首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A noninactivating, persistent sodium current has been demonstrated previously in dorsal root ganglia neurons and in rat optic nerve. We report here that Na(+) channel blockade with tetrodotoxin (TTX) in isolated dorsal and ventral roots elicits membrane hyperpolarization, suggesting the presence of a persistent Na(+) current in peripheral axons. We used a modified sucrose-gap chamber to monitor resting and action potentials and observed a hyperpolarizing shift in the nerve potential of rat dorsal and ventral roots by TTX. The block of transient inward Na(+) currents was confirmed by the abolition of compound action potentials (CAPs). Moreover, depolarization of nerve roots by elevating extracellular K(+) concentrations to 40 mM eliminated CAPs but did not significantly alter TTX-induced hyperpolarizations, indicating that the persistent Na(+) currents in nerve roots are not voltage-dependent. Tetrodotoxin-sensitive persistent inward Na(+) currents are present in both dorsal and ventral root axons at rest and may contribute to axonal excitability.  相似文献   

2.
Two distinct populations of Na+ channels (kinetically fast and slow) are present on the cell bodies and axons of cutaneous afferent neurons; the fast current is increased and the slow current reduced in amplitude following nerve injury. The present study was undertaken to determine if similar changes occur on the axons of these neurons following peripheral nerve injury. The compound action potentials from rat sural nerves were recorded in a sucrose gap chamber. Following application of 4-aminopyridine, a prominent and well-characterized depolarization (the delayed depolarization) followed the action potential. This potential, only present on cutaneous afferent axons, has been correlated with activation of a slow Na+ current. The delayed depolarization was reduced after nerve transection. The refractory period of transmission of the action potential was shortened in the transected nerves, but that of the delayed depolarization was prolonged. The changes were largest when the sural nerve was cut and ligated [control: 38.1 ± 1.7% (n = 5); injury: 24.5 ± 2.8% (n = 5), P < 0.05], which prevented reconnection to its peripheral target. When the nerve was crushed and allowed to reestablish peripheral target connections, the delayed depolarization was minimally effected. These results indicate that the changes in Na+ channel organization following peripheral target disconnection observed on cutaneous afferent cell bodies also occur on their axons. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:1040–1047, 1988.  相似文献   

3.
The depolarizing effect of gamma-aminobutyric acid (GABA) on rat lumbar dorsal roots was studied in a sucrose gap chamber following axotomy or crush injury of the sciatic nerve or dorsal root. The mean depolarization elicited by GABA on normal dorsal roots (3.96 +/- 0.71 mV, N = 14) was significantly reduced following chronic sciatic axotomy (2.02 +/- 0.99 mV, N = 15). Chronic sciatic crush injury had no significant effect on dorsal root GABA sensitivity. The amplitudes of the dorsal root compound action potentials were the same from rats with normal and injured sciatic nerves, indicating that axons proximal to the sciatic nerve lesion did not undergo appreciable degeneration. A marked loss of dorsal root GABA sensitivity was also seen following dorsal root axotomy or crush injury (1.02 +/- 0.98 mV (N = 10) and 0.69 +/- 0.70 mV (N = 9), respectively). These results indicate that GABA sensitivity of dorsal roots is attenuated following peripheral nerve lesions in which regeneration and functional reconnection with peripheral targets are prevented. Previous work indicates that the primary afferent depolarization is reduced under similar conditions. The reduction in GABA sensitivity of dorsal root fibers described here may have a contributory role in the reduced primary afferent depolarization that follows peripheral nerve transection, which has pathophysiologic implications in chronic pain syndromes.  相似文献   

4.
We have plotted the time-course of retrograde slowing of impulse conduction velocity in myelinated afferent fibers after sciatic nerve transection and ligation, using compound action potential recordings, and samples of single afferent fibers. Conduction slowed rapidly during the first few weeks postoperative, and then the rate of slowing declined, approaching an asymptote after about 5 months. There was no indication of recovery. The initial decline in conduction velocity that follows nerve crush was similar to that following nerve transection. Upon regeneration, however, conduction velocity returned to near baseline values. Afferent fibers in the neighboring posterior biceps nerve share conduction pathways, dorsal root ganglia, and spinal terminal fields with sciatic nerve afferents, but their conduction velocity was not reduced following sciatic nerve injury.  相似文献   

5.
Excitability of rat dorsal root axons were studied 3 weeks after injuryto the sciatic nerve. Whole nerve recordings were obtained from injured andcontrol nerves in a sucrose gap chamber. Constant current depolarization pulses (30–200 ms) applied approximately 50% above the stimulus strength required for maximal amplitude compound action potentials (CAPs) evoked burst of action potentials in the dorsal root which displayed spike adaptation. The depolarization-induced burst response of the dorsal roots was greatly reduced after crush or transection of the sciatic nerve. However, application of the potassium channel blocker, tetraethylammonium (TEA), restored the burst discharge in injured dorsal root axons. Brief tetanic stimulation of the dorsal root also induced an afterhyperpolarization (AHP) that was twice as large in the transection group as compared to the control group, and which was blocked by TEA. There were no changes seen in the amplitude of the compound action potential, frequency-following characteristics, refractory properties, or 4-AP sensitivity in the dorsal roots after peripheral nerve injury. These results suggest that there is enhanced spike adaptation that occurs at the same time as an increase in the sensitivity to the potassium channel blocker, TEA, in axon regions proximal to the site of nerve injury and have implications for the pathophysiology of nerve injury. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Mechanisms of paresthesias arising from healthy axons   总被引:2,自引:0,他引:2  
Paresthesias are common manifestations of central and peripheral pathological processes and are due to ectopic impulse activity in cutaneous afferents or their central projections. Cutaneous afferents are more excitable than motor axons, due to differences in their biophysical properties. These differences probably include more persistent Na(+) conductance and inward rectification on cutaneous afferents, properties which probably confer greater protection from impulse-dependent conduction failure but create a greater tendency to ectopic activity. Ectopic discharges can be induced in normal afferents by four maneuvers: hyperventilation, ischemia, release of ischemia, and prolonged tetanization. The alkaline shift produced by hyperventilation selectively increases the persistent Na(+) conductance, while the membrane depolarization produced by ischemia affects both transient and persistent Na(+) channels. Postischemic and posttetanic paresthesias occur when hyperpolarization by the Na(+)/K(+) pump is transiently prevented by raised extracellular K(+). The electrochemical gradient for K(+) is reversed, and inward K(+) currents trigger regenerative depolarization. These mechanisms of paresthesia generation can account for paresthesias in normal subjects and may be relevant in some peripheral nerve disorders.  相似文献   

7.
The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons.  相似文献   

8.
Recent studies revealed that ralfinamide, a Na(+) channel blocker, suppressed tetrodotoxin-resistant Na(+) currents in dorsal root ganglion (DRG) neurons and reduced pain reactions in animal models of inflammatory and neuropathic pain. Here, we investigated the effects of ralfinamide on Na(+) currents; firing properties and action potential (AP) parameters in capsaicin-responsive and -unresponsive DRG neurons from adult rats in the presence of TTX (0.5 microM). Ralfinamide inhibited TTX-resistant Na(+) currents in a frequency- and voltage-dependent manner. Small to medium sized neurons exhibited different firing properties during prolonged depolarizing current pulses (600 ms). One group of neurons fired multiple spikes (tonic), while another group fired four or less APs (phasic). In capsaicin-responsive tonic firing neurons, ralfinamide (25 microM) reduced the number of APs from 10.6+/-1.8 to 2.6+/-0.7 APs/600 ms, whereas in capsaicin-unresponsive tonic neurons, the drug did not significantly change firing (8.4+/-0.9 in control to 6.6+/-2.0 APs/600 ms). In capsaicin-responsive phasic neurons, substance P and 4-aminopyridine induced multiple spikes, an effect that was reversed by ralfinamide (25 microM). In addition to effects on firing, ralfinamide increased the threshold, decreased the overshoot, and increased the rate of rise of the AP. To conclude, ralfinamide suppressed afferent hyperexcitability selectively in capsaicin-responsive, presumably nociceptive neurons, but had no measurable effects on firing in CAPS-unresponsive neurons. The action of ralfinamide to selectively inhibit tonic firing in nociceptive neurons very likely contributes to the effectiveness of the drug in reducing inflammatory and neuropathic pain as well as bladder overactivity.  相似文献   

9.
Hyperexcitability of the primary afferent neuron leads to neuropathic pain following injury to peripheral axons. Changes in calcium channel function of sensory neurons following injury have not been directly examined at the channel level, even though calcium is a primary second messenger-regulating neuronal function. We compared calcium currents (I-Ca) in 101 acutely isolated dorsal root ganglion neurons from 31 rats with neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve, to cells from 25 rats with normal sensory function following sham surgery. Cells projecting to the sciatic nerve were identified with a fluorescent label applied at the CCI site. Membrane function was determined using patch-clamp techniques in current clamp mode, and in voltage-clamp mode using solutions and conditions designed to isolate I-Ca. Somata of peripheral sensory neurons from hyperalgesic rats demonstrated decreased I-Ca. Peak calcium channel current density was diminished by injury from 3.06 +/− 0.30 pS/pF to 2.22 +/− 0.26 pS/pF in medium neurons, and from 3.93 +/− 0.38 pS/ pF to 2.99 +/− 0.40 pS/pF in large neurons. Under these voltage and pharmacologic conditions, medium-sized neuropathic cells lacked obvious T-type calcium currents which were present in 25% of medium-sized cells from control animals. Altered Ca2+ signalling in injured sensory neurons may contribute to hyperexcitability leading to neuropathic pain.  相似文献   

10.
White matter of the mammalian CNS suffers irreversible injury when subjected to anoxia/ischemia. However, the mechanisms of anoxic injury in central myelinated tracts are not well understood. Although white matter injury depends on the presence of extracellular Ca2+, the mode of entry of Ca2+ into cells has not been fully characterized. We studied the mechanisms of anoxic injury using the in vitro rat optic nerve, a representative central white matter tract. Functional integrity of the nerves was monitored electrophysiologically by quantitatively measuring the area under the compound action potential, which recovered to 33.5 +/- 9.3% of control after a standard 60 min anoxic insult. Reducing Na+ influx through voltage-gated Na+ channels during anoxia by applying Na+ channel blockers (TTX, saxitoxin) substantially improved recovery; TTX was protective even at concentrations that had little effect on the control compound action potential. Conversely, increasing Na+ channel permeability during anoxia with veratridine resulted in greater injury. Manipulating the transmembrane Na+ gradient at various times before or during anoxia greatly affected the degree of resulting injury; applying zero-Na+ solution (choline or Li+ substituted) before anoxia significantly improved recovery; paradoxically, the same solution applied after the start of anoxia resulted in more injury than control. Thus, ionic conditions that favored reversal of the normal transmembrane Na+ gradient during anoxia promoted injury, suggesting that Ca2+ loading might occur via reverse operation of the Na+)-Ca2+ exchanger. Na(+)-Ca2+ exchanger blockers (bepridil, benzamil, dichlorobenzamil) significantly protected the optic nerve from anoxic injury. Together, these results suggest the following sequence of events leading to anoxic injury in the rat optic nerve: anoxia causes rapid depletion of ATP and membrane depolarization leading to Na+ influx through incompletely inactivated Na+ channels. The resulting rise in the intracellular [Na+], coupled with membrane depolarization, causes damaging levels of Ca2+ to be admitted into the intracellular compartment through reverse operation of the Na(+)-Ca2+ exchanger. These observations emphasize that differences in the pathophysiology of gray and white matter anoxic injury are likely to necessitate multiple strategies for optimal CNS protection.  相似文献   

11.
Current and voltage clamp recordings were made with a patch-clamp technique from large, light, dorsal root ganglia (DRG) neurons in tissue culture, derived from trisomy 16 and normal fetal mice. In a Na gradient of [52 mM]o/[28 mM]i, the action potential was accelerated, depolarization and repolarization were faster and the total Na conductance was higher in trisomic neurons. A tetrodotoxin (TTX)-sensitive, fast Na current was demonstrated, about 0.9 nA in trisomic and 0.3 nA in control neurons. The calculated mean specific membrane conductances were 0.74 mS/cm2 and 0.28 mS/cm2, respectively. A TTX-insensitive, slow Na conductance, 3-4 times the fast Na conductance and sensitive to Cd, also was demonstrated, with a 2-fold greater current density and conductance in trisomic as compared with control neurons, of 2.22 +/- 0.54 mS/cm2 and 1.26 +/- 0.09 mS/cm2, respectively. The voltage-dependence and kinetics of the TTX-insensitive, slow, Na current were similar in the two neuronal groups. The results indicate that depolarization during the action potential, in fetal mouse DRG neurons in culture, is mediated by this slow TTX-insensitive Na current. Further, acceleration of depolarization in trisomy 16 neurons is caused by a 2-fold increase in the density of the slow Na current.  相似文献   

12.
Insulin as an in vivo growth factor   总被引:3,自引:0,他引:3  
Insulin peptide has been identified to promote regeneration of axons in culture and in some in vivo model systems. Such actions have been linked to direct actions of insulin, or to cross occupation of closely linked IGF-1 receptors. In this work, we examined insulin support of peripheral nerve regenerative events in mice. Systemic insulin administration accelerated the reinnervation of foot interosseous endplates by motor axons after sciatic nerve transection and enhanced recovery of functional mouse hindpaw function. Similarly, insulin accelerated the regeneration-related maturation of myelinated fibers regrowing beyond a sciatic nerve crush injury. That such benefits might occur through direct signaling on axons was supported by immunohistochemical studies of expression with an antibody directed to the beta insulin receptor (IR) subunit. The proportion of sensory neurons expressing IRbeta increased ipsilateral to a similar sciatic crush injury in the L4 and L5 dorsal root ganglia. Insulin receptors, although widely expressed in axons, were also preferentially and intensely expressed on axons regrowing just beyond a peripheral nerve crush injury zone. The findings indicate that insulin imparts a substantial impact on regenerating peripheral nerve axons through upregulation of its expression following injury. Although the findings do not exclude insulin coactivating IGF-1 receptors during regeneration, its own receptors are present and available for action on injured nerves.  相似文献   

13.
Excitability properties of median and peroneal motor axons   总被引:5,自引:0,他引:5  
Threshold tracking was used to compare excitability properties (stimulus-response curves, strength-duration properties, recovery cycle, and threshold electrotonus) of median motor axons at the wrist and peroneal motor axons at the ankle in 12 healthy subjects. Stimulus-response curves and strength-duration properties were similar, though higher stimulus intensities were required for peroneal axons. However, there were significant differences in the recovery cycle of excitability following a conditioning stimulus and in threshold electrotonus. In the recovery cycle, median axons had significantly greater supernormality and late subnormality. In threshold electrotonus, the initial slow threshold changes in response to subthreshold depolarizing and hyperpolarizing currents (S1) were significantly greater in median axons, and there was also greater accommodation to depolarizing currents (S2) and greater threshold undershoot after depolarization. Similar differences in supernormality and the S1 phase of threshold electrotonus were found between peroneal axons at ankle and knee, suggesting that these properties may be dependent on nerve length. When median motor axons at the wrist were compared with peroneal motor axons at the knee, there were no differences in refractoriness and supernormality and only small differences in S1, but the late subnormality and undershoot were significantly greater in the median axons. These findings suggest that, in addition to any length-dependent differences, peroneal axons have a less prominent slow K(+) conductance. We conclude that the properties of different motor axons are not identical and their responses to injury or disease may therefore differ.  相似文献   

14.
A Konnerth  P M Orkand  R K Orkand 《Glia》1988,1(3):225-232
Voltage-sensitive dyes were used to study the changes in membrane potential in axons and glial cells of the frog optic nerve following electrical stimulation. The lack of a signal in the unstained nerve and the multiphasic action spectra after staining indicated that the optical responses were from the extrinsic dyes. Changes in dye absorption and fluorescence had rapid and slow phases. The rapid phases resulted from action potentials in myelinated and unmyelinated axons. The kinetics of the slow phase of the optical response were similar to the depolarization recorded from the glial cells with intracellular electrodes. The ratio of the amplitudes of the fast and slow phases was characteristic for each type of dye. Pharmacological analysis of the action potential of the unmyelinated axons revealed tetrodotoxin-sensitive sodium channels and 4-aminopyridine-sensitive potassium channels. Repeated exposure of the stained preparation to light led to photodynamic damage as shown by a block of recovery of the glial depolarization. An electron microscopic morphometric study of the nerve was carried out in an effort to understand the contribution of the various anatomical elements to the compound optical response. The ratio of unmyelinated axon membrane to glial membrane was much greater than was the ratio of the fast and slow components of the signal, suggesting that the dyes either had a higher affinity for glial membrane or did not penetrate the nerve uniformly.  相似文献   

15.
It has been shown previously that impulses in axons of the descending branches of myelinated afferents in rat dorsal columns may suffer a blockade of transmission along their course in the dorsal columns. This paper tests the effect of the mechanism of primary afferent depolarization on the orthodromic movement of impulses in descending dorsal column primary afferent axons originating in the L1 dorsal root. Orthodromic impulses were recorded in the L5 and 6 dorsal columns after stimulation of the L1 dorsal root. Twenty-seven out of 82 axons (33%) suffered a temporary transmission block if primary afferent depolarization had been induced by L5 stimulation before the L1 stimulus. The tendency to block peaked at 10–15 ms and persisted for up to 30–40 ms. The number of single unit orthodromic impulses originating from the L1 root and recorded during a search of the dorsal columns 15 mm caudal to L1 increased by a factor of 3.1 after the systemic administration of bicuculline (1 mg/kg). The number of single unit orthodromic impulses originating from the L1 root and recorded in axons descending in the dorsal columns 20 mm caudal to the root increased by a factor of 8.7 after the systemic administration of picrotoxin (5 mg/kg). It is concluded that the transmission of impulses in the long range caudally running axons from dorsal roots to dorsal columns may be blocked during primary afferent depolarization and that conduction may be restored by the administration of GABA antagonists.  相似文献   

16.
Nerve injury in newborn animals results in the loss of motoneurons and dorsal root ganglion neurons and long-term changes in reflex activation of surviving motoneurons. Parvalbumin has been previously shown to be found in large-diameter primary afferent axons and interneurons in the spinal cord, and was used here to study the changes in parvalbumin-immunoreactive appositions onto identified tibialis anterior/extensor digitorum longus (TA/EDL) motoneurons, during both normal development and following neonatal nerve injury in the rat spinal cord. During normal development, there was a decrease in the number of parvalbumin-immunoreactive appositions onto TA/EDL motoneurons. Thus, at postnatal day 7 (P7), there were 72.8 +/- 17.5 (mean +/- SD) appositions per motoneuron and by P14, it had decreased to 38.8 +/- 13.2 (mean +/- SD; p > 0.05). Following neonatal nerve injury at P2, there were fewer parvalbumin-positive afferent appositions close to the TA/EDL motoneurons than normal, so that at P7, there were 53.5 +/- 17.1 (mean +/- SD), and at P14, it further decreased to 25.8 +/- 8.6 (mean +/- SD; p > 0.05). This injury-induced reduction in the number of parvalbumin-immunoreactive boutons apposing TA/EDL motoneurons may result, at least in part, from the death of dorsal root ganglion cells with the consequent loss of their central projections. The alterations in the number of parvalbumin-positive appositions close to motoneurons observed in this study may contribute to the changes in the pattern of reflex activity observed in the developing spinal cord both during normal development and following neonatal injury.  相似文献   

17.
Afferent pathways innervating the urinary bladder consist of myelinated Adelta-fibers and unmyelinated C-fibers. Normal voiding is dependent on mechanoceptive Adelta-fiber bladder afferents that respond to bladder distention. However, the mechanisms for controlling the excitability of Adelta-fiber bladder afferents are not fully understood. We therefore used whole cell patch-clamp techniques to investigate the properties of hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents (I(h)) in dorsal root ganglion (DRG) neurons innervating the urinary bladder of rats. The neurons were identified by axonal tracing with a fluorescent dye, Fast Blue, injected into the bladder wall. Hyperpolarizing voltage step pulses from -40 to -130 mV produced voltage- and time-dependent inward I(h) currents in bladder afferent neurons. The amplitude and current density of I(h) at a holding potential of -130 mV was significantly larger in medium-sized bladder afferent neurons (diameter: 37.8 +/- 0.3 microm), a small portion (19%) of which were sensitive to capsaicin (1 microM), than in uniformly capsaicin-sensitive small-sized (27.6 +/- 0.5 microm) bladder neurons. In medium-sized bladder neurons, a selective HCN channel inhibitor, ZD7288, dose-dependently inhibited I(h) currents. ZD7288 (10 microM) also increased the time constant of the slow depolarization phase of spike after-hyperpolarization from 91.8 to 233.0 ms. These results indicate that I(h) currents are predominantly expressed in medium-sized bladder afferent neurons innervating the bladder and that inhibition of I(h) currents delayed recovery from the spike after-hyperpolarization. Thus, it is assumed that I(h) currents could control excitability of mechanoceptive Adelta-fiber bladder afferent neurons, which are usually capsaicin-insensitive and larger in size than capsaicin-sensitive C-fiber bladder afferent neurons.  相似文献   

18.
J. J. A. Scott 《Brain research》1991,563(1-2):195-202
Nerve regeneration promoters offer the possibility of enhancing recovery following nerve injury by increasing the numbers of regenerating axons and decreasing the period of tissue denervation. To date, recent studies have concentrated on evaluating the action of such promoters on the nerve itself and on the restoration of motor function. This study examines afferent regeneration by evaluating the recovery of muscle spindles and tendon organs after nerve injury and treatment with alpha-melanocyte stimulating hormone or nerve stimulation. Treatment was found to be effective in enhancing short-term recovery after nerve-crush injury in terms of increasing the rate of functional and morphological recovery. Following nerve section, there was an increase in the number of reinnervating axons compared with control values.  相似文献   

19.
Myelinated primary afferent fibers have both peripheral and central nervous system components. As the fibers course through peripheral nerve and dorsal roots they are myelinated by Schwann cells, but after they invade the spinal cord they become myelinated by oligodendrocytes and have associations with astrocytes. This presents the opportunity to compare the pathophysiology of PNS (Schwann cell-associated) vs. CNS (oligodendrocyte/astrocyte-associated) portions of the same axonal trunk located in the dorsal roots and dorsal columns, respectively. Dorsal spinal roots and slices of dorsal columns isolated from adult rats were studied in a sucrose gap chamber from which compound action potential and membrane potential changes could be recorded. The results indicate that the peripheral component of the afferent fibers is resistant to hypoxia as evidenced by stable action and membrane potential when O2 in the bathing medium was completely replaced with N2 for periods up to 2 h. In contrast, the axons become sensitive to hypoxia as they project through the dorsal columns as evidenced by rapid reduction in action potential amplitude accompanied by membrane depolarization when O2 is replaced by N2. This differential response to hypoxia, observed on the same axon branches but over CNS vs. PNS trajectories, suggests that differences related to the extracellular environment or in axo-glial organization in dorsal root vs. dorsal column may confer different degrees of susceptibility to anoxia.  相似文献   

20.
Whole cell patch-clamp recordings were obtained from dissociated mouse lumbar dorsal root ganglion (DRG) neurons. Recordings were made from control neurons and neurons axotomized by transection of the corresponding spinal nerve 1-2 days prior to dissociation. Medium to large muscle and cutaneous afferent neurons were identified by retrograde transport of True Blue or Fluoro-Gold injected into the corresponding peripheral tissue. Action potentials were classified as non-inflected spikes (A(0)) and inflected spikes (A(inf)). High-frequency, low-amplitude subthreshold membrane potential oscillations were observed in 8% of control A(0) neurons, but their incidence increased to 31% in the nerve injury group. Fifty percent of axotomized muscle afferent A(0) cells displayed oscillations, while 26% of axotomized cutaneous afferents exhibited oscillations. Lower-frequency oscillations were also observed in a small fraction (4%) of A(inf) neurons on strong depolarization. Their numbers were increased after the nerve injury, but the difference was not statistically significant. The oscillations often triggered burst firing in distinct patterns of action potential activity. These results indicate that injury-induced membrane oscillations of DRG neurons, previously observed in whole DRG of rats, are present in dissociated DRG neurons of the adult mouse. Moreover, these observations indicate that both muscle and cutaneous afferents in the A(beta) size range give rise to injury-induced membrane oscillations, with muscle afferents being more prone to develop oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号