首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: It has been demonstrated that growth hormone (GH) is synthesized and secreted by human peripheral mononuclear cells (PBMC), and the expression of GH mRNA can be found throughout the human immune system. METHODS: We studied a population of female caregivers of patients with Alzheimer's dementia (AD) who suffered from the stress of caring for these patients. We utilized quantitative RT-PCR to determine GH mRNA levels in T- and B-cell populations from PBMC. Subjects were nine caregivers of AD patients and nine age- and sex-matched controls. RESULTS: In the control group we found a threefold greater GH mRNA expression in B cells than in T cells. This finding was consistent with our previous in situ hybridization observation, suggesting GH mRNA in predominately B-cell areas of immune organs in humans. We also found that the expression of GH mRNA from total peripheral blood mononuclear cells and B cells in caregivers was 50% and 60% respectively less than that in the control group. CONCLUSIONS: Because the B-cell population is the source of antibody production, our findings suggest that the decrease in B-cell GH mRNA may contribute to the poor immune response to influenza virus vaccination that has been reported previously in chronically stressed caregivers.  相似文献   

2.
3.
Maternal adaptations, such as decreased anxiety and attenuated stress responsiveness, are necessary to enable successful postnatal development of the offspring. However, there is growing evidence that they are also required to protect the mental health of the mother and that exposure to chronic stress during pregnancy may prevent such adaptations. Overcrowding stress (24 h) and restraint stress (2 × 1 h) were employed on alternate days between pregnancy d 4-16 to examine the impact of chronic pregnancy stress on relevant behavioral, neuroendocrine, and neuronal peripartum adaptations. To determine whether the chronic stress-induced alterations were specific to the peripartum period, we included virgins as controls. Validating the stress procedure, we demonstrated decreased body-weight gain and increased adrenal weight in stressed dams, relative to their nonstressed controls. Chronic stress prevented a number of peripartum adaptations, including basal plasma hypercorticosterone levels, increased oxytocin mRNA expression in the hypothalamic paraventricular nucleus, and anxiolysis. However, chronic stress did not prevent the peripartum-associated decrease in CRH mRNA expression or attenuate corticosterone response to an acute stressor, nor did it affect hypothalamic vasopressin mRNA expression. Illustrating the specificity of these stress-induced changes to the peripartum period, none of these parameters were affected in stressed virgins. Although chronic stress did not alter depression-related behavior, it reversed the response to acute imipramine treatment and increased active maternal behavior in lactation. Thus, prevention of the peripartum-associated increases in basal corticosterone and oxytocin system activity by pregnancy stress reveal two alterations that may increase the risk of postpartum psychiatric disorders, particularly anxiety.  相似文献   

4.
5.
Although increases in glucocorticoid concentrations during acute stress are believed to help animals survive stressful events, chronic changes in glucocorticoid concentrations can alter metabolism and lead to disease. We studied the effect of chronic psychological stress on corticosterone (CORT), corticosterone binding globulin (CBG), glucose, and triglyceride concentrations as well as immune responsiveness to a T-cell mitogen challenge in European starlings, Sturnus vulgaris. To induce chronic stress we used a chronic stress protocol consisting of five stressors (loud radio, cage tapping, cage rolling, human voice, and bag restraint) administered in random order for 30 min for 4 times/day over 18 days. Total CORT decreased throughout the chronic stress period, which parallels a previous study with starlings. CBG capacity did not significantly change with chronic stress, thus free CORT followed the same pattern of attenuation as total CORT during chronic stress. Despite the change in regulation of CORT release, daytime glucose and triglyceride concentrations did not change with chronic stress. In addition, immune responsiveness in chronically stressed and unstressed birds was similar. Our results, together with a previous study using a similar CSP in European starlings, suggest that starlings physiologically dampen the HPA axis during chronic psychological stress to avoid pathology associated with chronically augmented CORT concentrations such as hyperglycemia and impaired immune function.  相似文献   

6.
Since previous experience of stressful situation profoundly affects response to a subsequent novel stressor, we examined changes in gene expression and protein levels of catecholamine biosynthetic enzymes in cardiac ventricles after exposure of chronic psychosocially isolated adult Wistar male rats to short-term immobilization stress. Chronic social isolation did not affect gene expression of tyrosine hydroxylase (TH) in either right or left ventricle. Subsequent immobilization of these animals produced an elevation of TH mRNA level in right and left ventricles. The levels of dopamine-β-hydroxylase (DBH) mRNA were detectable only after immobilization both in right and left ventricles of control and chronically isolated rats. Chronic isolation stress increased phenylethanolamine N-methyltransferase (PNMT) mRNA levels in the right ventricle. Immobilization led to an elevated PNMT mRNA level in right and left ventricles of both control and chronically stressed animals. Protein levels of TH, DBH, and PNMT in right and left ventricles of socially isolated rats were increased after subsequent immobilization. Taking into consideration the role of cardiac catecholamines in physiological and pathophysiological processes, it could be hypothesized that increased catecholamine synthesis in the ventricles after novel immobilization stress could point to the susceptibility of the heart to subsequent stress.  相似文献   

7.
Stressful stimuli are known to affect glucocorticoid receptor (GR) mRNA levels in the rat brain. The aim of this study was to examine the duration of chronic stress-induced changes in GR gene expression in the male rat hippocampus and cerebellum. By using in situ hybridization histochemistry, we detected a statistically significant down-regulation of GR mRNA both in the hippocampus and in the cerebellum of rats stressed for 8, 10 and 14 days. The same degree of down-regulation could also be detected in the above brain areas of rats stressed for 14 days and left undisturbed for 48 h or 8 days after stress. To examine the effects of subsequent stressors on the expression of down-regulated GR mRNA in the hippocampus of chronically stressed rats, we determined, by Northern blotting, GR mRNA levels in the hippocampi of rats stressed for 14 days and subsequently exposed to either short- or long-duration stressors. The down-regulated levels of GR mRNA remained practically unaffected when a subsequent new stressor was applied. Our results show that chronic stress-induced down-regulation of GR mRNA in the rat brain can be extended for periods longer than the initial/causative stimulus, irrespective of the presence of a novel stimulus.  相似文献   

8.
Corticosteroid receptors are key mediators of the neuroendocrine response to stress. Previously, we have determined the effects of restraint stress on the regulation of corticosteroid receptor genes in the brain and pituitary of male and female rats. Significant gender- and regional-specific regulation of receptor mRNAs was observed. To further investigate the stressor specificity in the same context, we have determined glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNAs following exposure to swimming stress paradigms applied alone, or in combination with restraint stress. Our data revealed stressor-specific alterations in GR or MR mRNA levels, which were more pronounced in males, the gender most affected by swimming stress. No alterations in GR or MR mRNA levels were detected in the female hippocampus and hypothalamus upon exposure to swimming paradigms, while in males the same stressors down-regulated GR mRNA in the hippocampus (chronic exposure) and up-regulated both genes in the hypothalamus (acute exposure). In the frontal cortex, acute swimming stress caused a reciprocal change in GR mRNA levels in the two sexes. The above difference is not due to circulating ovarian steroids, since ovariectomy did not change the female pattern of GR gene expression following acute stress. Our results further showed a hypothalamic-pituitary-adrenal axis facilitation to a novel superimposed stressor expressed at the level of limbic corticosteroid receptors: When chronically restrained rats of both sexes were exposed to acute swimming stress, a reduced GR/MR mRNA ratio, implying reduced feedback axis sensitivity, was detected in both the hippocampus and the hypothalamus. In conclusion, our work provides additional evidence on stressor, gender and region specificity in the regulation of brain corticosteroid receptors.  相似文献   

9.
Protein intake is a critical regulatory factor of the GH/IGF-I axis. Recently, it has been shown that splenic GH/IGF-I may respond to nutritional stress by preserving tissue homeostasis. To study the effects of exogenous administration of rhIGF-I on the splenic GH/IGF-I axis in protein malnourished rats, six-week-old male rats were assigned to one of four isocaloric diets differing in the protein content (0%, 4%, 12% and 20%) for a period of 12 days. Animals in the same dietary group on day 5 were randomly divided into two groups and during 7 days received a continuous subcutaneous infusion of either vehicle or rhIGF-I (300 microg/day). A low protein intake decreased the circulating levels of IGF-I, IGFBP-3, GH and insulin whereas the serum levels of IGFBP-1 were increased. Splenic IGFBP-3, -4 and -6 mRNA expression were up-regulated by protein malnutrition. Similarly, IGF-IR and GHR mRNA expression were significantly increased by the lack of dietary protein, whereas the levels of IGF-I mRNA remained unchanged. Exogenous rhIGF-I administration increased the circulating levels of IGFBP-1 and -3 in protein malnourished rats and reduced significantly the GH and insulin levels in well-fed rats. Similarly, rhIGF-I increased significantly the expression of the GHR in the spleen and splenic weight in all dietary groups, whereas nitrogen balance was enhanced only in the high-protein diet group. Among the cell subpopulations, B lymphocytes showed the highest GHR expression. These results suggest that in catabolic stress, induced by protein malnutrition the splenic GH/IGF-I axis is an important modulator and contributes to the maintenance of the homeostasis of the immune system.  相似文献   

10.
11.
Objective Idiopathic short stature (ISS) describes short children with normal GH secretion. Although GH treatment increases their heights, growth response to the therapy differs among patients. Thyroid hormones (TH) are essential for longitudinal growth acting mainly through TH receptors (TR) α and β. We have previously reported that GH treatment reduced peripheral TH action in Turner Syndrome by TR down‐regulation. The aims of the study were to assess the effect of GH treatment to ISS on peripheral TH action and the correlation between thyroid status and growth response to the therapy. Subjects, design and measurements Eighteen normal (control) and twenty‐five ISS children were enrolled and evaluated before and after 12 months of life time (control) or 12 months of GH therapy (ISS). Fasting blood was used for serum biochemical evaluations, peripheral blood mononuclear cells for TR mRNA determination by QRT‐PCR and growth parameters by standard methods. Results GH treatment modified neither TR mRNA levels nor serum markers of TH action in ISS evaluated as a whole group. However, the individual change in TRβ mRNA levels correlated to the change in sex hormone–binding globulin (SHBG) levels after GH therapy. The growth response to GH correlated positively with the change in TRα mRNA level and negatively with that in TRβ mRNA, TSH and SHBG levels. The change in each TR mRNA isoform after GH treatment correlated negatively with its own basal level. Conclusions GH therapy induced individual changes in TR expression in ISS that correlated with their growth response. The basal TR mRNA level could predetermine the change in TR expression and therefore the sensitivity to GH treatment.  相似文献   

12.
Ethanol administration decreases GH secretion in humans and experimental animals. The mechanism of these inhibitory effects was investigated by evaluating the spontaneous secretory pattern of GH in chronically cannulated unanesthetized rats, plasma insulin-like growth factor-I (IGF-I) concentrations, and hypothalamic GH-releasing hormone (GHRH) and somatostatin, and pituitary GH mRNA levels. Body weight gain was reduced in ethanol (5%)-liquid diet-fed rats (n = 6) for 6 days compared to that in both isocalorically pair-fed controls (n = 6) and ad libitum-fed animals (n = 6). Spontaneous GH secretion was markedly decreased (by 75-90%) in ethanol-fed rats compared to that in pair-fed and ad libitum-fed groups, while pulsatile pattern of GH release was preserved, with secretory bursts occurring every 180-220 min in all groups. Mean 6-h plasma GH levels in ethanol-, pair-, and ad libitum-fed animals were: 18.8 +/- 4.5, 113.3 +/- 14.9, and 179.6 +/- 30.1 ng/ml, respectively (P < 0.01, ethanol vs. each control). Plasma IGF-I concentrations were decreased in the ethanol-fed rats (338 +/- 16 ng/ml) compared to those in pair-fed (427 +/- 39 ng/ml; P < 0.05) and ad libitum-fed (769 +/- 25 ng/ml; P < 0.01) rats. Ethanol treatment decreased GHRH mRNA levels to 9% of those in ad libitum-fed (P < 0.01) and 20% of those in pair-fed (P < 0.05) animals, whereas it did not significantly alter somatostatin or GH mRNA levels. The results indicate that the effects of ethanol inhibit GH secretion primarily at the hypothalamic level, resulting in impaired GHRH gene expression. Since the GHRH-GH-IGF-I axis has an important role in growth regulation, the growth retardation seen in experimental models of alcohol abuse may be a consequence at least in part of the suppressive effects of ethanol on this axis.  相似文献   

13.
Growth hormone (GH) and insulinlike growth factor I (IGF-I) may be part of a neuroendocrine immune axis that stimulates cellular proliferation of primary lymphoid organs (bone marrow, thymus) as well as stimulates activation of peripheral lymphocytes and macrophages to enhance specific immune responses. GH can also stimulate production of thymic hormones and cytokines, and in this way impact on immune function. It is not clear whether GH and IGF-I act independently or whether the action of GH is mediated by local production of IGF-I by lymphocytes. Both GH and IGF-I and their receptors are present in lymphocytes. Thus, cells of the immune system may be important targets of the GH-IGF-I axis.  相似文献   

14.
15.
16.
Activity of the hypothalamo-pituitary-adrenal (HPA) axis is regulated by a negative feedback loop that dampens central drive of the axis via the actions of the secreted glucocorticoids. Conversely, under conditions of chronic stress, glucocorticoids delivered centrally increase hypothalamic paraventricular nucleus (PVN) corticotrophin-releasing factor (CRF) expression and the response to restraint. However, HPA axis activity and PVN CRF mRNA expression under chronic stress conditions are often reduced, implying other indirect peripheral or extra-hypothalamic glucocorticoid actions. Glucocorticoids chronically increase palatable food intake, which increases abdominal fat depots and circulating insulin levels, both of which negatively correlate with PVN CRF mRNA expression and may in turn dampen the response to stress. Such an effect is dependent on food choices, rather than total calories ingested. Considering stress is omnipresent in the workplace, palatable food ingestion may represent a means to combat the feeling of stress which is ultimately maladaptive when unresolved.  相似文献   

17.
Serotonin re-uptake inhibitors (SSRIs) can affect the basal activity of the hypothalamic-pituitary-adrenal (HPA) axis in rats. A single injection of citalopram has been shown to stimulate the HPA axis while repeated administration leads to attenuation of the corticosterone response to the SSRI. The purpose of this work was to investigate the rodent HPA axis response to restraint stress, following acute and chronic treatment with the SSRI citalopram. We have demonstrated that a single injection of citalopram is able to prolong acute restraint-induced increases in plasma levels of corticosterone and adrenocorticotrophin (ACTH). This is possibly mediated by arginine vasopressin (AVP) in the parvocellular cells of the paraventricular nucleus (pPVN), as treatment with citalopram or restraint alone did not increase AVP mRNA in pPVN while the combination of treatments resulted in a significant increase in AVP mRNA in the pPVN. In contrast, the increase in corticotrophin-releasing factor (CRF) mRNA in the pPVN in response to acute restraint stress was not altered by citalopram. Oxytocin (OT) mRNA was also increased in the magnocellular PVN (mPVN) by the solo treatments of citalopram and restraint, and was not further enhanced by the dual treatment of restraint and citalopram. Chronic treatment with citalopram did not alter basal plasma levels of corticosterone or ACTH. However, the ACTH response to acute restraint was attenuated following chronic citalopram treatment. AVP mRNA in the pPVN was significantly elevated in response to chronic citalopram compared with saline controls suggesting an effect mediated through the AVP subset of pPVN neurones. The CRF mRNA response to acute restraint was not altered in rats treated chronically with citalopram. OT mRNA was not enhanced in the mPVN following chronic infusion of citalopram but was increased by acute restraint stress. We conclude from these data that both acute and chronic citalopram treatment has the potential to alter the rodent response to acute restraint stress. These effects appear to be regulated by the AVP-containing subset of CRF neurons in the pPVN and thus suggest that parvocellular AVP may have an important role in mediating the actions of SSRIs.  相似文献   

18.
Although translocation is an important conservation tool in the effort to create self-sustaining wild populations of threatened species, avian translocations have a high failure rate and causes for failure are poorly understood. While “stress” is considered to play a major role in translocation failure, the physiological changes associated with chronic stress resulting from translocation have been investigated only recently. Translocation results in chronic stress-induced alterations of stress response physiology in the chukar (Alectoris chukar) and in the present study we tested the hypothesis that changes in the hypothalamic-pituitary-adrenal axis (HPA) are correlated with changes in the brain, specifically at the level of the glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) in the hippocampus and hypothalamus. Our previous research has shown that there are apparent changes in GR and MR expression in the brain of experimentally chronically stressed European starlings (Sturnus vulgaris). In the present study however, translocation had no major detectable effect on levels of GR or MR mRNA expression in the hippocampus or hypothalamus of wild chukar suggesting that the observed dysregulation of the HPA axis by translocation may not be a result of such upstream changes.  相似文献   

19.
陈长源  张钲  白锋  黄晏  俞建 《中国心血管杂志》2005,10(2):116-118,121
目的研究热休克蛋白72(HSP72)和诱导型一氧化氮合酶(iNOS)在慢性缺氧型及非缺氧型先天性心脏病患儿体外循环术(CPB)前后的表达及其相关性;探讨HSP72和一氧化氮(NO)对缺血缺氧心肌的作用。方法在已确诊先天性心脏病(房间隔缺损、室间隔缺损、法洛四联症)住院患儿中,随机抽取18例分为慢性缺氧组[动脉氧饱和度(SaO2)<85%]及非缺氧组(SaO2>95%),每组9例。两组分别于CPB中主动脉交叉钳夹(ACC)前、CPB结束时收集患儿心肌标本保存在液氮中。试验采用半定量逆转录聚合酶链式反应(RT-PCR)技术测定心肌细胞中HSP72和iNOSmRNA的相对含量,比较两组心肌CPB前后HSP72和iNOSmRNA水平,并分析其临床意义。结果①与CPB术前相比,非缺氧组及慢性缺氧组HSP72mRNA水平均明显增高(P<0.05);CPB术前及术后,慢性缺氧组HSP72mRNA水平均明显高于非缺氧组(P<0.05)。②与CPB前相比,非缺氧组iNOSmRNA水平明显增高(P<0.05),而慢性缺氧组iNOSmRNA水平无明显变化(P=0.795);CPB术前及术后,慢性缺氧组iNOSmRNA水平均明显高于非缺氧组(P<0.05)。结论缺血应激上调了非缺氧型先天性心脏病患儿心肌组织HSP72、iNOS及慢性缺氧型先天性心脏病患儿心肌组织HSP72的基因表达,慢性缺氧应激也上调了慢性缺氧型先天性心脏病患儿心肌组织HSP72、iNOS的基因  相似文献   

20.
We investigated innate immune gene expression in clinical phases of chronic hepatitis B infection, including immune tolerant (IT), immune active (IA), inactive carrier (IC) and hepatitis B e antigen (HBeAg)‐negative phases, as well as healthy controls. Expression levels of interferon types I, II and III, their receptor subunits, IRFs, TLRs and other IFN‐induced genes in peripheral blood mononuclear cells were compared. Forty HBsAg‐positive treatment‐naïve subjects without co‐infection with HIV, HCV or HDV were enrolled. To complement the viral load, the expression levels of 37 innate immune genes were measured by qPCR. The highest response of the innate immune system was observed in the IT and HBeAg‐negative phases, and the IC phase had the lowest response; 31 of the 37 studied genes reached their maximum mRNA expression levels in the IT and HBeAg‐negative phases, and the minimum expression levels of 23 genes were found in the IC phase. The highest mRNA expression levels of IFNs, IFN receptor subunits, IRFs and TLRs genes in all clinical phases were IFN‐λ2 and 3, IFN‐γR2, IRF7 and TLR7, and the lowest levels of mRNA expression were observed for IFN‐α, IFN‐λR1, IRF8 and TLR2. We conclude that innate immune response genes are expressed differentially among chronic HBV phases, and this difference may help to develop new precise and noninvasive methods to determine the progression of disease in chronic HBV patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号