首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferation of vascular smooth muscle cells (VSMC) plays a major role as an initiating event of atherosclerosis. Although estrogen directly inhibits the proliferation of VSMC, the mechanism has not been firmly established. In addition, the effect of raloxifene on VSMC remains unknown. 17Beta-estradiol (E(2)) and raloxifene significantly inhibited the growth of VSMC under growth-stimulated conditions. Since mitogen-activated protein (MAP) kinases have been implicated in VSMC proliferation, the role of MAP kinases in both the E(2)- and raloxifene-induced growth inhibition of VSMC was studied. Both E(2) and raloxifene caused rapid, transient phosphorylation and activation of p38 that was not affected by actinomycin D and was blocked by ICI 182,780. In contrast with p38 phosphorylation, extracellular signal-regulated protein kinase (ERK) phosphorylation was significantly inhibited and c-Jun N-terminal kinase (JNK) phosphorylation was not changed by E(2). Because VSMC expressed both estrogen receptor (ER) alpha and ERbeta, it is not known which of them mediates the E(2)-induced phosphorylation of p38. Although E(2) did not affect the p38 phosphorylation in A10 smooth muscle cells, which express ERbeta but not ERalpha, transfection of ERalpha expression vector into A10 cells rendered them susceptible to induction of p38 phosphorylation by E(2). We then examined whether E(2) and raloxifene induce apoptosis through a p38 cascade. Both E(2) and raloxifene induced apoptosis under growth-stimulated conditions. The p38 inhibitor SB 203580 completely blocked the E(2)-induced apoptosis. Our findings suggest that both E(2)- and raloxifene-induced inhibition of VSMC growth is due to induction of apoptosis through a p38 cascade whose activation is mediated by ERalpha via a nongenomic mechanism.  相似文献   

2.
H Iwasaki  S Eguchi  H Ueno  F Marumo  Y Hirata 《Endocrinology》1999,140(10):4659-4668
Endothelin-1 (ET-1), a potent endothelium-derived vasoconstrictor peptide, exerts a growth-promoting effect on vascular smooth muscle cells, implicating its pathogenic role in vascular remodeling. To gain insight into the cellular and molecular mechanism whereby ET-1 induces vascular growth, we studied whether transactivation of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, are required for activation of p42/p44 mitogen-activated protein (MAP) kinase and p70 S6 kinase (p70S6K), and subsequent growth-promotion by ET-1 in cultured rat vascular smooth muscle cells. Immunoblotting with antiphosphotyrosine antibody revealed that ET-1 rapidly (within 2 min) and transiently induced tyrosine phosphorylation of several proteins, among which 180-kDa protein was shown to be EGFR. ET-1 rapidly increased association of EGFR and Shc with glutathione-S-transferase-Grb2 fusion protein. The ET-1-induced activation of MAP kinase was reduced by an EGFR kinase inhibitor (AG1478) but not by a platelet-derived growth factor receptor kinase inhibitor (AG1296). AG1478 dose-dependently decreased ET-1-stimulated MAP kinase activity as well as [3H]leucine and [3H]thymidine uptake. The ET-1-induced tyrosine phosphorylation of EGFR, as well as MAP kinase activation, was inhibited by an ETA receptor antagonist and intracellular Ca2+ antagonists but not by an ETB receptor antagonist, pertussis toxin, or protein kinase C inhibitors. In addition, dominant negative mutant of H-Ras and a MAP kinase kinase (MEK-1) inhibitor (PD98059) completely blocked ET-1-induced MAP kinase activation as well as [3H]leucine and [3H]thymidine uptake. Both AG1478 and PD98059 inhibited ET-1-induced phosphorylation and activation of p70S6K. Furthermore, rapamycin, a selective inhibitor of mammalian target of rapamycin, completely blocked ET-1-stimulated [3H]leucine and [3H]thymidine uptake. These results suggest that ETA receptor-mediated vascular growth by ET-1 requires both MAP kinase and p70S6K cascades mediated partly via Ca2+-dependent EGFR transactivation.  相似文献   

3.
BACKGROUND : Angiotensin II (Ang II) has been reported to inhibit insulin signaling at multiple levels in vascular smooth muscle cells (VSMC) in vitro. We have demonstrated that VSMC from spontaneously hypertensive rats (SHR) produce Ang II in a homogeneous culture. OBJECTIVE : In the current study, we investigated influences of endogenous Ang II on insulin signaling in VSMC from SHR. DESIGN AND METHODS : Phosphatidylinositol 3-kinase (PI3-kinase) activity, insulin receptor substrate-1 (IRS-1) associated tyrosine phosphorylation, and p85 subunit of PI3-kinase were measured in VSMC from SHR and normotensive Wistar-Kyoto (WKY) rats in the absence and presence of Ang II type 1 receptor antagonist RNH6270 and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor U0126. RESULTS : Insulin treatment increased PI3-kinase activity in VSMC from WKY rats in a dose-dependent manner. In contrast, insulin treatment of VSMC from SHR did not affect PI3-kinase activity. However, co-treatment of VSMC from SHR with RNH6270 and insulin, increased PI3-kinase activity. PI3-kinase activity, IRS-1-associated tyrosine phosphorylation and p85 subunit of PI3-kinase in VSMC from WKY rats decreased in response to treatment with Ang II and returned to control levels upon co-treatment with U0126. Basal levels of PI3-kinase activity, IRS-1-associated tyrosine phosphorylation, and p85 subunit of PI3-kinase were significantly lower in VSMC from SHR than in cells from WKY rats. U0126 treatment of VSMC from SHR significantly increased levels of PI3-kinase activity, IRS-1-associated tyrosine phosphorylation, and p85 subunit of PI3-kinase. CONCLUSION : These results indicate that endogenous Ang II suppresses insulin signaling in VSMC from SHR by activating extracellular signal-regulated kinase. These findings suggest that tissue Ang II may play a role in insulin resistance in hypertension.  相似文献   

4.
5.
Chinese hamster ovary (CHO) cells stably expressing the human insulin receptor and the rat glucagon-like peptide-1 (GLP-1) receptor (CHO/GLPR) were used to study the functional coupling of the GLP-1 receptor with G proteins and to examine the regulation of the mitogen-activated protein (MAP) kinase signaling pathway by GLP-1. We showed that ligand activation of GLP-1 receptor led to increased incorporation of GTP-azidoanilide into Gs alpha, Gq/11 alpha, and Gi1,2 alpha, but not Gi3 alpha. GLP-1 increased p38 MAP kinase activity 2.5- and 2.0-fold over the basal level in both CHO/GLPR cells and rat insulinoma cells (RIN 1046-38), respectively. Moreover, GLP-1 induced phosphorylation of the immediate upstream kinases of p38, MKK3/MKK6, in CHO/GLPR and RIN 1046-38 cells. Ligand-stimulated GLP-1 receptor produced 1.45- and 2.7-fold increases in tyrosine phosphorylation of 42-kDa extracellular signal-regulated kinase (ERK) in CHO/GLPR and RIN 1046-38 cells, respectively. In CHO/GLPR cells, these effects of GLP-1 on the ERK and p38 MAP kinase pathways were inhibited by pretreatment with cholera toxin (CTX), but not with pertussis toxin. The combination of insulin and GLP-1 resulted in an additive response (1.6-fold over insulin alone) that was attenuated by CTX. In contrast, the ability of insulin alone to activate these pathways was insensitive to either toxin. Our study indicates a direct coupling between the GLP-1 receptor and several G proteins, and that CTX-sensitive proteins are required for GLP-1-mediated activation of MAP kinases.  相似文献   

6.
OBJECTIVE: To characterise the effects of exogenous H(2)O(2) on sarcolemmal Na(+)/H(+) exchanger (NHE) activity and determine the roles of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase C (PKC) in observed effects. METHODS: Sarcolemmal H(+) efflux rate (J(H)) was determined by microepifluorescence at a pH(i) of 6.70 in adult rat ventricular myocytes, after two consecutive acid pulses in HCO(3)(-)-free medium; before the second pulse, cells (n=7-10/group) were exposed to H(2)O(2) or vehicle and the change in J(H) (DeltaJ(H)) was used to quantify the change in NHE activity. ERK and p38 MAPK activities were determined by immunoblotting with phosphospecific antibodies. RESULTS: Relative to control, DeltaJ(H) was increased by a 10-min exposure to 100, but not 1 or 10 microM H(2)O(2) (1000 microM was not tolerated); 3 or 6 min exposure to 100 microM H(2)O(2) was without effect. ERK and p38 MAPK activities were both increased by 100 microM H(2)O(2) (peak at 6 min); the ERK kinase inhibitor PD98059 (10 microM), but not the p38 MAPK inhibitor SB203580 (1 microM), inhibited the H(2)O(2)-induced increase in DeltaJ(H). H(2)O(2)-induced ERK activation was inhibited not only by PD98059 (10 microM), but also by the non-selective tyrosine kinase inhibitor genistein (3-100 microM), the EGF receptor kinase inhibitor AG1478 (3-300 nM) and the Src family kinase inhibitor PP2 (0.1-10 microM). The PKC inhibitors GF109203X (0.3-10 microM) and chelerythrine (1-30 microM) were without effect on ERK activation, although the former abolished the H(2)O(2)-induced increase in DeltaJ(H). CONCLUSIONS: Our data demonstrate that, in adult rat ventricular myocytes, (i) hydrogen peroxide stimulates sarcolemmal NHE activity, (ii) this response requires activation of ERK and PKC, but not p38 MAPK, (iii) ERK activation occurs through tyrosine kinase-mediated, but PKC-independent, mechanisms  相似文献   

7.
Interleukin (IL)-1beta, a multifunctional cytokine, is associated with inflammatory gastric mucosa, but the responses of gastric epithelial cells stimulated by IL-1beta are not known. We determined whether IL-1beta activates the two subfamilies of mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinases (ERKs) and c-Jun NH(2)-terminal kinases (JNKs), in rat gastric epithelial cells (RGM1) using in-gel kinase assays. In addition, we examined the mechanism(s) underlying their signaling pathways and the effect on proliferation of these cells. IL-1beta (0-5 x 10(3) pg/ml) dose dependently induced activation of ERKs (p44ERK and p42ERK) and JNKs (p46JNK and p55JNK) in RGM1 cells; maximal activities were attained with 1,000 pg/ml of IL-1beta. These activities were increased with time, and were maximal 20 min after stimulation with IL-1beta (100 pg/ml). Pretreatment with neutralizing antibody against IL-1beta inhibited IL-1beta-induced activation of ERKs and JNKs. Genistein (100 microM), a tyrosine kinase inhibitor, and GF109203X (2 microM), a protein kinase C inhibitor, inhibited the IL-1beta-induced activation of ERKs and JNKs. Six- hour pre-incubation with IL-1beta inhibited proliferation of these cells by 40% at 24 h of incubation, but the inhibition was recovered at 48 h. These findings suggest that IL-1beta activated ERKs and JNKs in rat gastric epithelial cells and inhibited cell proliferation, possibly via the specific receptor for IL-1beta. Activation of MAP kinases by IL-1beta may be mediated by tyrosine kinase and protein kinase C.  相似文献   

8.
Mitogen-activated protein (MAP) kinases have been implicated in hemodynamic load induced heart failure. Both angiotensin II (Ang II) and mechanical stretch activate MAP kinases in cardiac myocytes. In this study, we used a neonatal rat ventricular myocyte (NRVM) model to determine the role of focal-adhesion kinase (FAK) in beta1 integrin mediated MAP kinase activation in response to mechanical stretch in presence and absence of Ang II receptor blockade (ATB). NRVM plated on deformable membranes coated with collagen IV were exposed to 20% equiaxial static-stretch. beta1 integrin signaling was blocked by adenovirus-mediated expression of a dominant-negative form of beta1D integrin (tac-beta1D). FAK signaling was disrupted by infecting NRVM with adenovirus expressing FAK-related non-kinase (FRNK). Western blot analysis was used to assess the phosphorylation of MAP kinases. In the presence and absence of ATB, mechanical stretch caused maximal phosphorylation of ERK, p38 and JNK at 5 min, which was significantly attenuated in NRVM expressing tac-beta1D. In the presence of ATB, FRNK overexpression significantly increased basal phosphorylation of ERK (40.2+/-8.6% P<0.05), p38 (39.5+/-11.7%, P<0.05), JNK (86+/-29.4%, P<0.05) and stretch-induced p38 (48.1+/-8.7%, P<0.05) and JNK (85.0+/-19.4%, P<0.05) phosphorylation. However, in the absence of ATB, FRNK overexpression significantly reduced basal and stretch-induced phosphorylation of only ERK. Examination of FAK activation revealed that beta1 integrin was required for stretch-induced phosphorylation of FAK at Y397 and Y925, but not Y861. In summary, mechanical stretch-activated ERK1/2, p38 and JNK through FAK independent and dependent mechanisms. Beta1 integrin was required for FAK independent activation of all three MAP kinases, whereas cross-talk between beta1 integrin and Ang II receptors mediated FAK dependent regulation of ERK1/2.  相似文献   

9.
Thromboxane A(2) (TxA2) is a potent proaggregating, vasoconstrictor agent produced in many physiological and pathological situations. Although mitogen-activated protein (MAP) kinases [MAPK (ERK1/2 and p38)] have been shown to be activated after endoperoxide/thromboxane receptor (TP) stimulation, no study has investigated their potential role in resistance arteries, especially in physiological conditions of pressure and flow in which the arteries can contract. Thus, responses to TP stimulation by the stable agonist U46619 were studied in isolated rat mesenteric resistance arteries (inner diameter 262 +/- 5 microm) mounted in an arteriograph. Changes in diameter were recorded under physiological levels of flow (90 microl/min) and pressure (50 mm Hg). TP stimulation induced a concentration-dependent contraction (EC(50) value of 1.94 +/- 0.22 x 10(-7) M), without desensitization. U46619-induced contraction was inhibited by calcium entry blockade (nifedipine) and protein kinase C inhibition (GF109203X), but it was not affected by tyrosine kinase inhibition (tyrphostin A25). MAPKK (MEK) inhibition (PD98059) did not alter U46619-dependent contraction, although ERK1/2 MAPK were activated. By contrast, p38 MAPK inhibition (SB203580) dose-dependently inhibited the contraction, and Western blot analysis showed activation of p38 MAPK in arteries contracted with U46619. Activation of p38 MAPK by U46619 was inhibited by nifedipine and in the absence of extracellular calcium. This study brings new insights in the transduction pathway involved in the contractile response of resistance arteries to TxA2/endoperoxide receptor stimulation. This contraction requires p38 MAPK activation, but did not involve ERK1/2 MAPK activation although both were activated.  相似文献   

10.
11.
12.
OBJECTIVE: Endothelin-1 (ET-1) has been reported to stimulate the expression of the proto-oncogenes c-fos and c-myc, and to cause DNA synthesis in vascular smooth muscle cells (VSMC). The purpose of this study was to clarify the signalling pathway from ET receptors to the nucleus. DESIGN: Mitogen-activated protein (MAP) kinase, which is activated by various growth factors via phosphorylation of tyrosine and threonine residues, plays important roles as an intermediate in the signalling pathways from growth factor receptors to the ribosomes and nucleus. We examined the effect of ET-1 on the phosphorylation and activation of MAP kinase in cultured VSMC. METHODS: Extracts of ET-1-stimulated VSMC were analysed by one- and two-dimensional gel electrophoresis and anion-exchange column chromatography. Tyrosine-phosphorylated proteins and MAP kinases were detected by immunoblot analyses with anti-phosphotyrosine and anti-MAP kinase antibodies, respectively. The MAP kinase activity was measured using myelin basic protein as a substrate. The MAP kinases were isolated from 32P-labelled VSMC and subjected to phosphoamino acid analysis. RESULTS: ET-1 induced tyrosine phosphorylation of at least five proteins of about 79, 77, 73, 45 and 40 kDa in VSMC. The mobilities of the tyrosine-phosphorylated 45- and 40-kDa proteins were identical with those of the two proteins that were recognized by anti-MAP kinase antibody upon one- and two-dimensional gel electrophoresis. ET-1 stimulated MAP kinase activity in a time-course similar to that of the tyrosine phosphorylation of the 45- and 40-kDa proteins. The ET-1-stimulated MAP kinase activity was resolved almost equally into two peaks upon Mono Q column chromatography (kinase 1 and kinase 2). Kinase 1 and kinase 2 were co-eluted with the tyrosine-phosphorylated 40- and 45-kDa proteins, respectively. The apparent molecular masses of kinase 1 and kinase 2 estimated by MAP kinase assay in polyacrylamide gel were identical with those of tyrosine-phosphorylated 40- and 45-kDa proteins, respectively. Upon phosphoamino acid analysis, ET-1 stimulated phosphorylation of MAP kinases not only on tyrosine but also on threonine residues. CONCLUSIONS: ET-1 induces tyrosine and threonine phosphorylation and the activation of two species of MAP kinases of 40 and 45 kDa in VSMC.  相似文献   

13.
Troglitazone, a thiazolizidinedione, has recently been reported to possess anti-arteriosclerotic properties. To evaluate mechanisms underlying the anti-arteriosclerotic effects of troglitazone, we examined the effect of troglitazone on growth, expression of growth factors, and insulin signaling in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) which produce angiotensin II (Ang II) in a homogeneous culture. Troglitazone inhibited basal and serum-stimulated DNA synthesis and inhibited increases in the number of VSMC from SHR and normotensive Wistar-Kyoto (WKY) rats. Its inhibition was greater in VSMC from SHR. Troglitazone abolished DNA synthesis in response to Ang II in VSMC from both rat strains and markedly inhibited DNA synthesis in response to epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-AA in VSMC from SHR. Troglitazone did not alter the expression of transforming growth factor (TGF)-beta1, PDGF A-chain, or basic fibroblast growth factor (bFGF) mRNAs in VSMC from WKY rats, but it markedly decreased expression of these growth factor mRNAs in VSMC from SHR. Troglitazone markedly decreased basal and Ang II-stimulated expression of extracellular signal-regulated kinase proteins in VSMC from both rat strains. Troglitazone abolished Ang II-induced suppression of phosphatidilinositol 3-kinase (PI3-kinase) activity, insulin receptor substrate-1 (IRS-1) associated tyrosine phosphorylation, and IRS-1 associated p85 levels in VSMC from WKY rats. Basal PI3-kinase activity, tyrosine phosphorylation of IRS-1, and IRS-1 associated p85 levels were lower in VSMC from SHR than in cells from WKY rats. Troglitazone significantly increased PI3-kinase activity, IRS-1 associated tyrosine phosphorylation, and IRS-1 associated p85 levels in VSMC from SHR. These results indicate that troglitazone produce its anti-arteriosclerotic effects through suppression of the action of growth-promoting factors including Ang II, and that troglitazone inhibits Ang II-induced suppression of insulin signaling in VSMC from SHR, suggesting that tissue Ang II may lead to insulin resistance and to arteriosclerosis in hypertension. Troglitazone may be useful in the treatment of insulin resistance as well as of hypertensive vascular diseases.  相似文献   

14.
Sugita M  Sugita H  Kaneki M 《Hypertension》2004,44(4):484-489
Insulin resistance is associated with cardiovascular disease. Impaired insulin receptor substrate (IRS)-mediated signal transduction is a major contributor to insulin resistance. Recently, IRS-1 phosphorylation at serine 307 by stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) has been highlighted as a molecular event that causes insulin resistance. We investigated IRS-1-mediated insulin signaling, IRS-1 phosphorylation at serine 307, and SAPK/JNK activation status in the aorta of spontaneously hypertensive rats (SHR) by immunoprecipitation and immunoblotting. Insulin-stimulated tyrosine phosphorylation of insulin receptor and IRS-1 in SHR was decreased to 55% (P<0.01) and 40% (P<0.01) of the levels in Wistar-Kyoto rats (WKY), respectively. Insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activation in SHR was reduced to 28% of the level in WKY (P<0.0001). Immunoblot analysis revealed that phosphorylated IRS-1 at serine 307 in SHR was increased to 261% (P<0.001) of the level in WKY. Phosphorylated (activated) SAPK/JNK in SHR was increased to 223% of the level in WKY (P<0.01). Serine-phosphorylated IRS-1 that was immunoprecipitated from the aorta of SHR was capable of inhibiting in vitro tyrosine phosphorylation by recombinant insulin receptor compared with WKY-derived IRS-1. These findings demonstrate that insulin resistance in the aorta of SHR was associated with elevated IRS-1 phosphorylation at serine 307 and increased SAPK/JNK activation. The present study suggests that increased SAPK/JNK activation may play an important role in the pathogenesis of vascular insulin resistance via inhibitory serine phosphorylation of IRS-1.  相似文献   

15.
OBJECTIVE: Transforming growth factor-beta1 (TGF-beta1) stimulates vascular smooth muscle cell growth in spontaneously hypertensive rats (SHR), but inhibits cell growth in normotensive Wistar- Kyoto (WKY) rats. The present study was undertaken to test the hypothesis that TGF-beta1 might differentially modulate the activities of mitogen-activated protein (MAP) kinase family members (ERK, JNK and p38) in vascular smooth muscle cells of SHR and WKY rats. METHODS: MAP kinase activity was measured from cultured vascular smooth muscle cells in response to TGF-1 by specific substrate phosphorylation of myelin basic protein, GST-c-Jun and GST-ATF2. RESULTS: Exposure of cultured vascular smooth muscle cells from SHR or WKY rats to TGF-beta1 resulted in a marked increase in the activity of ERK, but not of JNK or p38. The increase of ERK activity stimulated by TGF-beta1 appeared similar in time course and extent in both WKY and SHR cells, with increased activity peaking at 15 min of incubation. Epidermal growth factor (EGF) also stimulated the activity of ERK, in both WKY and SHR cells, but nor of JNK or p38, with stimulation of ERK activity by EGF occurring more rapidly in SHR cells than in those from WKY rats. Co-incubation of SHR cells with TGF-beta1 and EGF showed additive effect on ERK activity. CONCLUSIONS: The results provide the first evidence that TGF-beta1 activates ERK in vascular smooth muscle cells of both normotensive and hypertensive rats. The matching response of ERK activation to TGF-1 in SHR cells suggests that the MAP kinase-signaling pathway remains largely unchanged in the regulation of vascular smooth muscle growth by TGF-1 in spontaneously hypertensive rats.  相似文献   

16.
The structure of mitogen-activated protein (MAP) kinase p38 has been solved at 2.1-Å to an R factor of 21.0%, making p38 the second low activity MAP kinase solved to date. Although p38 is topologically similar to the MAP kinase ERK2, the phosphorylation Lip (a regulatory loop near the active site) adopts a different fold in p38. The peptide substrate binding site and the ATP binding site are also different from those of ERK2. The results explain why MAP kinases are specific for different activating enzymes, substrates, and inhibitors. A model presented for substrate and activator interactions has implications for the evolution of protein kinase cascades.  相似文献   

17.
Liang L  Jiang J  Frank SJ 《Endocrinology》2000,141(9):3328-3336
Interaction of GH with the cell-surface GH receptor (GHR) causes activation of the GHR-associated tyrosine kinase, JAK2, and consequent triggering of signaling cascades including the STAT, Ras/Raf/MEK1/MAP kinase, and insulin receptor substrate-1(IRS-1)/PI3kinase pathways. We previously showed that IRS- and GHR-deficient 32D cells that stably express the rabbit GHR and rat IRS-1 (32D-rbGHR-IRS-1) exhibited markedly enhanced GH-induced proliferation and MAP kinase (ERK1 and ERK2) activation compared with cells expressing only the GHR (32D-rbGHR). We now examine biochemical mechanism(s) by which IRS-1 augments GH-induced MAP kinase activation. Time-course experiments revealed a similarly transient (maximal at 15 min) GH-induced ERK1 and ERK2 activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells, but, consistent with our prior findings, substantially greater activation was seen in the IRS-1-containing cells. In both cells, GH-induced MAP kinase activation was markedly blunted by the MEK1 inhibitor, PD98059, but not by the PKC inhibitor, GF109203X. Interestingly, pretreatment with the PI3K inhibitor, wortmannin (EC50 approximately 10 nM), significantly reduced GH-induced MAP kinase activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells. This same pattern in both cells of IRS-1-dependent augmentation and IRS-1-independent wortmannin sensitivity was also observed for GH-induced activation of Akt and MEK1 (using state-specific antibody blotting for both), despite the lack of difference in GHR, JAK2, SHP-2, p85, Akt, Ras, Raf-1, MEK1, ERK1, or ERK2 abundance between the two cells. A different PI3K inhibitor, LY294002 (50 microM), substantially inhibited (roughly 72%) GH-induced MAP kinase activation in 32D-rbGHR-IRS-1 cells, but only marginally (and statistically insignificantly) inhibited GH-induced MAP kinase activation in 32D-rbGHR cells. Because GH-induced Akt activation was completely inhibited in both cells by the same concentration of LY294002, these findings indicate that the wortmannin sensitivity of both the IRS-1-independent and -dependent GH-induced MAP kinase activation may reflect the activity of another wortmannin-sensitive target(s) in addition to PI3K in mediation of GH-induced MAP kinase activation in these cells. Notably, GH-induced STAT5 tyrosine phosphorylation, unlike Akt or MAPK activation, did not differ between the cells. Finally, while GH promoted accumulation of activated Ras in both cells, both basal and GH-induced activated Ras levels were greater in cells expressing IRS-1 than in 32D-rbGHR cells. These data indicate that while GH induces tyrosine phosphorylation of STAT5 and activation of the Ras/Raf/MEK1/MAPK and PI3K pathways, IRS-1 expression augments the latter two more than the former.  相似文献   

18.
OBJECTIVE: A new member of the MAP kinase family, big MAP kinase-1 (BMK1), has been recently identified to promote cell growth and attenuate apoptosis. P90 ribosomal S6 kinase (p90RSK), one of the potentially important substrates of extracellular signal regulated kinase (ERK), regulates gene expression in part via phosphorylation of CREB and the Na(+)/H(+) exchanger. Recently, we have demonstrated that the activity of BMK1, Src (the upstream regulator of BMK1) and p90RSK was increased in hypertrophied myocardium induced by pressure-overload in the guinea pig. However, the abundance and activity of these kinases in human hearts are unknown. METHODS: In addition to the three classical MAP kinases (ERK, p38 kinase, and c-Jun NH(2)-terminal kinase (JNK)), we examined the protein expression and activity of Src, BMK1, and p90RSK in explanted hearts from patients with dilated cardiomyopathy (n=9). Normal donor hearts, which were not suitable for transplant for technical reasons, were used as controls (n=5). RESULTS: There were no significant differences in the levels of protein expression of these kinases between normal and failing hearts. ERK1/2 and p90RSK were activated in heart failure compared to control (P<0.01 and P<0.03, respectively), while the activity of p38 kinase was decreased (P<0.05) and the activity of JNK was unchanged in heart failure. By contrast, the activities of Src and BMK1 were significantly reduced in end-stage heart failure compared to normal donor hearts (P<0.05). CONCLUSION: These data suggest that multiple MAP kinases, p90RSK, and Src are differentially regulated in human failing myocardium of patients with idiopathic dilated cardiomyopathy and may be involved in the pathogenesis of this complex disease.  相似文献   

19.
Parenti A  Cui XL  Hopfer U  Ziche M  Douglas JG 《Hypertension》2000,35(5):1160-1166
The aim of this study was to test the hypothesis that differences exist in the activity and/or expression of mitogen-activated protein kinases (MAPKs) between spontaneously hypertensive rats (SHR) and control Wistar-Kyoto rats (WKY) and that these differences may account for the enhanced activity of the Na(+)/H(+) exchanger (NHE) previously observed in the renal proximal tubule of SHR. Therefore, the activities of c-jun N-terminal kinase(1) (JNK(1)), extracellular signal-regulated kinase(1/2) (ERK(1/2)), and p38 were investigated. A reduced amount of ERK(1) and JNK(1) protein was found in renal cortex specimens of SHR as compared with WKY; however, their activities were the same. To study the cellular basis of this difference, immortalized proximal tubule cell lines were grown on Millicell-CM filter inserts where the cell lines organize as polarized monolayers with separate access to apical and basolateral compartments. Although basal JNK(1) and ERK(1/2) activities were not significantly different between WKY and SHR cells, anisomycin stimulated JNK(1) activity in WKY cells more than in SHR cells (eg, at 15 minutes 300% versus 30%, respectively). Similarly, angiotensin II increased JNK(1) and ERK(1/2) activity in a time- and concentration-dependent manner in WKY cells but not in SHR cells. Western blot analyses showed a deficit in JNK(1) and ERK(1) protein in SHR (0.25 and 0.5, respectively, of the levels in WKY cells), although ERK(2) and p38 protein levels were the same. These observations suggest that, although angiotensin II activates MAPKs and MAPKs have been shown to regulate NHE, this regulatory pathway is unlikely to account for the increased activity of NHE in the proximal tubular epithelium of SHR.  相似文献   

20.
Eotaxin and other CC chemokines acting via CC chemokine receptor-3 (CCR3) are believed to play an integral role in the development of eosinophilic inflammation in asthma and allergic inflammatory diseases. However, little is known about the intracellular events following agonist binding to CCR3 and the relationship of these events to the functional response of the cell. The objectives of this study were to investigate CCR3-mediated activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase-2 (ERK2), p38, and c-jun N-terminal kinase (JNK) in eosinophils and to assess the requirement for MAP kinases in eotaxin-induced eosinophil cationic protein (ECP) release and chemotaxis. MAP kinase activation was studied in eotaxin-stimulated eosinophils (more than 97% purity) by Western blotting and immune-complex kinase assays. ECP release was measured by radioimmunoassay. Chemotaxis was assessed using Boyden microchambers. Eotaxin (10(-11) to 10(-7) mol/L) induced concentration-dependent phosphorylation of ERK2 and p38. Phosphorylation was detectable after 30 seconds, peaked at about 1 minute, and returned to baseline after 2 to 5 minutes. Phosphorylation of JNK above baseline could not be detected. The kinase activity of ERK2 and p38 paralleled phosphorylation. PD980 59, an inhibitor of the ERK2-activating enzyme MEK (MAP ERK kinase), blocked phosphorylation of ERK2 in a concentration-dependent manner. The functional relevance of ERK2 and p38 was studied using PD98 059 and the p38 inhibitor SB202 190. PD98 059 and SB202 190 both caused inhibition of eotaxin-induced ECP release and chemotaxis. We conclude that eotaxin induces a rapid concentration-dependent activation of ERK2 and p38 in eosinophils and that the activation of these MAP kinases is required for eotaxin-stimulated degranulation and directed locomotion. (Blood. 2000;95:1911-1917)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号