共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen LJ Lin WC Beloussow K Hosoya K Terasaki T Ann DK Shen WC 《Biochemical pharmacology》2003,66(10):1945-1952
Modulation of the extracellular level of arginine, substrate for nitric oxide synthetases, is a promising modality to alleviate certain pathological conditions where excess nitric oxide (NO) is produced. However, complications arise, as only preferential inhibition of the inducible nitric oxide synthetase (iNOS), but not endothelial nitric oxide synthetase (eNOS), is desired for the treatment of NO over-production. We investigated the effect of arginine deprivation mediated by a recombinant arginine deiminase (rADI) on the activity of iNOS and eNOS in an endothelial cell line, TR-BBB. Our results demonstrated that cytokine-induced NO production depends on the extracellular arginine as substrate. However, if sufficient citrulline is present in the medium, A23187-activated NO production by eNOS does not rely on extracellular arginine. Treatment with rADI can markedly inhibit cytokine-induced NO production via iNOS, but not A23187-activated NO production via eNOS. Our results also showed that the decrease of NO production by iNOS could be achieved by depleting arginine from the medium even under the conditions that would up-regulate iNOS expression. Thus, rADI appears to be a novel selective modulator of iNOS activity that may be a used as a tool in the study of pathological disorders where NO over-production plays a key role. 相似文献
2.
Paul V 《Biochemical pharmacology》2002,63(11):2019-2023
To determine the role of the metabolites of L-arginine in its actions on picrotoxin-induced convulsions in rats, the concentrations of nitric oxide (NO) and L-citrulline were measured in the brain 30 and 60 min after the administration of L-arginine (1000 and 2000 mg/kg) or of N-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg), an inhibitor of NO synthase. Animals treated similarly were challenged 30 and 60 min later with picrotoxin (5mg/kg), and the time of onset of myoclonus and clonic convulsions and the frequency of convulsions were determined. These parameters were also determined 30 and 60 min after administering L-arginine in L-NAME-pretreated (30 min) animals. Thirty minutes after the administration of L-arginine, the concentrations of both NO and L-citrulline were raised, the onset of myoclonus and clonic convulsions was delayed, and the frequency of convulsions was decreased, indicating the anticonvulsant property of L-arginine. A 60-min treatment of L-arginine produced a further increase in the concentration of L-citrulline but not that of NO and promoted the frequency of picrotoxin-induced convulsions. Pretreatment with L-NAME prevented L-arginine from raising the concentrations of both NO and L-citrulline; it also promoted the anticonvulsant actions and prevented the proconvulsant actions of L-arginine. These results lead to the conclusion that NO has no involvement in the time-dependent anti and proconvulsant actions of L-arginine on the picrotoxin convulsion model, and that L-citrulline seems to have a role in the proconvulsant action of L-arginine. 相似文献
3.
The effect of cyclosporin A on morphine tolerance and dependence: involvement of L-arginine/nitric oxide pathway 总被引:1,自引:0,他引:1
Cyclosporin A is known to decrease nitric oxide (NO) production in nervous tissues. The effects of systemic cyclosporine A on the induction and expression of morphine tolerance and dependence, acute morphine-induced antinociception, and the probable involvement of the L-arginine/nitric oxide pathway in these effects were assessed in mice. Cyclosporin A (20 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) and a combination of the two at lower and per se non-effective doses (5 and 3 mg/kg, respectively) showed a similar pattern of action, inhibiting the induction of tolerance to morphine-induced antinociception and increasing the antinociception threshold in the expression phase of morphine tolerance. These agents also inhibited the expression of morphine dependence as assessed by naloxone-precipitated withdrawal signs, while having no effect on the induction of morphine dependence. L-Arginine, at a per se non-effective dose (60 mg/kg), inhibited the effects of Cyclosporin A. Moreover, acute administration of Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) enhanced the antinociception induced by acute administration of morphine (5 mg/kg), while chronic pretreatment with Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) for 2 days (twice daily) did not affect morphine-induced antinociception. The inducible nitric oxide synthase inhibitor, aminoguanidine (100 mg/kg), did not alter morphine antinociception, tolerance or dependence. In conclusion, decreasing NO production through constitutive nitric oxide synthase may be a mechanism through which cyclosporin A differentially modulates morphine tolerance, dependence and antinociception. 相似文献
4.
In the present study, the interaction of nitric oxide synthase (NOS) inhibitors, L-NAME (N(G)-nitro-L-arginine methyl ester HCl) and L-NA (N(omega)-nitro-L-arginine), and its precursor, L-arginine (2-(S)-2-amino-5-[(aminoiminomethyl)amino] pentatonic acid), with theophylline on mouse body temperature was studied. Intraperitoneal (i.p.) injection of different doses of theophylline altered body temperature. Lower doses of theophylline (12.5 and 25 mg/kg) increased, but a higher dose (100 mg/kg) reduced, the animals' body temperature. The combination of L-arginine (20 and 40 mg/kg) with the highest dose of theophylline potentiated the hypothermic effect induced by the latter drug, while L-arginine by itself did not alter body temperature. L-NAME (10-80 mg/kg) or L-NA (10 mg/kg) plus a lower dose of theophylline (12.5 mg/kg) reduced the theophylline-induced hyperthermic response. L-NA (1, 5, and 10 mg/kg) in combination with the high dose of theophylline (100 mg/kg) also induced greater hypothermia. Both L-NAME and L-NA by themselves reduced body temperature. It is concluded that nitric oxide (NO) may be involved in the effects of theophylline on body temperature in mice. 相似文献
5.
Dimerization of inducible NOS has been known to be a potential therapeutic target for iNOS-mediated pathologies. Cyclic dipeptides are among the simplest peptides commonly found as by-products of food processing or metabolites of microorganisms. In this study, we found that cyclo(dehydrohistidyl-l-tryptophyl) (CDHT), a cyclic dipeptide from an unidentified fungal strain Fb956, prevents iNOS dimerization in activated microglial BV-2 cells. CDHT inhibited NO production with an IC50 of 6.5 microM in LPS-treated BV-2 cells. Western blot analysis and iNOS activity measurement of fractions from size-exclusion chromatography of cell lysates indicated that CDHT inhibits dimerization of iNOS, while it has no effect on iNOS expression or enzyme activity. The CDHT inhibition of iNOS dimerization was confirmed by partially denaturing SDS-PAGE analysis. In contrast, CDHT did not affect cGMP production in endothelial HUVEC cells, which indicates no inhibition of endothelial NOS activity. These results reveal that CDHT, one of the simplest and cyclic dipeptides, selectively inhibits NO production by inhibiting iNOS dimerization, and could be a useful therapeutic agent for inflammation-mediated diseases. 相似文献
6.
Influence of nitric oxide on morphine-induced conditioned place preference in the rat central amygdala 总被引:4,自引:0,他引:4
Effects of intra-central amygdala injections of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a NO synthase (NOS) inhibitor, on morphine-induced conditioned place preference in rats were investigated by using an unbiased 3-day schedule of place conditioning design. Animals receiving once daily injections of morphine (0.5-7.5 mg/kg, subcutaneously, s.c.) or saline (1.0 ml/kg, s.c.) showed a significant place preference in a dose-dependent manner. The maximum response was observed with 5.0 mg/kg of the opioid. Co-administration of morphine (5.0 mg/kg) with L-arginine (0.3, 1.0 and 3.0 microg/rat), but not with L-NAME (0.3, 1.0 and 3.0 microg/rat), during the acquisition of morphine-induced conditioned place preference increased morphine-induced conditioned place preference. The response to L-arginine was blocked by L-NAME preadministration. L-arginine and L-NAME by themselves did not induce conditioned place preference. When L-arginine or L-NAME at 0.3-3.0 microg/rat was administered 1 min before conditioned place preference testing, L-arginine but not L-NAME caused an increase in the expression of morphine-induced conditioned place preference, the effect that was blocked by L-NAME preadministration. A dose of L-arginine (0.3 microg/rat), but not L-NAME, during expression of morphine-induced conditioned place preference produced an increase in locomotion compared with that in the control group. It may be concluded that an increase in the NO levels in the central amygdala may have an effect on the acquisition and expression of morphine-induced conditioned place preference. 相似文献
7.
This study investigates our hypothesis that argininosuccinate synthase (AS), the rate-limiting enzyme for arginine (L-arg) regeneration from citrulline (L-cit), plays a pivotal role in supplying L-arg to endothelial (eNOS), but not inducible (iNOS) nitric oxide synthase, for nitric oxide (NO) production. Transgenic rat blood-brain barrier (TR-BBB) endothelial cells were used as a model to elucidate the accessibility of the L-arg compartments for NOS isozymes. NO production via eNOS or iNOS, with or without alpha-methyl-DL-aspartic acid (MDLA), an AS inhibitor, was measured by a fluorometric method. NO production via eNOS was activated by the calcium ionophore A23187, while via iNOS was induced by cytokines. AS activity was assayed by the amount of argininosuccinate regenerated from radioactive aspartic acid from cell extracts. Upon increased AS activity (5.9-fold) in cells grown in L-arg-free/L-cit-supplemented medium, A23187-activated NO production also significantly increased, however cytokine-induced NO production was not detected. A23187-activated NO production was observed not only in L-arg containing medium, but also L-arg-free and L-arg-free/L-cit-supplemented medium, and was abolished by MDLA regardless of medium type. Cytokine-induced NO production was only observed in L-arg containing medium, not in L-arg-free or L-arg-free/L-cit-supplemented medium, and it was not inhibited by MDLA in the L-arg containing medium. Our results indicate that extracellular L-arg was the only L-arg pool for cytokine-induced NO production and intracellular L-arg regenerated from L-cit via AS pathway was the major L-arg pool for A23187-activated NO production in TR-BBB endothelial cells. Therefore, modulation of AS activity could be a promising strategy to selectively alter NO production via eNOS, but not iNOS. 相似文献
8.
Tran Thi Hien Yuba Raj Pokharel Moo Yeol Lee 《Toxicology and applied pharmacology》2010,246(3):171-183
9.
The inhibitory effects of endogenous nitric oxide could explain the decreased mesenteric mast cell degranulation after anaphylaxis in genetically hypertensive rats (SHR). SHR and normotensive rats (NT) were sensitized to ovalbumin and challenged 14 days later. Degranulation of mast cells was assessed in duodenum, mesentery and skin by increased microvascular permeability using extravasation of Evans blue dye (20mg/kg, i.v.), and in the mesentery also by light microscopy after staining with toluidine blue. Pretreatment with an inhibitor of nitric oxide synthesis, L-NAME (30 mg/kg, i.v.) did not change dye extravasation after immunological challenge or after compound 48/80 in mesentery of either SHR or NT. PCA was also defective in SHR. Pretreatment with L-NAME did not affect either the defective PCA in SHR or the normal PCA reaction in NT. Our results show that inhibition by endogenous nitric oxide is not the cause of the defective mast cell degranulation in the SHR nor did it modulate degranulation of mesenteric or skin mast cells in NT. 相似文献
10.
Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B 总被引:3,自引:0,他引:3
Insulin exerts a vasodilator effect by stimulating endothelial nitric oxide (NO) production. Studies in cultured cells suggest that insulin might activate endothelial nitric oxide synthase (eNOS) by an atypical, calcium-independent mechanism. This study investigates the mechanism of insulin-stimulated endothelial NO production in intact aortic wall. Real time fluorescence imaging with 4,5-diaminofluorescin diacetate (DAF-2 DA) or 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) and FURA 2-AM was used to simultaneously visualise NO and intracellular calcium concentrations at multiple locations in the endothelium and vascular smooth muscle of isolated rat and mouse aorta after exposure to insulin. Inhibitors of intracellular insulin signalling were used to determine the pathway for insulin-stimulated NO production. Unlike acetylcholine, which stimulated endothelial NO production with a typical increase in free intracellular calcium, insulin (10(-8) to 10(-6)M) stimulated endothelial NO production without elevating intracellular calcium levels. Insulin-stimulated NO production was concentration dependent and detected within 30s of application. Peak increases in NO occurred between 60 and 120 s and declined slowly thereafter. Separate measurements of NO production by fluorescence of 2,3-diaminonaphthalene (DAN) noted that selective inhibitors of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB) inhibited insulin-stimulated NO production, whereas these inhibitors alone did not alter NO production or acetylcholine-stimulated NO production. Insulin-stimulated NO production by endothelium is an acute calcium-independent effect mediated via the PI3K-PKB signalling pathway. 相似文献
11.
Summary We studied the effects of the l-arginine analogue NG-nitro-l-arginine (l-NNA), in comparison with its d-isomer (d-NNA), on endothelium-dependent dilations of rabbit femoral arteries (RFA) and on the release of endothelium-derived relaxant factor (EDRF) from native and cultured endothelial cells. In addition, we examined the effects of l- and d-NNA on the l-arginine- and NADPH-dependent synthesis of nitric oxide (NO) in the cytosol of porcine aortic endothelial cells. l-NNA enhanced the noradrenaline-induced contraction of endothelium-intact, but not of endothelium-denuded segments of RFA, indicating an inhibition of basal EDRF release. l-NNA also inhibited significantly the endothelium-dependent dilations to acetylcholine (ACh). Both effects of l-NNA were attenuated by l-arginine. l-NNA rapidly inhibited the release of EDRF from cultured and native endothelial cells stimulated with thimerosal or ACh. l-NNA concentration-dependently and reversibly antagonized the l-arginine- and NADPH-dependent activation of a purified soluble guanylate cyclase (GC) by cytosol from.Sreshly harvested porcine aortic endothelial cells, suggesting a direct competition between l-NNA a l-arginine at the level of endothelial NO-synthesis. d-NNA was ineffective in all instances. These results prove l-NNA to be a stereospecific inhibitor of the cytosolic NO formation from l-arginine in endothelial cells. Therefore, l-NNA will be a useful tool to elucidate the molecular mechanism of mammalian NO synthesis.
Send offprint requests to A. Mdlsch at the above address 相似文献
12.
Chalupsky K Lobysheva I Nepveu F Gadea I Beranova P Entlicher G Stoclet JC Muller B 《Biochemical pharmacology》2004,67(6):1203-1214
Various oxime derivatives were evaluated as nitric oxide (NO) donors in arteries. Relaxation of rat aortic rings was used for bioassay of NO production, and electron paramagnetic resonance spectroscopy for demonstration of NO elevation. In rings with or without endothelium or adventitia, hydroxyguanidine and hydroxyurea were almost inactive, whereas formamidoxime, acetaldoxime, acetone oxime, acetohydroxamic acid and formaldoxime elicited relaxation. Active compounds increased NO levels in endothelium-denuded rings. Formaldoxime was the most potent agent for both relaxation and NO elevation in aortic rings, and it also increased NO in human aortic smooth muscle cells. In endothelium-denuded rings, relaxation was inhibited by a NO scavenger (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and by inhibitors of soluble guanylyl-cyclase (1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one) or cyclic GMP-dependent protein kinases (Rp-8-bromo cyclic GMP monophosphorothioate). Neither N(omega)-nitro-l-arginine methylester (a NO synthases inhibitor) nor proadifen (a cytochrome P450 inhibitor) decreased the effect of oxime derivatives. However, 7-ethoxyresorufin (7-ER, an inhibitor of P4501A(1) which can also inhibit various NADPH-dependent reductases) abolished the relaxant effect of these compounds, without affecting the one of glyceryl trinitrate (GTN) or 2-(N,N-diethylamino)-diazenolate-2-oxide. 7-ER also abolished formaldoxime-induced NO increase in aortic rings. In rings tolerant to GTN, formaldoxime-induced relaxation and NO elevation were not different from those obtained in control rings. In conclusion, some oxime derivatives release NO by 7-ER-sensitive pathways in aortic smooth muscle, thus eliciting vasorelaxation. Pathways of NO formation are likely distinct from NO synthases and from those responsible for GTN biotransformation. Oxime derivatives could be useful for NO delivery in arteries in which endothelial NO synthase activity is impaired. 相似文献
13.
The present study was designed to investigate the role of nitric oxide (NO) on recognition memory in the rat. For this purpose, the effects on memory exerted by post-training administration of the NO synthase (NOS) inhibitor N(omega)-nitro-L-argininemethylester (L-NAME) and the NO donor molsidomine were assessed by using the object recognition task. In a first dose-response study, L-NAME, at 30 but not at 10 mg/kg impaired the animals' performance, whereas at 60 mg/kg, it induced side-effects. Molsidomine, 4 mg/kg, antagonized the L-NAME-induced performance deficits. These results indicate that NO is involved in post-training memory processes. 相似文献
14.
Ann L. Meulemans Ludo F. Helsen Jan A. J. Schuurkes 《Naunyn-Schmiedeberg's archives of pharmacology》1993,348(4):424-430
Summary In a previous study we showed that the relaxations induced after vagal stimulation of the guinea-pig stomach are mediated via nitric oxide (NO) or a NO-related substance. Intra-arterial injection (i.a.) of 5-hydroxytryptamine (5-HT) also induced relaxations in the guinea-pig stomach. Since it has been shown that in the guinea-pig colon 5-HT-induced relaxations are mediated via NO the aim of this study was to establish whether NO is involved in the 5-HT-induced relaxations in the guinea-pig stomach. Intra-arterial injection of 5-HT induced dose-dependent relaxations of the stomach. Since atropine and - and -adrenoceptor blocking agents did not influence the relaxation and since tetrodotoxin (TTX) blocked the relaxations, this effect is mediated via NANC-neurons. Administration of a NO-synthase-inhibitor NG-nitro-l-arginine (L-NNA) concentration-dependently reduced the 5-HT-induced relaxations. Haemoglobin (a NO-scavanger) did not affect the relaxations to 5-HT, while addition of methylene blue, an inhibitor of soluble guanylate cyclase, reduced the relaxations by 50%. Addition of an opioid receptor agonist (loperamide), a 5-HT1 antagonist (methiothepin or metergoline) or a 5-HT4 receptor agonist (cisapride) or-antagonist (tropisetron in micromolar concentrations) inhibited the 5-HT-induced relaxations. Neither the 5-HT4 receptor agonist renzapride, nor the novel 5-HT4 receptor antagonist SDZ 205-557, affected the relaxations to 5-HT. These data indicate that 5-HT-induced relaxations of the guinea-pig stomach are mediated via NANC-inhibitory nerves on which inhibitory opioid-receptors are present. The use of selective agonists and antagonists indicates that 5-HT does not act via 5-HT2, 5-HT3 or 5-HT4 receptors. 5-HT may act via 5-HT1 receptors but the subtype involved, if any, has not yet been identified. The inhibitory neurotransmitter which is involved is NO or a NO-related substance.
Correspondence to A. L. Meulemans at the above address 相似文献
15.
Cui Qing Liu Fung Ping Leung Siu Ling Wong Chi Wai Lau Xiaoqiang Yao Tai Yao 《Biochemical pharmacology》2009,78(4):374-129
Activation of thromboxane prostanoid (TP) receptors causes potent vasoconstriction, which contributes to increased vascular tone and blood pressure. The present study examined the hypothesis that stimulation of TP receptor impaired endothelial nitric oxide-mediated vasorelaxation via a Rho kinase-dependent mechanism. The common carotid arteries of Sprague-Dawley rats were isolated and suspended in myograph for measurement of changes in isometric tension. The production of nitric oxide in primary cultured aortic endothelial cells was assayed with an imaging technique and phosphorylated levels of endothelial NOS were determined by Western blot analysis. 9,11-dideoxy-11α,9α-epoxy-methanoprostaglandin F2α (U46619) inhibited isoprenaline-induced relaxations in rings with or without endothelium. Treatment with Rho kinase inhibitors, Y27632 (2 μM) or HA 1077 (10 μM) prevented the effect of U46619 only in rings with endothelium while protein kinase C inhibitors were without effect. Rho kinase inhibitors did not affect isoprenaline-induced relaxations in endothelium-intact rings treated with L-NAME or 1H-[1,2,4]oxadizolo[4,3-a]quinoxalin-1-one (ODQ). Isoprenaline stimulated rises in nitric oxide (NO) production in cultured rat endothelial cells. The increased NO production was inhibited by U46619 (100 nM) and this effect was prevented by treatment with Y27632 but unaffected by the absence of extracellular calcium ions. U46619 attenuated isoprenaline-stimulated phosphorylation of eNOS, which was sensitive to inhibition by Y27632 and HA 1077. U46619-mediated effects were abolished by TP receptor antagonist, S18886 and the TP receptor was present in endothelial cells. The present results demonstrate that Rho kinase activation is likely to be the primary mechanism that underlies the U46619-stimulated TP-receptor-mediated inhibition of endothelial NO production and subsequent endothelium-dependent relaxations to isoprenaline. 相似文献
16.
Modulation of eosinophil migration from bone marrow to lungs of allergic rats by nitric oxide 总被引:1,自引:0,他引:1
Ferreira HH Costa RA Jacheta JM Martins AR Medeiros MV Macedo-Soares MF De Luca IM Antunes E De Nucci G 《Biochemical pharmacology》2004,68(4):631-639
Chronic blockade of nitric oxide (NO) synthesis attenuates the eosinophil infiltration into airways of allergic rats. This study was designed to investigate whether the inhibition of eosinophil influx to the lung of allergic rats reflects modifications in the pattern of cell mobilization from the bone marrow to peripheral blood and/or to lung. Male Wistar rats were treated with N(omega)-nitro-l-arginine methyl ester (l-NAME; 20mg/rat per day) for 4 weeks and sensitized with ovalbumin (OVA). In control rats, the pulmonary OVA-challenge promoted an early (24h) increase in the bone marrow eosinophil population that normalized at 48 h after OVA-challenge, at which time the eosinophils disappeared from the blood and reached the lungs in mass. In l-NAME-treated rats, an accumulation of eosinophils in bone marrow was observed at 24 and 48 h post-OVA-challenge. No variation in this cell type number was observed in peripheral blood and bronchoalveolar lavage throughout the time-course studied. In control rats, the adhesion of bone marrow eosinophils to fibronectin-covered wells was significantly increased at 24h after OVA-challenge, whereas in l-NAME-treated rats the increased adhesion was detected at 48 h. A 32% decrease in the expression of inducible nitric oxide synthase (iNOS) (but not endothelial nitric oxide synthase; eNOS) in eosinophils from l-NAME-treated rats was observed. The levels of IgE, IgG(1) and IgG(2a) were not affected by the l-NAME treatment. Our findings suggest that inhibition of NO synthesis upregulates the binding of eosinophils to extracellular matrix proteins such as fibronectin, producing a delayed efflux of eosinophils from bone marrow to peripheral blood and lungs. 相似文献
17.
5-Fluorouracil inhibits nitric oxide production through the inactivation of IkappaB kinase in stomach cancer cells 总被引:5,自引:0,他引:5
Jung ID Yang SY Park CG Lee KB Kim JS Lee SY Han JW Lee HW Lee HY 《Biochemical pharmacology》2002,64(10):1439-1445
The antimetabolite 5-fluorouracil (5-FU) is one of the more prominent clinical antitumor agents available for the treatment of stomach and colorectal cancers. In the present study, we characterized the effects of 5-FU on nitric oxide (NO) production by cells from the stomach cancer cell line NCI-N87. A cytokine mixture [interleukin (IL)-1beta/interferon (IFN)-gamma] increased the production of NO by stomach cancer cells in a concentration- and time-dependent manner. Pretreatment with 5-FU inhibited the production of NO that was stimulated by the cytokine mixture and reduced the expression of iNOS. The cytokine mixture activated nuclear factor kappaB (NF-kappaB) in a concentration- and time-dependent manner, which was blocked by 5-FU pretreatment. The pretreatment with 5-FU stabilized IkappaBalpha and inactivated IkappaB kinase. Collectively, these data suggest that the efficacy of 5-FU may include the inactivation of IkappaB kinase and the inhibition of NO production. 相似文献
18.
Dragan Hrn?i?Aleksandra Raši?-Markovi? Dragan DjuricVeselinka Šuši? Olivera Stanojlovi? 《Food and chemical toxicology》2011,49(4):947-954
Lindane is an organochloride pesticide and scabicide. It evokes convulsions mainly trough the blockage of GABAA receptors. Nitric oxide (NO), gaseous neurotransmitter, has contradictor role in epileptogenesis due to opposite effects of l-arginine, precursor of NO syntheses (NOS), and L-NAME (NOS inhibitor) observed in different epilepsy models. The aim of the current study was to determine the effects of NO on the behavioral and EEG characteristics of lindane-induced epilepsy in male Wistar albino rats.The administration of l-arginine (600, 800 and 1000 mg/kg, i.p.) in dose-dependent manner significantly increased convulsion incidence and severity and shortened latency time to first convulsion elicited by lower lindane dose (4 mg/kg, i.p.). On the contrary, pretreatment with L-NAME (500, 700 and 900 mg/kg, i.p.) decreased convulsion incidence and severity and prolonged latency time to convulsion following injection with a convulsive dose of lindane (8 mg/kg, i.p.). EEG analyses showed increase of number and duration of ictal periods in EEG of rats receiving l-arginine prior to lindane and decrease of this number in rats pretreated with L-NAME.These results support the conclusion that NO plays a role of endogenous convulsant in rat model of lindane seizures. 相似文献
19.
Fenamate-induced enhancement of heterologously expressed HERG currents in Xenopus oocytes 总被引:3,自引:0,他引:3
In the present study, the effects of intra-nucleus accumbens injection of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on morphine-induced conditioned place preference in male Wistar rats were investigated. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (0.5-10 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. Intra-accumbens administration of L-arginine (0.03 and 0.05 microg/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited significant conditioned place preference, while intra-accumbens administration of L-NAME (0.3, 0.1 and 1 microg/rat) decreased the acquisition of conditioned place preference induced by morphine (7.5 mg/kg). The response to different doses of L-arginine was decreased by L-NAME (0.03 microg/rat). L-Arginine and L-NAME by themselves did not elicit any effect on place conditioning. Intra-accumbens administration of L-arginine but not L-NAME significantly decreased the expression of morphine (7.5 mg/kg)-induced place preference. The attenuation of already established morphine-induced place preference on the test day by L-arginine was inhibited by L-NAME. The results indicate that NO may be involved in the acquisition and expression of morphine-induced place preference. 相似文献
20.
Summary We have investigated relations between hypotensive responses to LP-805, a newly synthesized vasodilator, and the production of nitric oxide (NO), in anesthetized rats. LP-805 (0.1–0.5 mg/kg, i.v.) or acetylcholine (ACh) (0.3 – 3.0 g/kg, i.v.) caused a dose-dependent transient decrease in diastolic blood pressure. The decrease induced by 0.3 mg/kg LP-805 (i.v.) was partially inhibited by pretreatment with NG-nitro-l-arginine (LNNA), a specific inhibitor of endothelial NO synthase, but the responses to lower or higher doses of LP-805 (0.1 or 0.5 mg/kg, i.v.) were not affected. The dose-dependent decrease in diastolic blood pressure, caused by LP-805, was not affected by pretreatment with l- or d-arginine. The dose-dependent decrease in diastolic blood pressure caused by ACh was not affected by pretreatment with L-NNA or with l- or d-arginine. The hypotensive response to 20-min infusions of LP-805 (100 g/kg per min) wassignificantly inhibited by pretreatment with L-NNA (10 mg/kg, i.v.). The half-recovery times (T1/2) of LP-805 or ACh-induced depressor responses were shortened by pretreatment with L-NNA. They were prolonged by l-arginine, but not by d-arginine. This shortening, by L-NNA, of the half-recovery time after LP-805 or ACh was reversed by l-arginine, but not by d-arginine. The T/2 of the LP-805-induced hypotensive response was not affected by pretreatment with indomethacin (1 mg/kg, i.v.). In the presence of L-NNA (10 mg/kg, i.v.), the T/2 of the LP-805-induced hypotensive response was not affected by pretreatment with indomethacin. The results suggest that the LP-805-induced hypotensive response may be related to direct or indirect activation of NO synthase in vascular endothelial cells, and to release of endothelium-derived NO.
Correspondence to M. Inazu at the above address 相似文献