首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lrp5 deficiency decreases bone formation and results in low bone mass. This study evaluated the bone anabolic response to intermittent PTH treatment in Lrp5-deficient mice. Our results indicate that Lrp5 is not essential for the stimulatory effect of PTH on cancellous and cortical bone formation. INTRODUCTION: Low-density lipoprotein receptor-related protein 5 (Lrp5), a co-receptor in canonical Wnt signaling, increases osteoblast proliferation, differentiation, and function. The purpose of this study was to use Lrp5-deficient mice to evaluate the potential role of this gene in mediating the bone anabolic effects of PTH. MATERIALS AND METHODS: Adult wildtype (WT, 23 male and 25 female) and Lrp5 knockout (KO, 27 male and 26 female) mice were treated subcutaneously with either vehicle or 80 microg/kg human PTH(1-34) on alternate days for 6 weeks. Femoral BMC and BMD were determined using DXA. Lumbar vertebrae were processed for quantitative bone histomorphometry. Bone architecture was evaluated by microCT. Data were analyzed using a multiway ANOVA. RESULTS: Cancellous and cortical bone mass were decreased with Lrp5 deficiency. Compared with WT mice, cancellous bone volume in the distal femur and the lumbar vertebra in Lrp5 KO mice was 54% and 38% lower, respectively (p<0.0001), whereas femoral cortical thickness was 11% lower in the KO mice (p<0.0001). The decrease in cancellous bone volume in the lumbar vertebrae was associated with a 45% decrease in osteoblast surface (p<0.0001) and a comparable decrease in bone formation rate (p<0.0001). Osteoclast surface, an index of bone resorption, was 24% lower in Lrp5 KO compared with WT mice (p<0.007). Treatment of mice with PTH for 6 weeks resulted in a 59% increase in osteoblast surface (p<0.0001) and a 19% increase in osteoclast surface (p=0.053) in both genotypes, but did not augment cancellous bone volume in either genotype. Femur cortical thickness was 11% higher in PTH-treated mice in comparison with vehicle-treated mice (p<0.0001), regardless of genotype. CONCLUSIONS: Whereas disruption of Lrp5 results in decreased bone mass because of decreased bone formation, Lrp5 does not seem to be essential for the stimulatory effects of PTH on cancellous and cortical bone formation.  相似文献   

2.
High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V/Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V/Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V/Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

3.
Wnt signaling has emerged as a central regulator of skeletal modeling and remodeling. Loss‐ or gain‐of‐function mutations in two Wnt co‐receptors, Lrp5 and (more recently) Lrp6, have drawn attention to the importance of the Wnt pathway in bone biology. This review summarizes our current understanding of how the Wnt pathway operates on bone and the implications this has for skeletal physiology and drug discovery. Over the past 9 yr, rapid advances have been made in our understanding of the cellular targets for Wnt signaling and of the important regulatory molecules in this metabolic pathway. Both canonical and noncanonical signaling pathways seem to be important for mediating the effects of Wnt in bone. A rapidly expanding catalog of genetically engineered mice has been used to establish the importance of downstream effector molecules (such as β‐catenin) in the Wnt pathway, as well as the critical role of endogenous inhibitors of Wnt signaling (such as Dkk1 and sclerostin) in bone metabolism. Indeed, regulation of sclerostin in osteocytes is emerging as an important final pathway for regulating bone anabolism in response to diverse trophic stimuli, from mechnotransduction to the anabolic actions of PTH. From the outset, it had been assumed that the effects of Wnt signaling in bone were caused by direct actions in osteoblast precursors, osteoblasts, and osteocytes. However, startling recent findings have challenged this view and suggest that a key target, at least in mice, is the duodenal enterochromaffin cell. There, Wnt signaling transduced by Lrp5 regulates serotonin synthesis, which acts in an endocrine fashion to regulate bone cell metabolism. It will take time to reconcile this new information with the considerable body of information we already have regarding the actions of Wnt in bone. The Wnt pathway has rapidly emerged as a therapeutic target for drug discovery. Neutralizing antibodies and small‐molecule inhibitors of endogenous Wnt inhibitors have shown early promise as bone anabolic agents. However, given the central role of the Wnt pathway in regulating growth and development in extraskeletal tissues, as well as our still rudimentary understanding of how this signaling cascade actually affects bone metabolism, considerable work will be needed to ensure the safety of these new therapies.  相似文献   

4.
Niziolek PJ  Farmer TL  Cui Y  Turner CH  Warman ML  Robling AG 《BONE》2011,49(5):1010-1019
Mutations among genes that participate in the canonical Wnt signaling pathway can lead to drastically different skeletal phenotypes, ranging from severe osteoporosis to severe osteosclerosis. Many high-bone-mass (HBM) causing mutations that occur in the LRP5 gene appear to impart the HBM phenotype, in part, by increasing resistance to soluble Wnt signaling inhibitors, including sclerostin. Sost loss-of-function mutant mice (Sost knock-out) and Lrp5 gain-of-function mutant mice (Lrp5 HBM knock-in) have high bone mass. These mutants potentially would be predicted to be phenocopies of one another, because in both cases, the sclerostin-Lrp5 interaction is disrupted. We measured bone mass, size, geometry, architecture, and strength in bones from three different genetic mouse models (Sost knock-out, Lrp5 A214V knock-in, and Lrp5 G171V knock-in) of HBM. We found that all three mouse lines had significantly elevated bone mass in the appendicular skeleton and in the cranium. Sost mutants and Lrp5 A214V mutants were statistically indistinguishable from one another in most endpoints, whereas both were largely different from the Lrp5 G171V mutants. Lrp5 G171V mutants preferentially added bone endocortically, whereas Lrp5 A214V and Sost mutants preferentially added bone periosteally. Cranial thickness and cranial nerve openings were similarly altered in all three HBM models. We also assessed serum serotonin levels as a possible mechanism accounting for the observed changes in bone mass, but no differences in serum serotonin were found in any of the three HBM mouse lines. The skeletal dissimilarities of the Lrp5 G171V mutant to the other mutants suggest that other, non-sclerostin-associated mechanisms might account for the changes in bone mass resulting from this mutation.  相似文献   

5.
Low‐density lipoprotein receptor‐related protein 5 (LRP5) regulates bone acquisition by controlling bone formation. Because roles of LRP6, another co‐receptor for Wnts, in postnatal bone metabolism have not been fully elucidated, we studied bone phenotype in mice harboring an Lrp6 hypomorphic mutation, ringelschwanz (rs), and characterized the mutant protein. First, we performed pQCT, bone histomorphometry, and immunohistochemistry on tibias of Lrp6rs/rs and Lrp6+/+ mice and determined biochemical parameters for bone turnover. Lrp6rs/rs mice exhibited reduced trabecular BMD in pQCT. Bone histomorphometry showed low bone volume and decreased trabecular number, which were associated with increased eroded surface. Urinary deoxypyridinoline excretion was increased in Lrp6rs/rs mice, whereas levels of serum osteocalcin were comparable between Lrp6rs/rs mice and wildtype littermates. Increase in cell number and mineralization of calvariae‐derived osteoblasts were not impaired in Lrp6rs/rs osteoblasts. Rankl expression was increased in Lrp6rs/rs osteoblasts both in vivo and in vitro, and osteoclastogenesis and bone‐resorbing activity in vitro were accelerated in Lrp6rs/rs cells. Treatment with canonical Wnt suppressed Rankl expression in both in primary osteoblasts and ST2 cells. Overexpression of Lrp6 also suppressed Rankl expression, whereas the Lrp6 rs mutant protein did not. Functional analyses of the Lrp6 rs mutant showed decreased targeting to plasma membrane because of reduced interaction with Mesoderm development (Mesd), a chaperone for Lrp6, leading to impaired Wnt/β‐catenin signaling. These results indicate that Lrp6‐mediated signaling controls postnatal bone mass, at least partly through the regulation of bone resorption. It is also suggested that the interaction with Mesd is critical for Lrp6 to function.  相似文献   

6.
The low-density lipoprotein receptor-related protein (Lrp)-5 regulates osteoblast proliferation and bone formation through its expression in duodenum by modifying the gut serotonin–bone endocrine axis. However, its direct role, if any, in osteoblast progenitor cells has not been studied thus far. Here, we show that mice with a Dermo1-Cre-mediated disruption of Lrp5 in osteoblast progenitor cells have normal embryonic skeletogenesis and normal skeletal growth and development postnatally. Histomorphometric analysis of 3-month-old adult mice revealed normal osteoblast numbers, bone formation rate, and bone mass in Lrp5 Dermo −/− mice. In addition, analysis of two osteoporosis pseudoglioma (OPPG) patients revealed a three- to fivefold increase in their serum serotonin levels compared to age-matched controls. These results rule out a direct function of Lrp5 in osteoblast progenitor cells and add further support to the notion that dysregulation of serotonin synthesis is involved in bone mass abnormalities observed in OPPG patients.  相似文献   

7.
8.
While the importance of Wnt signaling in skeletal development and homeostasis is well documented, little is known regarding its function in fracture repair. We hypothesized that activation and inactivation of Wnt signaling would enhance and impair fracture repair, respectively. Femoral fractures were generated in Lrp5 knockout mice (Lrp5?/?) and wild‐type littermates (Lrp5+/+), as well as C57BL/6 mice. Lrp5?/? and Lrp5+/+ mice were untreated, while C57BL/6 mice were treated 2×/week with vehicle or anti‐Dkk1 antibodies (Dkk1 Ab) initiated immediately postoperatively (Day 0) or 4 days postoperatively (Day 4). Fractures were radiographed weekly until sacrifice at day 28, followed by DXA, pQCT, and biomechanical analyses. Lrp5?/? mice showed impaired repair compared to Lrp5+/+ mice, as evidenced by reduced callus area, BMC, BMD, and biomechanical properties. The effects of Dkk1 Ab treatment depended on the timing of initiation. Day 0 initiation enhanced repair, with significant gains seen for callus area, BMC, BMD, and biomechanical properties, whereas Day 4 initiation had no effect. These results validated our hypothesis that Wnt signaling influences fracture repair, with prompt activation enhancing repair and inactivation impairing it. Furthermore, these data suggest that activation of Wnt signaling during fracture repair may have clinical utility in facilitating fracture repair. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:928–936, 2010  相似文献   

9.
Niziolek PJ  Warman ML  Robling AG 《BONE》2012,51(3):459-465
Mechanotransduction in bone requires components of the Wnt signaling pathway to produce structurally adapted bone elements. In particular, the Wnt co-receptor LDL-receptor-related protein 5 (LRP5) appears to be a crucial protein in the mechanotransduction cascades that translate physical tissue deformation into new bone formation. Recently discovered missense mutations in LRP5 are associated with high bone mass (HBM), and the altered function of these proteins provide insight into LRP5 function in many skeletal processes, including mechanotransduction. We further investigated the role of LRP5 in bone cell mechanotransduction by applying mechanical stimulation in vivo to two different mutant mouse lines, which harbor HBM-causing missense mutations in Lrp5. Axial tibia loading was applied to mature male Lrp5 G171V and Lrp5 A214V knock-in mice, and to their wild type controls. Fluorochrome labeling revealed that 3days of loading resulted in a significantly enhanced periosteal response in the A214V knock in mice, whereas the G171V mice exhibited a lowered osteogenic threshold on the endocortical surface. In summary, our data further highlight the importance of Lrp5 in bone cell mechanotransduction, and indicate that the HBM-causing mutations in Lrp5 can alter the anabolic response to mechanical stimulation in favor of increased bone gain.  相似文献   

10.
Mohan S  Baylink DJ  Srivastava AK 《BONE》2008,42(2):388-395
We describe a phenotype-driven mutagenesis screen in which mice carrying a targeted mutation are bred with ENU-treated males in order to provide a sensitized system for detecting dominant modifier mutations. The presence of initial mutation renders the screening system more responsive to subtle changes in modifier genes that would not be penetrant in an otherwise wild type background. We utilized two mutant mouse models: 1) mice carrying a mutation in growth hormone releasing hormone receptor (Ghrhr) (denoted 'lit' allele, Ghrhr(lit)), which results in GH deficiency; and 2) mice lacking Smad2 gene, a signal transducer for TGF-beta, an important bone growth factor. The Smad2(-/-) mice are lethal and Ghrhr(lit/lit) mice are dwarf, but both Smad2(+/-) and Ghrhr(lit/)(+) mice exhibit normal growth. We injected 6-7 weeks old C57BL/6J male mice with ENU (100 mg/kg dose) and bred them with Ghrhr(lit/)(+) and Smad2(+/-) mice. The F1 mice with Ghrhr(lit/)(+) or Smad2(+/-) genotype were screened for growth and skeletal phenotypes. An outlier was identified as >3 SD units different from wild type control (n=20-30). We screened about 100 F1 mice with Ghrhr(lit/)(+) and Smad2(+/-) genotypes and identified nine outliers. A backcross established heritability of three mutant lines in multiple generations. Among the phenotypic deviants, we have identified a mutant mouse with 30-40% reduced bone size. The magnitude of the bone size phenotype was amplified by the presence of one copy of the disrupted Ghrhr gene as determined by the 2-way ANOVA (p<0.02 for interaction). Thus, a new mouse model has been established to identify a gene that interacts with GH signaling to regulate bone size. In addition, the sensitized screen also demonstrated higher recovery of skeletal phenotypes as compared to that obtained in the classical ENU screen in wild type mice. The discovery of mutants in a selected pathway will provide a valuable tool to not only to discover novel genes involved in a particular process but will also prove useful for the elucidation of the biology of that process.  相似文献   

11.
Activating mutations of the putative Wnt co‐receptor Lrp5 or inactivating mutations of the secreted molecule Sclerostin cause excessive bone formation in mice and humans. Previous studies have suggested that Sclerostin functions as an Lrp5 antagonist, yet clear in vivo evidence was still missing, and alternative mechanisms have been discussed. Moreover, because osteoblast‐specific inactivation of β‐catenin, the major intracellular mediator of canonical Wnt signaling, primarily affected bone resorption, it remained questionable, whether Sclerostin truly acts as a Wnt signaling antagonist by interacting with Lrp5. In an attempt to address this relevant question, we generated a mouse model (Col1a1‐Sost) with transgenic overexpression of Sclerostin under the control of a 2.3‐kb Col1a1 promoter fragment. These mice displayed the expected low bone mass phenotype as a consequence of reduced bone formation. The Col1a1‐Sost mice were then crossed with two mouse lines carrying different high bone mass mutations of Lrp5 (Lrp5A170V and Lrp5G213V), both of them potentially interfering with Sclerostin binding. Using µCT‐scanning and histomorphometry we found that the anti‐osteoanabolic influence of Sclerostin overexpression was not observed in Lrp5A213V/A213V mice and strongly reduced in Lrp5A170V/A170V mice. As a control we applied the same strategy with mice overexpressing the transmembrane Wnt signaling antagonist Krm2 and found that the anti‐osteoanabolic influence of the Col1a1‐Krm2 transgene was not affected by either of the Lrp5 mutations. Taken together, our data support the concept that Sclerostin inhibits bone formation through Lrp5 interaction, yet their physiological relevance remains to be established. © 2015 American Society for Bone and Mineral Research.  相似文献   

12.
ER alpha acts either through classical (ERE-mediated) or nonclassical (non-ERE) pathways. The generation of mice carrying a mutation that eliminates classical ER alpha signaling presents a unique opportunity to study the relative roles of these pathways in bone. This study defines the skeletal phenotype and responses to ovariectomy and estrogen replacement in these mice. INTRODUCTION: Estrogen receptor alpha (ER alpha) can act either through classical estrogen response elements (EREs) or through non-ERE (nonclassical) pathways. To unravel these in bone, we crossed mice heterozygous for a knock-in mutation abolishing ERE binding (nonclassical ER alpha knock-in [NERKI]) with heterozygote ER alpha knockout mice and studied the resulting female ER alpha(+/+), ER alpha(+/NERKI), and ER alpha(-/NERKI) mice. The only ER alpha present in ER alpha(-/NERKI) mice is incapable of activating EREs but can signal through nonclassical pathways, whereas ER alpha(+/NERKI) mice may have a less drastic alteration in the balance between classical and nonclassical estrogen signaling pathways. MATERIALS AND METHODS: BMD was measured using DXA and pQCT at 3 months of age (n = 46-48/genotype). The mice were randomly assigned to sham surgery, ovariectomy, ovariectomy + estradiol (0.25 microg/day), or ovariectomy + estradiol (1.0 microg/day; n = 10-12/group) and restudied 60 days later. RESULTS AND CONCLUSIONS: At 3 months of age, both the ER alpha(+/NERKI) and ER alpha(-/NERKI) mice had deficits in cortical, but not in trabecular, bone. Remarkably, changes in cortical bone after ovariectomy and estrogen replacement in ER alpha(-/NERKI) mice were the opposite of those in ER alpha(+/+) mice. Relative to sham mice, ovariectomized ER alpha(-/NERKI) mice gained more bone (not less, as in ER alpha(+/+) mice), and estrogen suppressed this increase (whereas augmenting it in ER alpha(+/+) mice). Estrogen also had opposite effects on bone formation and resorption parameters on endocortical surfaces in ER alpha(-/NERKI) versus ER alpha(+/+) mice. Collectively, these data show that alteration of the balance between classical and nonclassical ER alpha signaling pathways leads to deficits in cortical bone and also represent the first demonstration, in any tissue, that complete loss of classical ERE signaling can lead to paradoxical responses to estrogen. Our findings strongly support the hypothesis that there exists a balance between classical and nonclassical ER alpha signaling pathways, which, when altered, can result in a markedly aberrant response to estrogen.  相似文献   

13.
Sclerosteosis is a rare autosomal recessive bone disorder marked by hyperostosis of the skull and tubular bones. Initially, we and others reported that sclerosteosis was caused by loss‐of‐function mutations in SOST, encoding sclerostin. More recently, we identified disease‐causing mutations in LRP4, a binding partner of sclerostin, in three sclerosteosis patients. Upon binding to sclerostin, LRP4 can inhibit the canonical WNT signaling that is known to be an important pathway in the regulation of bone formation. To further investigate the role of LRP4 in the bone formation process, we generated an Lrp4 mutated sclerosteosis mouse model by introducing the p.Arg1170Gln mutation in the mouse genome. Extensive analysis of the bone phenotype of the Lrp4R1170Q/R1170Q knock‐in (KI) mouse showed the presence of increased trabecular and cortical bone mass as a consequence of increased bone formation by the osteoblasts. In addition, three‐point bending analysis also showed that the increased bone mass results in increased bone strength. In contrast to the human sclerosteosis phenotype, we could not observe syndactyly in the forelimbs or hindlimbs of the Lrp4 KI animals. Finally, we could not detect any significant changes in the bone formation and resorption markers in the serum of the mutant mice. However, the serum sclerostin levels were strongly increased and the level of sclerostin in the tibia was decreased in Lrp4R1170Q/R1170Q mice, confirming the role of LRP4 as an anchor for sclerostin in bone. In conclusion, the Lrp4R1170Q/R1170Q mouse is a good model for the human sclerosteosis phenotype caused by mutations in LRP4 and can be used in the future for further investigation of the mechanism whereby LRP4 regulates bone formation. © 2017 American Society for Bone and Mineral Research.  相似文献   

14.
Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/-), and mice homozygous for the disrupted myostatin sequence (-/-) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (-/-) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin -/- mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration.  相似文献   

15.
Patients with an activation mutation of the Lrp5 gene exhibit high bone mass (HBM). Limited information is available regarding compartment‐specific changes in bone. The relationship between the phenotype and serum serotonin is not well documented. To evaluate bone, serotonin, and bone turnover markers (BTM) in Lrp5‐HBM patients, we studied 19 Lrp5‐HBM patients (T253I) and 19 age‐ and sex‐matched controls. DXA and HR‐pQCT were used to assess BMD and bone structure. Serum serotonin, sclerostin, dickkopf‐related protein 1 (DKK1), and BTM were evaluated. Z‐scores for the forearm, total hip, lumbar spine, forearm, and whole body were significantly increased (mean ± SD) between 4.94 ± 1.45 and 7.52 ± 1.99 in cases versus ?0.19 ± 1.19 to 0.58 ± 0.84 in controls. Tibial and radial cortical areas, thicknesses, and BMD were significantly higher in cases. In cases, BMD at the lumbar spine and forearm and cortical thickness were positively associated and trabecular area negatively associated with age (r = 0.49, 0.57, 0.74, and ?0.61, respectively, p < .05). Serotonin was lowest in cases (69.5 [29.9–110.4] ng/mL versus 119.4 [62.3–231.0] ng/mL, p < .001) and inversely associated with tibial cortical density (r = ?0.49, p < .05) and directly with osteocalcin (OC), bone‐specific alkaline phosphatase (B‐ALP), and procollagen type 1 amino‐terminal propeptide (PINP) (r = 0.52–0.65, p < .05) in controls only. OC and S‐CTX were lower and sclerostin higher in cases, whereas B‐ALP, PINP, tartrate‐resistant acid phosphatase (TRAP), and dickkopf‐related protein 1 (DKK1) were similar in cases and controls. In conclusion, increased bone mass in Lrp5‐HBM patients seems to be caused primarily by changes in trabecular and cortical bone mass and structure. The phenotype appeared to progress with age, but BTM did not suggest increased bone formation. © 2011 American Society for Bone and Mineral Research  相似文献   

16.
Peak bone mass is a major determinant of osteoporotic fracture risk. Gender differences in peak bone mass acquisition are well recognized in humans and may account for a substantial share of the increased prevalence of fragility fractures in women compared with men. Skeletal development is regulated by both heritable and environmental factors. Experimental animal models provide a means to circumvent complicating environmental factors. In this study we examined the heritability of peak bone mineral density (BMD) in genetically distinct laboratory mouse strains raised under strict environmental control and sought to identify genetic loci that may contribute to gender differences in this skeletal phenotype. Peak whole body BMD of male and female mice from a panel of 18 recombinant inbred (RI) strains derived from a cross between C57BL/6 and DBA/2 progenitors (BXD) was measured by dual-energy X-ray absorptiometry (DXA). A highly significant relationship existed between body weight and BMD in the BXD RI mice (r2 = 0.25; p = 1 x 10(-43)). To allow for comparison between male and female RI strains, whole body BMD values were corrected for the influence of body weight. The distribution of weight-corrected BMD (WC-BMD) values among the strains indicated the presence of strong genetic influences in both genders, with an estimated narrow sense heritability of 45% and 22% in male and female mice, respectively. Comparison of RI strain results by two-way analysis of variance (ANOVA) revealed a significant strain-by-gender interaction (F1,17,479 = 6.13; p < 0.0001). Quantitative trait locus (QTL) analysis of the BXD RI strain series provisionally identified nine chromosomal sites linked to peak bone mass development in males and seven regions in females. In two cases, the provisional chromosomal loci were shared between genders, but in most cases they were distinct (five female-specific QTLs and six male-specific QTLs). QTL analysis of a genetically heterogeneous F2 population derived from the B6 and D2 progenitor strains provided additional support for the gender specificity of two loci. A significant phenotype-genotype correlation was only observed in male F2 mice at microsatellite marker D7Mit114 on chromosome 7, and a correlation at D2Mit94 on chromosome 2 was only observed in female F2 mice. The present data highlight the important role of gender in the genetic basis of peak bone mass in laboratory mice. Because the male phenotype is associated with considerable fracture risk reduction, an elucidation of the nature of that effect could provide the basis for novel diagnostic, preventative, or therapeutic approaches.  相似文献   

17.
The cell surface receptor low‐density lipoprotein receptor‐related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM‐causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl‐Ab). We found that antibody‐treated mice had significantly increased bone mass and strength compared to vehicle‐treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Xu H  Chen JX  Zhang TM  Gong J  Wu QL  Wang JP 《BONE》2007,41(3):360-365
Hand bone mineral density (BMD) in adults was found to be significantly correlated with various skeletal sites, including the total body. However, the relationships between hand and total body bone measurements have yet to be explored for children. We conducted a cross-sectional study of 892 normal Chinese children (511 males, 381 females) aged 5-14 years by measuring the BMD and bone mineral content (BMC) at the total hand, upper limb, subtotal body, and total body using dual-energy X-ray absorptiometry (DXA). We found that hand BMD and BMC increased with age for both genders. Female children had significantly higher hand BMD and BMC than males. Age explained more variance in hand BMD for females (R2=0.727) than for males (R2=0.596). For both genders, hand BMD and BMC correlated highly with age, weight, height, total body lean mass, and BMD and BMC at the upper limb, subtotal body, and total body (r=0.730-0.965, p<0.001) and moderately with body mass index and total body fat mass (r=0.525-0.701, p<0.001). Therefore, the hand DXA scan can potentially be a new tool for the clinical assessment of bone health in children.  相似文献   

19.
Phenotypic characterization of mice bred for high and low peak bone mass.   总被引:4,自引:0,他引:4  
In humans, peak bone mineral density (BMD) is a highly heritable trait and a strong determinant of subsequent osteoporotic fracture risk. To identify the genetic factors responsible for variation in peak BMD, investigators have turned to animal models. In this study we examined the heritability of BMD acquisition and characterized differences in skeletal geometry, histomorphometry, and biomechanical competence between two lines of mice artificially selected for extremes of peak whole body BMD. F2 progeny from a cross between C57BL/6 and DBA/2 inbred strains was used as the foundation population to develop lines selected for either high or low BMD. Whole body BMD was measured by dual-energy X-ray absorptiometry (DXA). By the third generation of selection, highest-scoring BMD (HiBMD) mice exhibited 14% greater peak BMD than lowest-scoring BMD (LoBMD) mice. The mean realized heritability of peak BMD was 36%. Femoral shaft cortical area and thickness and vertebral cancellous bone volume (BV) were significantly greater (16-30%) in the HiBMD line compared with the LoBMD line. Mean cancellous bone formation rates (BFRs) were 35% lower in HiBMD mice compared with LoBMD mice. Failure load and stiffness in the femoral shaft, femoral neck, and L6 vertebrae were all substantially greater (by 25-190%) in HiBMD mice. Thus, these divergently selected murine lines serve to illustrate some of the means by which genetic mechanisms can affect skeletal structure and remodeling. Identification of the individual genes influencing peak BMD in this experimental system will likely reveal some of the genetic determinants of overall bone strength.  相似文献   

20.
Long-term precision, as well as reproducibility, is important for monitoring bone mineral density (BMD) alteration in response to aging or therapy. In order to investigate which bone densitometry and which skeletal site are clinically useful for monitoring bone mass, we examined the standardized long-term precision of several bone density measurements in 83 healthy Japanese women. Annual BMD measurements were performed for 5 or 6 years using dual X-ray absorptiometry (DXA) on the lumbar spine, radius (EXP5000) and calcaneus (HeelScan); peripheral quantitative computed tomography (pQCT) on the radius (Densiscan1000); and quantitative ultrasound (QUS) on the calcaneus (Achilles+). The long-term precision error for the individual subject was given by the standard error of estimate (SEE), and the standardized long-term precision was defined as the percentage coefficient of variation (CV%) divided by the percentage ratio of the annual bone-loss rate. Based on the CV% of spinal DXA, speed of sound (SOS) and diaphyseal pQCT showed significantly higher precision than others, while radial ultradistal (UD) DXA and heel DXA showed significantly lower precision. The long-term precision errors of other measurements were statistically the same as that of the spinal DXA. The spinal DXA, the radial DXA, and pQCT at both the distal metaphysis and diaphysis showed high rates of annual bone loss. The radial trabecular BMD (pQCT) was significantly higher than that of spinal DXA. The annual rates of bone loss of QUS and of heel DXA were significantly lower than that of spinal DXA. Taken together, standardized long-term precision was obtained in the spinal DXA and radial pQCT. In conclusion, spinal DXA and radial pQCT were considered the most useful monitoring method for osteoporosis, while QUS was considered less useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号