首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of physical cross-linking was studied on the formation and properties of thermosensitive polymer particles of poly(N-vinylcaprolactam), PVCL, and PVCL grafted with poly(ethylene oxide) macromonomer, PVCL-graft-C(11)EO(42). Loading and release of model drugs into/from the hydrogel particles were evaluated. Thermosensitive particles were stabilized by cross-linkers, the most feasible of which was salicylic acid (SA). At 23 degrees C, below the lower critical solution temperature (LCST) of the thermosensitive polymers, stability of the hydrogels was poor, whereas at 37 degrees C stable hydrogel particles were formed. All the drugs and also the cross-linker (SA) were released more efficiently from the PVCL particles compared to the PVCL-graft-C(11)EO(42) particles. Drug concentration and pH affected clearly the rate and extent of drug release in physiological buffer. The higher drug release from the PVCL was based on the more open gel-like structure as opposed to PVCL-graft-C(11)EO(42) particles. Complex formation between the cross-linker and the polymers was due to the hydrogen bonding between the hydroxyl groups of SA and H-bond acceptors of the PVCL. In the case of PVCL-graft-C(11)EO(42), the ethylene oxide chain provided more opportunities for H-bonding in comparison to the pure PVCL, creating more stable complexes (more tightly packed particles) leading to sustained drug release.  相似文献   

2.
3.
Non-bioresorbable drug eluting microspheres are being increasingly used for the treatment of unresectable liver tumors, whereas bioresorbable microspheres have not received much attention. In this study, bioresorbable microspheres prepared from chitosan and carboxymethyl cellulose were loaded with doxorubicin (Doxo) via ion-exchange interactions with carboxylic groups in the microspheres. With a 25-40% decrease in the microsphere size depending on their size ranges, the microspheres could load a maximum of 0.3-0.7 mg Doxo/mg dry spheres. As confirmed by confocal microscopy, Doxo was mainly concentrated in the outer 20±5 μm surface layer of the microspheres. The loaded microspheres were stable in aqueous dispersions without aggregation for a prolonged period of time but degradable in a lysozyme solution. Furthermore, the loaded microspheres exhibited a noticeable pH-sensitive behavior with accelerated release of Doxo in acidic environment due to the protonation of carboxylic groups in the microspheres. Compared to commercial non-resorbable drug eluting beads, the loaded bioresorbable microspheres showed a sustained release manner in phosphate buffered saline (PBS). The release data were fitted to an empirical relationship, which reveals a non-Fickian transport mechanism (n=0.55-0.59). These results demonstrate that the bioresorbable microspheres are promising as attractive carriers for Doxo.  相似文献   

4.
The critical micelle concentrations (CMCs) of aqueous solutions of a nonionic surfactant, polyoxyl 23 lauryl ether in the presence of various concentration of urea and its derivatives were measured. The CMC of the surfactant increased in proportion to the concentration of the additives, and the CMC-raising activities increased with more and longer alkyl groups substituted in urea. The CMC shift values were successfully correlated with the cloud point shift values and the protein-denaturing activities of the additives, respectively. These results suggest that the micelle formation, clouding of the surfactant and the protein denaturation are a closely related phenomenon, and a common mechanism is operating which might be the hydrophobic interaction.  相似文献   

5.
The investigation on the influence of components that contribute diverse degrees of viscosity to the formulations is of great interest in medicines for topical use. It is such the case of a derivative of the cellulose--ethylcellulose--that participates in the formula of the oleogels of olive oil as a gelificant agent. Surfactant agents--Olivem--can also modify the rheological characteristics of oil gels. In this work, it is studied how the variation of the concentration of ethylcellulose (3-5%) notably changes the viscosity of the prepared ones. The most concentrated preparations in gelling agent are the most viscous and also present a plastic material, whereas the minor concentration awards a Newtonian character to the prepared ones. On the other hand, the influence of the temperature has been investigated--25 and 37 degrees C--verifying that the viscosity of the samples diminishes with the increase of temperature. The influence of the addition of surfactant products--Olivem 900, 700 and 300--has given a result that prepared with major viscosity are those which include Olivem 900 that can be qualified like plastic. The most fluid prepared are those which have been elaborated with Olivem 300, and their liquid character has been confirmed by rheological measurements--viscometry, oscillometry and creep-recovery. Many applications can be foreseen in pharmaceutical as well as in the cosmetic area where the use of natural vegetable oils as vehicles for drugs is large.  相似文献   

6.
A diffusion-based model describing the drug release from a charged hydrogel (gelatin) microsphere undergoing enzymatic degradation is presented. The model elucidates the effect of glutaraldehyde, a crosslinking agent, on the release profile in terms of the initial drug distribution, diffusivity of the drug, degradation rate of gelatin and its ability to form polyionic complex with the drug. The model was validated by comparing with in vitro release of trypan blue, an acidic model drug, from basic gelatin microspheres. While drug release was not a simple function of glutaraldehyde concentration, the effective diffusivity was found to be inversely proportional to glutaraldehyde concentration in the form of a power function when the initial drug distribution was taken into consideration. For these reasons, the present model can accurately predict drug release with no adjustable parameters, given the collagenase concentration. The present model may help design certain release scenarios from biodegradable charged hydrogels for the oppositely charged drugs and biomolecules.  相似文献   

7.
The effects of temperature and concentration on leuprolide degradation in dimethyl sulfoxide (DMSO) were explored. Leuprolide degradation products were analyzed by reverse phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) and structurally characterized by mass spectrometry. Leuprolide solution stability in DMSO was characterized at 50, 100, 200, 400 mg/ml at 37-80 degrees C for 2 months to 3 years. Leuprolide degradation products were identified by mass spectrometry and could generally be attributed to isomerization, hydrolysis, oxidation, or aggregation. The hydrolytic degradation products consisted primarily of backbone cleavage C-terminal to Trp(3), Ser(4), Tyr(5), Leu(6) and Leu(7), and oxidation of Trp(3) and beta-elimination of Ser(4) were identified. Leuprolide degradation at 50 degrees C, 65 degrees C and 80 degrees C proceeded in an exponential fashion (E(a)=22. 6+/-1.2 kcal/mol); however, leuprolide degradation plateau'd after approximately 6 months at 37 degrees C. Upon closer examination, degradation product peak areas were seen to vary with temperature. For example, aggregation products did not increase with time at 37 degrees C, but aggregation peak intensities increased sharply with time at 80 degrees C. Increasing the temperature also increased the proportion of leuprolide degrading via isomerization/hydrolytic pathways, and decreased the proportion degrading via oxidation. These variations suggested that solvent dielectric, free H(+) in an aprotic solvent, oxygen solubility, impurities and residual moisture may play a role. Leuprolide solubilized in DMSO yields adequate stabililty for a 1 year implantable osmotic delivery system, where use of a dry aprotic solvent results in conditions similar to solid state stability.  相似文献   

8.
Novel peroral peptide drug delivery systems based on superporous hydrogel (SPH) and SPH composite (SPHC) have recently been developed in our laboratory. In this report the following issues were studied: release of the peptide drugs buserelin, octreotide and insulin from SPH and SPHC polymers and the developed delivery systems, stability of these peptides during the release and the integrity of insulin in the polymeric matrix of SPHC. Release studies from SPH and SPHC polymers revealed that buserelin, octreotide and insulin were released almost completely from the polymers. Peptide release rates from SPH were faster than from SPHC, due to the more porous structure of SPH polymer. All peptides studied in contact with SPHC polymer were stable under different environmental conditions (ambient temperature, 37 °C, light and darkness and at pH values 3.2 and 7.2). FTIR studies demonstrated that no covalent binding occurred between insulin and the polymeric SPHC matrix. Release profiles of all peptides from the developed delivery systems showed a time-controlled release profile: after a short lag time of 10–15 min, a burst release of peptides occurred during which more than 80% of peptide was released within 30–45 min. In conclusion, the present delivery systems based on SPH and SPHC show appropriate in vitro properties for application in peroral peptide drug delivery of buserelin, octreotide and insulin, and are therefore promising for further in vivo evaluation.  相似文献   

9.
10.
基因治疗在癌症以及遗传疾病的治疗中具有广阔的应用前景,基因治疗的关键在于如何实现将核酸药物精准递送至靶部位。近年来,研究人员致力于将核酸药物负载于水凝胶中,以实现全身或局部的基因递送。水凝胶系统由于其良好的生物相容性、高效的核酸药物负载能力和局部定位控制释放等优势,为核酸药物的递送提供了有效的工具,在实体瘤和再生医学领域具有巨大的潜力。本文综述了近年来水凝胶系统作为核酸药物载体的研究,并重点探讨基于水凝胶的核酸药物负载策略,以期为基于水凝胶的核酸药物递送系统的研究提供参考。  相似文献   

11.
The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze–thaw method. Response surface methodology with Box–Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze–thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12?hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze–thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.  相似文献   

12.
目的 研究壳聚糖季铵盐温敏凝胶及性质.方法 采用试管倾斜法测定胶凝时间,考察壳聚糖季铵盐的浓度、体积比、温度等对胶凝时间的影响,采用吸光度经时变化法测定相变动力学,并用透析法测定载药凝胶的体外释放.结果 56% GPS/2% HTCC体积配比1:5、温度37℃时,胶凝时间为3.53min,钙黄绿素载药凝胶具有良好的缓释...  相似文献   

13.
Enzymes are less stable in harsh conditions and hence to overcome this nature, several methodologies are being developed. It was found that crosslinked enzyme crystals are the most promising strategy for the stabilization of the enzymes [Emilia Abraham, T., Jegan Roy, J., Bindhu, L.V., Jayakumar, K.K., 2004. Crosslinked enzyme crystals of glucoamylase as a potent catalyst for biotransformations. Carbohydr. Res. 339, 1099-1104; Navia, M., St. Clair, N., 1997. Crosslinked enzyme crystals. Biosens. Bioelectron. 12, 7]. A cost effective methodology of crystallization of protease (Bacillus subtilis) with ammonium sulphate (65%, w/v) and then crosslinking the crystals with glutaraldehyde (4%, v/v) in isopropanol for 20min gave a stable and active enzyme. SEM studies showed that the protease is in small cubic shaped crystals of 1-2 microm size. Crosslinked enzyme crystal (CLEC) of protease has good stability in polar and nonpolar organic solvents, such as hexane, toluene, benzene and carbon tetrachloride and it had high thermal stability up to 60 degrees C and hence can be used as a catalyst for the biotransformation of compounds which are not soluble in aqueous medium. The CLECs were entrapped in the alginate:guar gum (3:1) composite beads which were resistant to low pH conditions in the stomach and hence was found to be useful for the oral drug delivery. This method can be used to deliver the protein and peptide drugs which require high concentrations at the delivery stage, and which normally degrades in the stomach before reaching the jejunum. Application of these pH-sensitive beads for the controlled release of subtilisin in in vitro was studied and found to be a viable strategy.  相似文献   

14.
The aim of this study was to prepare and characterize a scaffold with an ionically crosslinked hydrogel coating layer containing a water-soluble drug, vancomycin, via a novel drug loading method for sustained drug delivery and surface modification. The poly(D,L-lactide acid) (PDLLA)/biphasic calcium phosphate (BCP) scaffold with a highly inter-connected porous structure was fabricated by a particle-leaching/thermally induced phase separation (TIPS) method. The pre-vacuumized scaffold was immersed into an alginate/vancomycin solution. Following impregnation by the solution, the scaffold was removed and immersed in a CaCl(2) solution for 30 min to allow gelation of the alginate solution. In this way, the drug was not exposed to organic solvents or detrimental temperature conditions and it could avoid loss of drug during the leaching process. The water contact angles of the scaffold surface decreased after being coated with the hydrogel. The in vitro drug release profile showed sustained release properties which were influenced by the alginate concentration and the dissolution medium. A standardized bacterial assay showed that the drug was still active after association with the scaffold by this gentle method of drug loading. The in vitro osteoblast culture experiments confirmed the biocompatibility of the scaffold for attachment and proliferation of osteoblasts.  相似文献   

15.
The effect of drug loading level both on dynamic swelling and drug release was evaluated using crosslinked gelatin microspheres. Owing to water penetration the microsphere diameter went first to a maximum value, which was not affected by the payload; the diameter gradually approached to an equilibrium swollen value, which was affected by drug loading level. Water absorption increases and drug diffusion decreases the microsphere diameter. Obviously, the diameter variation depends on the factor (water absorption or drug diffusion) predominating in the process. As the payload affected only the equilibrium swollen value it is reasonable to hypothesize that drug loading level has a greater effect on drug diffusion than on polymer relaxation. This rationale could explain the increase of the diffusion component of the drug release process as the payload increased.  相似文献   

16.
Electrically controlled drug delivery using poly(vinyl alcohol) (PVA) hydrogels as the matrix/carriers for a model drug was investigated. The drug-loaded PVA hydrogels were prepared by solution-casting using sulfosalicylic acid as the model drug and glutaraldehyde as the crosslinking agent. The average molecular weight between crosslinks, the crosslinking density, and the mesh size of the PVA hydrogels were determined from the equilibrium swelling theory as developed by Peppas and Merril, and the latter data were compared with those obtained from scanning electron microscopy. The release mechanisms and the diffusion coefficients of the hydrogels were studied using modified Franz-Diffusion cells in an acetate buffer with pH 5.5 and temperature 37 degrees C during a period of 48 h, in order to determine the effects of crosslinking ratio, electric field strength, and electrode polarity. The amounts of drug released were analyzed by UV-vis spectrophotometry. The amounts of drug released vary linearly with square root of time. The diffusion coefficients of drug-loaded PVA hydrogels decrease with increasing crosslink ratio. Moreover, the diffusion coefficients of the charged drug in the PVA hydrogels depend critically on the electric field strength between 0 and 5 V as well as on the electrode polarity. Thus, the release rate of sulfosalicylic acid can be altered and controlled precisely through electric field stimulation.  相似文献   

17.
18.
Guo X  Cui F  Xing Y  Mei Q  Zhang Z 《Die Pharmazie》2011,66(12):948-952
For improving the effectiveness of cancer chemotherapy and avoiding rapid clearance of solid lipid nonoparticles (SLN) from the systemic circulation following systemic administration, 2-methoxyestradiol (2-ME) as model drug, PLGA-PEG-PLGA as hydrogel material, an injectable SLN loaded hydrogel was developed. Integrity of SLN within and released from the hydrogel was confirmed by direct visualization by a scanning electron microscope (SEM), particle size measurement by laser light scattering, and free drug concentration in the release medium by ultracentrifugation. Moreover, in vitro release, thermo-sensitive properties and rheological behavior were investigated. The results indicated that SLN were stable in the hydrogel. In the release medium, most 2-ME existed in the SLN and intact 2-ME SLN could be released from the hydrogel for a prolonged period over 46 days. Their concentration showed a significant effect on the release rate, in contrast to particle size and pH value of the release medium. In addition, the SLN loaded hydrogel could still exhibit reversible thermo-sensitive properties and better syringeability. These results suggested that the SLN loaded hydrogel could transport SLN to the target site and control prolonged release of SLN, which may increase the efficacy of cancer chemotherapy.  相似文献   

19.
The addition of surfactants to suppository formulations is referred to in the scientific literature, but their effects on drug availability remain uncertain. Surfactants are reported to improve drug dispersion into hard fatty excipients, to increase the spreading of the melted suppository on the rectal mucosa leading to a greater contact surface, to reduce the viscosity of the molten mass and to reduce the pathway of drug particles to the interface. In the present study a systematic investigation based on tensiometric and rheological methods was carried out to evaluate the effects of nonionic surfactants with different HLBs (hydrophilic-lipophilic-balance) on drug availability and to clarify the possible mechanisms involved in the release process. The relationship between the melted suppositories and a membrane simulating the rectal barrier were investigated in the course of the in vitro release test by measuring their energy characteristics. At the same time, the potential influences of such interactions on drug release were investigated in suppositories formulated with different kinds and concentrations of surfactant additives. Drug availability was influenced not only by the interaction between the suppository and the rectal membrane but also by the interaction between surfactant, lipophilic excipient and suspended drug particles. Such interactions appear to greatly influence drug release from suppositories, which, in turn, is the main parameter determining drug availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号