentrations and had an half-maximal effective concentration (EC50) value of 1.5 nM. Unlabeled PAF inhibited [3H]PAF binding competitively and demonstrated two binding sites, a high affinity site with an inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 microM. The inhibitory effects of four PAF antagonists, CV-3988, CV-6209, SRI 63-441 and SRI 63-675 on the binding of [3H]PAF were compared to the effects of the antagonists on PAF-stimulated PLC activity. The four antagonists inhibited [3H]PAF binding almost completely whereas their ability to inhibit PAF-stimulated PLC activity varied. CV-3988, SRI 63-441 and SRI 63-675 had half-maximal inhibitory concentration (IC50) values of 0.28, 0.78 and 0.42 microM, respectively, whereas CV-6209 was more potent at inhibiting [3H]PAF binding (IC50 = 7.73 nM). The SRI 63-441 and SRI 63-675 inhibited PLC totally with an IC50 value of 0.78 and 1.27 microM, respectively. The CV-3988 and CV-6209 showed a maximal PLC inhibition of about 45% with "apparent IC50" values of 1.05 and 0.17 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Interactions of dl-flerobuterol with central beta adrenoceptors were investigated. It inhibited the binding of [3H]CGP 12177, a selective beta adrenoceptor ligand, to membranes prepared from rat cerebral cortex, cerebellum, heart and lung. The affinity of dl-flerobuterol was very close in all tissues (Ki approximately 1 microM). In cerebral cortex, binding inhibition of [3H]CGP 12177 was stereospecific, l-flerobuterol (Ki = 483 nM) being 70-fold more potent than d-flerobuterol (Ki = 34 microM). Moreover, dl-flerobuterol (Ki = 926 nM) was 7-fold less potent than isoproterenol (Ki = 140 nM) to displace [3H]CGP 12177 binding, but 5-fold more potent than salbutamol (Ki = 4600 nM). Flerobuterol did not inhibit the radioligand binding to the other receptors at the highest concentration tested, thus leading to a very high beta adrenergic selectivity. Flerobuterol increased the concentration of cyclic AMP in slices of rat cerebral cortex in a dose-dependent manner; this effect was antagonized by atenolol and propranolol. Compared to isoproterenol or norepinephrine, which produced cyclic AMP maximal increases of 380 and 460%, respectively, it showed a weaker activity with a maximal stimulation obtained at 100 microM, corresponding to a cAMP increase of 140% over basal value (100%). These data revealed that flerobuterol possessed a beta adrenergic agonist activity. Moreover, it antagonized competitively the isoproterenol- or norepinephrine-stimulated accumulation of cAMP. At low concentrations of isoproterenol or norepinephrine, the stimulation of adenylate cyclase was only due to the action of flerobuterol, but at higher concentrations, the response of isoproterenol or norepinephrine was competitively blocked by flerobuterol. At 10 microM, isoproterenol surmounted fully this antagonism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
One novel, potent and selective alpha-2 adrenoceptor antagonist is 2-(4,5-dihydro-1H-imidazol-2-yl)-1,2,4,5-tetrahydro-2- propylpyrrolo[3,2,1-hi]-indole hydrochloride (SL 84.0418). It inhibits with high affinity the radioligand binding to rat cortical alpha-2 adrenoceptors, as well as to human platelet alpha-2 adrenoceptors labeled with [3H]idazoxan (Ki = 7 nM). SL 84.0418 has low affinity for alpha-1 adrenoceptors labeled with [3H]prazosin (Ki = 3.3 microM). In vitro, SL 84.0418 has no alpha agonist properties, whereas it is a potent alpha-2 adrenoceptor antagonist at both pre- and postsynaptic alpha-2 adrenoceptors. In contrast, it possesses low potency as an antagonist at postsynaptic alpha-1 adrenoceptors demonstrating a more than 1000-fold selectivity toward alpha-2 compared with alpha-1 adrenoceptors. In the same tests, the alpha-2 adrenoceptor antagonist idazoxan had a selectivity ratio of 200. SL 84.0418 is the racemic mixture of two enantiomers, SL 86.0715 [(+) enantiomer] and SL 86.0714 [(-) enantiomer]. The alpha-2 adrenoceptor blocking activities reside with SL 86.0715. Similar to idazoxan, SL 84.0418 increases in a concentration-dependent manner the electrically evoked release of [3H]norepinephrine from rat hypothalamic slices through the blockade of the presynaptic inhibitory alpha-2 adrenoceptors. In isolated hamster adipocytes, SL 84.0418 potently antagonizes the inhibition of lipolysis induced by UK 14,304. In addition, SL 84.0418 inhibits epinephrine-induced aggregation of rabbit platelets, effects mediated by postsynaptic alpha-2 adrenoceptors. SL 84.0418 does not inhibit (IC50 > 1,000 nM) radioligand binding to other receptors or recognition sites, nor does it inhibit calcium, sodium or potassium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The triphosphates of the antiherpesvirus acyclic guanosine analogs 9-[4-hydroxy-2(hydroxymethyl)butyl] guanine (2HM-HBG), 9-(2-hydroxyethoxymethyl)guanine (acyclovir [ACV]), and 9-(3,4-dihydroxybutyl)guanine (buciclovir) were examined for their effects on partially purified varicella-zoster virus (VZV) DNA polymerase as well as cellular DNA polymerase alpha. The triphosphate of 2HM-HBG competitively inhibited the incorporation of dGMP into DNA catalyzed by the VZV DNA polymerase. 2HM-HBG-triphosphate (2HM-HBG-TP) had a higher affinity for the dGTP-binding site on the VZV DNA polymerase than did dGTP; apparent Km and Ki values of dGTP and 2HM-HBG-TP were 0.64 and 0.034 microM, respectively. ACV-triphosphate (ACV-TP) was found to be the most potent inhibitor of VZV DNA polymerase. ACV-TP had a 14 and 464 times better direct inhibitory effect than 2HM-HBG-TP and buciclovir-triphosphate, respectively. The cellular (human embryonic lung fibroblast) DNA polymerase alpha inhibition was related to viral polymerase inhibition as efficacy ratios: 2HM-HBG-TP had a ratio of more than 1,000, which appeared to be similar to that of ACV-TP.  相似文献   

14.
The interactions of binedaline (binodaline), a new antidepressant drug, and its main metabolites with neurotransmitter receptors and monoamine uptake sites were studied. In receptor binding assays, binedaline was compared to amitriptyline, imipramine, maprotiline and mianserin. Unlike these drugs binedaline did not show any significant affinity for an alpha adrenergic, muscarinic cholinergic, histamine H1 or serotonin2 (5-HT2) receptors. Binedaline and desmethylbinedaline were potent inhibitors of the uptake of norepinephrine in synaptosomes from rat cerebral cortex (Ki = 25 and 29 nM, respectively). Binedaline also inhibited 5-HT uptake with a weak affinity (Ki = 847 nM) but was inactive as an inhibitor of dopamine uptake in synaptosomes from rat striatum (Ki greater than 2 microM). No specific binding was found using [3H]binedaline. After 2 weeks of daily administration of binedaline (20 mg/kg i.p.), the number of beta adrenergic recognition sites labeled with [3H]CGP 12177 remained constant in rat forebrain, as did 5-HT2 receptors and benzodiazepine receptors. In contrast a prolonged treatment with maprotiline (20 mg/kg i.p.) increased the apparent Kd value of [3H]CGP 12177 by 43% and the apparent maximal binding value of [3H]RO 15-1788 by 20% as compared to control. Our results indicate that binedaline is comparable to a tricyclic antidepressant drug in inhibiting the norepinephrine uptake but, however, it is devoid of affinity for neurotransmitter receptors. This probably explains why this drug does not induce the classical side effects of tricyclic antidepressant drugs. These results also suggest that a reduction in beta adrenergic, 5-HT2 or benzodiazepine receptors is not always related to an antidepressant chronic treatment.  相似文献   

15.
The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.  相似文献   

16.
Nicotine's action on the midbrain dopaminergic neurons is mediated by nicotinic acetylcholine receptors (nAChRs) that are present on the cell bodies and the terminals of these neurons. Previously, it was suggested that one of the nAChR subtypes located on striatal dopaminergic terminals may be an alpha3beta2 subtype, based on partial inhibition of nicotine-stimulated [(3)H]dopamine release by alpha-conotoxin MII, a potent inhibitor of heterologously expressed alpha3beta2 nAChRs. More recent studies indicated that alpha-conotoxin MII also potently blocks alpha6-containing nAChRs. In the present study, we have examined the nAChR subtype(s) modulating [(3)H]dopamine release from striatal terminals by using novel alpha-conotoxins that have 37- to 78-fold higher selectivity for alpha6-versus alpha3-containing nAChRs. All of the peptides partially (20-35%) inhibit nicotine-stimulated [(3)H]dopamine release with IC(50) values consistent with those obtained with heterologously expressed rat alpha6-containing nicotinic acetylcholine receptors. These results, together with previous studies by others, further support the idea that alpha6-containing nicotinic receptors modulate nicotine-stimulated dopamine release from rat striatal synaptosomes.  相似文献   

17.
To identify and characterize the cardiac alpha-adrenoceptors, a radioreceptor binding assay using the potent alpha adrenergic antagonist, [3H]WB4101 was performed in rat hearts. Specific [3H]WB4101 binding to rat left ventricular homogenates was saturable, reversible and of high affinity (Kd = 0.18 nM) with a Bmax of 2.57 fmol/mg of tissue (27.7 fmol/mg of protein). Adrenergic agonists competed for specific [3H]WB4101 binding in the order: (-)-epinephrine > (-)-norepinephrine greater than (-)-isoproterenol. Stereospecificity of the [3H]WB4101 binding sites was also demonstrated with (-)-epinephrine, (Ki = 90) nM being 270 times as potent as (+)-epinephrine, (K1 = 24 microM). Adrenergic antagonists competed for the binding in the order: WB4101 = prazosin greater than yohimbine greater than (-)-propranolol. WB4101 and prazosin exhibited a markedly greater (2000 times) affinity for [3H]WB4101 binding sites than yohimbine. The affinities (pKi) of alpha agonists and antagonists for [3H]WB4101 binding sites in the rat heart closely correlated with their pharmacological potencies in the heart. Scatchard analysis for [3H]WB4101 binding, performed in five regions from control and 6-hydroxydopamine-treated rat hearts, revealed specific [3H]WB4101 binding (Bmax) significantly greater in the ventricles and intraventricular septae than in atria. At 1 week after 6-hydroxydopamine treatment, there was a significant increase (40%) in the Bmax for [3H]WB4101 binding to ventricles and intraventricular septae without a change in Kd. We conclude: 1) [3H]Wb4101 selectively labels postsynaptic alpha-1 adrenoceptors in the rat heart; 2) there is a definite regional variation for cardiac alpha-1 adrenoceptors; and 3) 6-hydroxydopamine treatment caused a significant increase in the density of alpha-1 adrenoceptors in ventricles and intraventricular septae, compatible with a postsynaptic localization of the [3H]WB4101 binding site.  相似文献   

18.
Binding of the new benzothiazepine calcium channel blocker, (+)-(2S,3S)-3-acetoxy-8-chloro-5-(2-(dimethylamino)ethyl)-2,3-dihydro-2- (4- methoxyphenyl)-1,5-benzothiazepine-4-(5H)-one maleate, [3H]TA-3090), was characterized and its specificity for rat myocardial benzothiazepine receptors described. Scatchard plots and nonlinear regression analysis of specific [3H]TA-3090 binding best fit a one-site binding model (Kd = 8.8 +/- 2.7 nM, Bmax = 132 +/- 38 fmol/mg protein). Kinetically derived affinity constants were in close agreement (Kd = 7.86 nM) with those obtained from analysis of equilibrium binding data. In comparison, under identical conditions [3H]diltiazem exhibited a Kd of 38 nM and Bmax, 106 fmol/mg protein. Specific binding was saturable, reversible and stereoselective (d-cis-TA-3090 Ki = 14 nM; 1-cis-TA-3090 Ki = 2700 nM). Competitions for [3H]TA-3090 binding were conducted with nifedipine, propranolol, prazosin, quinuclidinyl benzilate, verapamil and yohimbine. Only the calcium channel blockers nifedipine and verapamil inhibited specific [3H]TA-3090 binding. Nifedipine could maximally inhibit only 52% of specifically bound [3H]TA-3090 at 10 microM. In contrast, however, 10 microM verapamil completely inhibited specific radioligand binding (Ki = 93 +/- 28 nM) but with six times less efficacy than TA-3090. Thus, these data demonstrate that [3H]TA-3090 is a potent radioligand selective for the benzothiazepine binding site and is consistent with the hypothesis that [3H]TA-3090 interacts with a myocardial benzothiazepine receptor site.  相似文献   

19.
The accumulation of 5 nM d-[3H]amphetamine (d-[3H]AMPH) into rat brain synaptosomes was examined using physiological buffer conditions. The accumulation of d-[3H]AMPH into striatal synaptosomes was saturable, of high affinity, ouabain-sensitive and temperature-dependent, suggesting an active transport phenomenon. Eadee-Hofstee analysis of striatal d-[3H]AMPH transport (AMT) saturation isotherms indicated an apparent Km of 97 nM and a Vmax of 3.0 fmol/mg tissue/min. Lesion of the striatal dopaminergic innervation led to equivalent decreases of [3H] dopamine (DA) transport and AMT, indicating that AMT occurs in DA terminals. Furthermore, AMT was not evident in cerebral cortex, a brain region with a paucity of DA terminals. In competition studies, AMT was stereospecific; d-AMPH (IC50 = 60 nM) was an 8-fold more potent inhibitor of the transport than its I-isomer (IC50 = 466 nM). DA(IC50 = 257 nM), DA uptake blockers and substrates were found to be potent inhibitors of AMT: GBR12909 IC50 = 5 nM; methamphetamine IC50 = 48 nM; methylphenidate IC50 = 53 nM; and cocaine IC50 = 172 nM. In contrast, serotonin was relatively weak in inhibiting AMT (IC50 = 7.9 microM). There was a highly significant (P less than .001; slope = 1.2) linear correlation between the AMT-inhibiting potencies of AMPH analogs and their potencies in stimulating locomotor activity in rodents. AMT may be important in the low dose effects of AMPH such as increased locomotor activity in rodents and stimulant activity in man. Differences between AMT and d-[3H]AMPH sequestration described earlier, as well as their possible relevance to behavioral and neurochemical sequelae of AMPH administration are also discussed.  相似文献   

20.
Trimebutine [2-dimethylamino-2-phenylbutyl-3,4,5-trimethoxybenzoate hydrogen maleate (TMB)] has been demonstrated to be active for relieving abdominal pain in humans. To better understand its mechanism of action, we have tested TMB; nor-TMB, its main metabolite in humans; and their respective stereoisomers for their affinity toward sodium channels labeled by [3H]batrachotoxin, their effect on sodium, potassium, and calcium currents in rat dorsal root ganglia neurons, and their effect on veratridine-induced glutamate release from rat spinal cord slices. TMB has also been tested in an animal model of local anesthesia. TMB (Ki = 2.66 +/- 0.15 microM) and nor-TMB (Ki = 0.73 +/- 0.02 microM) displaced [3H]batrachotoxin from its binding site with affinities similar to that of bupivacaine (Ki = 7.1 +/- 0.9 microM). nor-TMB was found to block veratridine-induced glutamate release with an IC50 value of 8.5 microM, which is very similar to that of bupivacaine (IC50 = 8.2 microM); the effect of TMB was limited to 50% inhibition at 100 microM. TMB and nor-TMB blocked sodium currents in sensory neurons from rat dorsal root ganglia (IC50 = 0.83 +/- 0.09 and 1.23 +/- 0.19 microM, respectively), whereas no effect was observed on calcium currents at the same concentrations. A limited effect was observed on potassium currents (IC50 = 23 +/- 6 at 10 microM) for TMB. In vivo, when tested in the rabbit corneal reflex, TMB displayed a local anesthetic activity 17-fold more potent than that of lidocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号