首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of an assembly between at least seven alpha (alpha2-alpha7, alpha9) and three beta (beta2-beta4) subunits in mammals. The addition of 50 mM KCl or 1 mM nicotine immediately increased the number of cells with high fluorescence intensity in rat cortical astrocytes on fluo-3 fluorescence measurement. Nicotine was effective at increasing the fluorescence intensity in astrocytes cultured for 2 days after replating, but not in those used 1 or 5 days after replating, without markedly affecting the cellular viability irrespective of the exposure period. Nicotine markedly increased the fluorescence intensity in a concentration-dependent manner at a concentration range of 10-100 microM in cultured astrocytes when analyzed on a responsive single cell. In these responsive single cells, the increase by nicotine was significantly prevented by the heteromeric alpha4/beta2 subtype antagonist dihydro-beta-erythroidine and the homomeric alpha7 subtype antagonist methyllycaconitine, as well as by nifedipine and EGTA but not thapsigargin. Methyllycaconitine failed to inhibit further the increase by nicotine in the presence of nifedipine, however, whereas the expression of mRNA was seen for all mammalian neuronal nAChR subunits in cultured rat cortical astrocytes as well as neurons. These results suggest that nicotine may increase intracellular free Ca2+ through the influx of extracellular Ca2+ across L-type voltage-gated Ca2+ channels rather than Ca2+ release from intracellular stores, in a manner related to the alpha4/beta2 and/or alpha7 nAChR channels functionally expressed in cultured rat cortical astrocytes.  相似文献   

2.
Nicotine tolerance is often accompanied by an upregulation of brain area nicotinic acetylcholine receptors (nAChRs) in both animal and human subjects. This upregulation has been hypothesized to result from repeated or prolonged exposures of these receptors to nicotine. To explore this further, this study examined the level of nAChR desensitization following acute and repeated nicotine administration in the male Lewis rat. Nicotine-stimulated (86)Rb(+) efflux was measured in synaptosomes prepared from the frontal cortex, hippocampus, striatum, and thalamus. Analysis of receptor functionality was achieved by calculating area-under-the-curve (AUC) for nicotine-induced fractional (86)Rb(+) efflux. Nicotine-stimulated (86)Rb(+) efflux from all brain regions was significantly less in rats that received an acute injection of 0.4 mg/kg nicotine (s.c.) 15 min prior to dissection compared to control rats. This decrease in nAChR functional status was also observed in rats treated with 1 day or 14 days of twice-daily nicotine administration. These results are consistent with the concept that acute exposure to nicotine induces rapid desensitization of nAChRs. In addition, following repeated exposure to nicotine, nAChRs did not become tolerant to the loss in receptor function that occurs after an initial nicotine administration. Overall, these data suggest that neuronal adaptations underlying nicotine tolerance may begin upon initial exposure then persist following repeated exposures.  相似文献   

3.
In rats, 1 mg/kg twice daily for 10 d of nicotine, a nonselective agonist of nicotinic acetylcholine receptors (nAChRs), fails to change alpha4 and beta2 nAChR subunit mRNA but significantly decreased alpha7 nAChR subunit mRNA and protein expression, which is associated with a 35-40% decrease in the number of 125I-alpha-Bgtx binding sites in hippocampus. In addition, this schedule of nicotine treatment produced a 40% increase in the number of high- (K(D) 1 nM), but decreased by 25% the number of low-affinity (K(D) 30 nM) binding sites for 3H-epibatidine in hippocampus. In contrast, repeated treatment with lobeline (2.7 mg/kg twice daily for 10 d), which selectively binds to high-affinity binding nAChRs, fails to change the expression of high- or low-affinity nAChRs. These data suggest that a simultaneous upregulation of high-affinity nAChRs and downregulation of low-affinity nAChRs is elicited by ligands that can bind to both low- and high-affinity nAChRs, but not by selective agonists of high-affinity nAChRs. One might infer that in hippocampus, high- and low-affinity nAChRs may be located in the same cells. When these two receptor types are stimulated simultaneously by nonselective ligands for high- and low-affinity nAChRs, they interact, bringing about an increase in binding site density of the high-affinity nAChRs.  相似文献   

4.
Nicotine acting centrally increases bronchomotor tone and airway secretion, suggesting that airway-related vagal preganglionic neurons (AVPNs) within the rostral nucleus ambiguus (rNA) express nicotinic acetylcholine receptors (nAChRs). In the present study, we examined the three main functionally characterized subtypes of nAChRs in the CNS, the alpha7 homomeric and alpha4beta2 heteromeric receptors. First, we characterized the expression of these subunits at the message (mRNA) and protein levels in brain tissues taken from the rNA region, the site where AVPNs are located. In addition, double labeling fluorescent immunohistochemistry and confocal laser microscopy were used to define the presence of alpha7, alpha4, and beta2 nAChRs on AVPNs that were retrogradely labeled with cholera toxin beta subunit (CTb), injected into the upper lung lobe (n=4) or extrathoracic trachea (n=4). Our results revealed expression of all three studied subunits at mRNA and protein levels within the rNA region. Furthermore, virtually all identified AVPNs innervating intrapulmonary airways express alpha7 and alpha4 nAChR subunits. Similarly, a majority of labeled AVPNs projecting to extrathoracic trachea contain alpha7 and beta2 subunits, but less than half of them show detectable alpha4 nAChR traits. These results suggest that AVPNs express three major nAChR subunits (alpha7, alpha4, and beta2) that could assemble into functional homologous or heterologous pentameric receptors, mediating fast and sustained nicotinic effects on cholinergic outflow to the airways.  相似文献   

5.
Nicotine releases dopamine in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine treatment increases the number of nAChRs, which represents plasticity of the brain. Together these phenomena have been suggested to have a role in the development of nicotine addiction. In the brain nAChRs can be localized synaptically, extrasynaptically or intracellularly. The purpose of these studies was to clarify the effects of chronic nicotine treatment on the localization of beta2 and alpha7 nAChR subunits in brain areas involved in nicotine addiction. Nicotine was administered orally in drinking water to male NMRI mice for 7 weeks. At the end of chronic nicotine treatment the localization of the nAChR subunits was studied in the dorsal striatum and in the ventral tegmental area (VTA) by using electron microscopy. In the brain areas studied beta2 and alpha7 subunits were localized presynaptically and postsynaptically in axon endings and in dendrites. In both areas the majority of the beta2 and alpha7 subunits were localized at extrasynaptic sites. In response to chronic nicotine treatment the beta2 and alpha7 nAChR subunit labelling was increased at synaptic and extrasynaptic sites as well as intracellularly. This suggests that the trafficking of nAChR subunits is increased as a result of chronic nicotine treatment and nAChRs in all parts of neurons could have functional roles in the formation of nicotine addiction.  相似文献   

6.
Localization of nAChR subunit mRNAs in the brain of Macaca mulatta   总被引:3,自引:0,他引:3  
We present here a systematic mapping of nAChR subunit mRNAs in Macaca mulatta brain. A fragment, from the transmembrane segments MIII to MIV of Macaca neuronal nAChR subunits was cloned, and shown to exhibit high identity (around 95%) to the corresponding human subunits. Then, specific oligodeoxynucleotides were synthesized for in situ hybridization experiments. Both alpha4 and beta2 mRNA signals were widely distributed in the brain, being stronger in the thalamus and in the dopaminergic cells of the mesencephalon. Most brain nuclei displayed both alpha4 and beta2 signals with the exception of some basal ganglia regions and the reticular thalamic nucleus which were devoid of alpha4 signal. alpha6 and beta3 mRNA signals were selectively concentrated in the substantia nigra and the medial habenula. The strongest signals for alpha3 or beta4 mRNAs were found in the epithalamus (medial habenula and pineal gland), whereas there were no specific alpha3 or beta4 signals in mesencephalic dopaminergic nuclei. alpha5 and alpha7 mRNA signals were found in several brain areas, including cerebral cortex, thalamus and substantia nigra, although at a lower level than alpha4 and beta2. The distribution of alpha3, alpha4, alpha5, alpha6, alpha7, beta2, beta3 and beta4 subunit mRNAs in the monkey is substantially similar to that observed in rodent brain. Surprisingly, alpha2 mRNA signal was largely distributed in the Macaca brain, at levels comparable with those of alpha4 and beta2. This observation represents the main difference between rodent and Macaca subunit mRNA distribution and suggests that, besides alpha4beta2*, alpha2beta2* nAChRs constitute a main nAChR isoform in primate brain.  相似文献   

7.
8.
Chronic nicotine upregulates central nicotinic acetylcholine receptors (nAChRs), a plasticity process thought to contribute to its addictive properties. To analyze this process in vivo, we chronically exposed mice to nicotine using minipump delivering nicotine at concentrations close to those found in tobacco smokers. Binding studies show upregulation of high-affinity nAChRs after 21 days of treatment in cortical areas, caudate putamen, nucleus accumbens, hippocampus, ventral tegmental area, and superior colliculi. No upregulation was observed in thalamus and discrete cortical areas. Using wild type and alpha 6-/- mice, we observed a downregulation of alpha 6*-nAChRs in superior colliculi and no effects in other structures. The complex pattern of upregulation/downregulation observed in this study depends on both nAChR composition and regional distribution.  相似文献   

9.
Ornithine decarboxylase (ODC) and the polyamines play an essential role in brain cell replication and differentiation and polyamines also regulate the function of nicotinic acetylcholine receptors (nAChRs). We administered alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, to neonatal rats on postnatal days 5-12, during the mitotic peak of the cerebellum, a treatment regimen that achieves a chemical knockout of ODC activity and polyamine depletion limited to the treatment period. Although growth inhibition and gross dysmorphology were limited to the cerebellum, both alpha7 and alpha4beta2 nAChRs were upregulated in adulthood in the frontal cortex, hippocampus and thalamus, with the largest effect in the latter region, primarily in females. Receptor upregulation was accompanied by abnormalities in macromolecular indices of cell packing density and cell membrane surface area, but the generalized cellular alterations did not share the regional or sex selectivity shown by the effects on nAChRs. Elevated DNA concentration was most notable in the hippocampus and was associated with augmented levels of glial fibrillary acidic protein, thus implying gliosis as the cause of the increased number of cells. DFMO's effects on both nAChR expression and cellular biomarkers resembled those of developmental exposure to nicotine. Accordingly, some of the effects may represent a specific alteration in nAChR signaling evoked by polyamine depletion during a critical developmental window. Alterations in polyamine gating of cholinergic synaptic signaling may thus contribute to the adverse neurobehavioral effects of numerous neuroteratogens that directly or indirectly disrupt the ODC/polyamine pathway.  相似文献   

10.
11.
Many behavioral effects of nicotine result from activation of nigrostriatal and mesolimbic dopaminergic systems. Nicotine regulates dopamine release not only by stimulation of nicotinic acetylcholine receptors (nAChRs) on dopamine cell bodies within the substantia nigra and ventral tegmental area (SN/VTA), but also on presynaptic nAChRs located on striatal terminals. The nAChR subtype(s) present on both cell bodies and terminals is still a matter of controversy. The purpose of this study was to use double-labeling in situ hybridization to identify nAChR subunit mRNAs expressed within dopamine neurons of the SN/VTA, by using a digoxigenin-labeled riboprobe for tyrosine hydroxylase as the dopamine cell marker and (35)S-labeled riboprobes for nAChR subunits. The results reveal a heterogeneous population of nAChR subunit mRNAs within midbrain dopamine neurons. Within the SN, almost all dopamine neurons express alpha2, alpha4, alpha5, alpha6, beta2, and beta3 nAChR mRNAs, with more than half also expressing alpha3 and alpha7 mRNAs. In contrast, less than 10% express beta4 mRNA. Within the VTA, a similar pattern of nAChR subunit mRNA expression is observed except that most subunits are expressed in a slightly lower percentage of dopamine neurons than in the SN. Within the SN, alpha4, beta2, alpha7, and beta4 mRNAs are also expressed in a significant number of nondopaminergic neurons, whereas within the VTA this only occurs for beta4. The heterogeneity in the expression of nAChR subunits within the SN/VTA may indicate the formation of a variety of different nAChR subtypes on cell bodies and terminals of the nigrostriatal and mesolimbic pathways.  相似文献   

12.
In the mammalian central nervous system (CNS), a family of alpha and beta subunits (alpha2-7, beta2-4) assemble to form both hetero- and homopentameric neuronal nicotinic acetylcholine receptors (nAChRs). In contrast to alpha4beta2 and alpha7, the predominant brain subtypes, far less is known regarding the functional expression and significance of alpha3-containing nAChRs in the CNS. In trying to better understand the role alpha3 in the CNS, an antisense knockdown strategy was utilized in the present studies. Specifically, Isis 106567 was identified out of 80 antisense oligonucleotides (aONs) designed and screened for their ability to reduce alpha3 mRNA expression in PC-12 cells. In addition to reducing alpha3 mRNA by greater than 75%, Isis 106567 attenuated nicotine-induced calcium influx in alpha3-expressing F11 cells. In vivo studies revealed significant reduction of alpha3 mRNA levels in both thalamus and medial habenula, regions known to express alpha3, following continuous (7 days) intracerebroventricular (i.c.v.) infusion of Isis 106567 in rats. Consistent with functional alpha3 knockdown, epibatidine-induced c-Fos expression in the medial habenula was attenuated in aON-treated rats. Known physiological responses elicited by epibatidine, such as hypothermia and micturition, were not affected by alpha3 aON treatment. However, the incidence of epibatidine-induced seizures was reduced in alpha3-antisense aON-treated rats, suggesting that alpha3 may be involved in mediating seizures produced by the nAChR agonist. Results of our studies suggest that Isis 106567 may be a useful in vivo tool for characterizing the functional significance of alpha3 expression in the CNS.  相似文献   

13.
The response by individuals to nicotine is likely to reflect the interaction of this compound with target nAChRs. However, resolving how different genetic backgrounds contribute to unique mouse strain-specific responses to this compound remains an important and unresolved issue. To examine this question in detail, expression of the nicotine acetylcholine receptor (nAChR) subunits alpha3, alpha4, alpha5, alpha7, beta2, and beta4 was measured in the dorsal hippocampus using immunohistochemistry in mouse strains or lines BALB/c, C3H/J, C57BL/6, CBA/J, DBA/2, Long Sleep (LS), Short Sleep (SS), and CF1. The nAChRs in all mice colocalized with glutamic acid decarboxylase (GAD)-positive interneurons that were subclassified into at least four groups based on nAChR subunit heterogeneity. A notable difference between mouse strains was the expression of nAChRs by astrocyte subpopulations in CA1 subregions whose numbers vary inversely with nAChR-immunostained neurons. This novel relationship also correlated with published parameters of strain sensitivity to nicotine. Attempts to identify the origin of this significant difference in nAChR expression among strains included comparison of the entire nAChRalpha4 gene sequence. Although multiple polymorphisms were identified, including two that changed nAChRalpha4 amino acid coding, none of these clearly correlate with strain-related differences in cell type-specific nAChR expression. These findings suggest that mouse strain-specific behavioral and physiological responses to nicotine are likely to be a reflection of a complex interplay between genetic factors that shape differences in expression and cellular architecture of this modulatory neurotransmitter system in the mammalian nervous system.  相似文献   

14.
Autoradiography was used to investigate nicotinic acetylcholine receptor (nAChR) binding in the brains of two groups of macaque monkeys with parkinsonism produced by different types of MPTP exposure: animals with cognitive deficits but no motor symptoms (motor-asymptomatic) and animals with typical motor symptoms of parkinsonism (motor-symptomatic). Motor-asymptomatic animals had no significant changes in [125I]epibatidine binding to beta2*-beta4* nAChRs and [125I]A85380 binding to beta2* nAChRs in cognition-related cortical regions such as Broadman's area 46, orbitofrontal cortex, the anterior cingulate sulcus and the hippocampus, but binding of both radioligands was decreased 70-80% in the caudate and putamen. Motor-symptomatic animals had decreases in beta2* and beta4* nAChR in the principal sulcus (40-60%), anterior cingulate sulcus (30-55%), and orbitofrontal cortex (30-41%), but not in the hippocampus, plus significant decreases in binding (70-80%) in the caudate and putamen. These results suggest that while nAChR expression is similarly decreased in the striatum of motor-asymptomatic and motor-symptomatic MPTP-treated monkeys, there are differences in beta2* and beta4* nAChR expression in cortical regions in these two conditions. Therefore, our data suggest that a therapeutic strategy based on nAChR agonist administration that might improve cognition in early PD patients may, due to a changing nAChR profile, have little or no effect on the same symptoms in more advanced patients.  相似文献   

15.
16.
17.
18.
Alpha7 nicotinic acetylcholine receptors (nAChRs) play a role in axonogenesis, synaptogenesis and synaptic plasticity, and are therefore potential targets for developmental neurotoxicants. We administered nicotine to neonatal rats during discrete periods spanning the onset and peak of axonogenesis/synaptogenesis, focusing on three brain regions with disparate distributions of cell bodies and neural projections: brainstem, forebrain and cerebellum. Nicotine treatment on postnatal days (PN) 1-4 had little or no effect on alpha7 nAChRs but treatment during the second (PN11-14) or third (PN21-24) weeks elicited significant decrements in receptor expression in brainstem and cerebellum, regions containing cell bodies that project to the forebrain. Exposure to chlorpyrifos, a neurotoxicant pesticide that acts partially through cholinergic mechanisms, also elicited deficits in alpha7 nAChRs during the second postnatal week but not the first week. For both nicotine and chlorpyrifos, the effects on alpha7 nAChRs were distinct from those on the alpha4beta2 subtype. Continuous prenatal nicotine exposure, which elicits subsequent, postnatal deficits in axonogenesis and synaptogenesis, also produced delayed-onset changes in alpha7 nAChRs, characterized by reductions in the forebrain and upregulation in the brainstem and cerebellum, a pattern consistent with impaired axonogenesis/synaptogenesis and reactive sprouting. Males were more sensitive to the persistent effects of prenatal nicotine exposure on alpha7 nAChRs, a pattern that mimics neurobehavioral deficits resulting from this treatment. The present findings reinforce the mechanistic involvement of alpha7 nAChRs in the actions of developmental neurotoxicants, and its biomarker potential for neuroteratogens that target neuritic outgrowth.  相似文献   

19.
Gahring LC  Rogers SW 《Hippocampus》2008,18(8):737-749
Mouse strains are well-characterized to exhibit differences in their physiological and behavioral responses to nicotine. This report examines the expression of the high-affinity nicotine binding receptor subunit, neuronal nicotinic receptor subunit alpha 4 (nAChR alpha 4), in the dorsal hippocampus of 27 inbred mouse strains. Multiple differences among mouse strains in the cellular expression of nAChR alpha 4 between subregions of the hippocampal field are evident. Differences that we describe in the expression of nAChR alpha 4 suggest mouse strains of diverse genetic origin could exhibit significant variation in how this receptor contributes to modulating intrahippocampal circuitry. These findings define a genetic frame-work in which the strain-specific responses to nicotine include underlying contributions by the varied anatomical context in which nAChRs are expressed.  相似文献   

20.
The connection between smoking and depression, the antidepressant actions of nicotine and the targeting of nicotinic acetylcholine receptors (nAChRs) by monoamine re-uptake inhibitors all point to a potential role of nAChRs in the etiology and/or symptomatology of depression. In the current study, we evaluated nAChR subtypes in brain regions of rats subjected to olfactory bulbectomy (OBX), a standard animal model that recapitulates many of the behavioral and neurochemical alterations thought to underlie human depression. Comparisons were made both to sham-operated controls and unoperated animals. OBX led to upregulation of cerebrocortical alpha4beta2 nAChRs and downregulation of striatal alpha7 nAChRs as compared to either the sham-operated or unoperated groups. Striatal alpha4beta2 nAChRs were also downregulated but the sham surgery by itself produced a partial effect, masking the contribution of the OBX lesion. In agreement with earlier studies, we also found downregulation of muscarinic AChRs (both m1 and m2 subtypes) in the striatum when comparing the OBX group to sham-operated controls, but because sham surgery evoked mAChR upregulation, the effect was not apparent when the OBX animals were contrasted to the unoperated group. Accordingly, caution needs to be exercised in interpreting studies of cholinergic function in the OBX model that do not include unoperated animals as an additional comparison group. Our results reinforce a relationship between depression and nAChR expression and point to the need for parallel studies in human depression that might lead to the design of novel therapies targeting specific nAChR subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号