首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperpolarized (HP) 129Xe MR offers unique advantages for brain functional imaging (fMRI) because of its extremely high sensitivity to different chemical environments and the total absence of background noise in biological tissues. However, its advancement and applications are currently plagued by issues of signal strength. Generally, xenon atoms found in the brain after inhalation are transferred from the lung via the bloodstream. The longitudinal relaxation time (T1) of HP 129Xe is inversely proportional to the pulmonary oxygen concentration in the lung because oxygen molecules are paramagnetic. However, the T1 of 129Xe is proportional to the pulmonary oxygen concentration in the blood, because the higher pulmonary oxygen concentration will result in a higher concentration of diamagnetic oxyhemoglobin. Accordingly, there should be an optimal pulmonary oxygen concentration for a given quantity of HP 129Xe in the brain. In this study, the relationship between pulmonary oxygen concentration and HP 129Xe signal in the brain was analyzed using a theoretical model and measured through in vivo experiments. The results from the theoretical model and experiments in rats are found to be in good agreement with each other. The optimal pulmonary oxygen concentration predicted by the theoretical model was 21%, and the in vivo experiments confirmed the presence of such an optimal ratio by reporting measurements between 25% and 35%. These findings are helpful for improving the 129Xe signal in the brain and make the most of the limited spin polarization available for brain experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The use of a quenching gas, isobutene, with a low vapor pressure was investigated to enhance the utility of hyperpolarized 129Xe (HP Xe) MRI. Xenon mixed with isobutene was hyperpolarized using a home‐built apparatus for continuously producing HP Xe. The isobutene was then readily liquefied and separated almost totally by continuous condensation at about 173 K, because the vapor pressure of isobutene (0.247 kPa) is much lower than that of Xe (157 kPa). Finally, the neat Xe gas was continuously delivered to mice by spontaneous inhalation. The HP Xe MRI was enhanced twofold in polarization level and threefold in signal intensity when isobutene was adopted as the quenching gas instead of N2. The usefulness of the HP Xe MRI was verified by application to pulmonary functional imaging of spontaneously breathing mice, where the parameters of fractional ventilation (ra) and gas exchange (fD) were evaluated, aiming at future extension to preclinical studies. This is the first application of isobutene as a quenching gas for HP Xe MRI.  相似文献   

3.
A fast method has been established for the precise measurement and quantification of the dynamics of hyperpolarized (HP) xenon‐129 (129Xe) in the mouse brain. The key technique is based on repeatedly applying radio frequency (RF) pulses and measuring the decrease of HP 129Xe magnetization after the brain Xe concentration has reached a steady state due to continuous HP 129Xe ventilation. The signal decrease of the 129Xe nuclear magnetic resonance (NMR) signal was well described by a simple theoretical model. The technique made it possible to rapidly evaluate the rate constant α, which is composed of cerebral blood flow (CBF), the partition coefficient of Xe between the tissue and blood (λi), and the longitudinal relaxation time (T1i) of HP 129Xe in the brain tissue, without any effect of depolarization by RF pulses and the dynamics in the lung. The technique enabled the precise determination of α as 0.103 ± 0.018 s‐1 (± SD, n = 5) on healthy mice. To investigate the potential of this method for detecting physiological changes in the brain of a kainic acid (KA) ‐induced mouse model of epilepsy, an attempt was made to follow the time course of α after KA injection. It was found that the α value changes characteristically with time, reflecting the change in the physiological state of the brain induced by KA injection. By measuring CBF using 1H MRI and 129Xe dynamics simultaneously and comparing these results, it was suggested that the reduction of T1i, in addition to the increase of CBF due to KA‐induced epilepsy, are possible causes of the change in 129Xe dynamics. Thus, the present method would be useful to detect a pathophysiological state in the brain and provide a novel tool for future brain study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Because there is no background signal from xenon in biological tissue, and because inhaled xenon is delivered to the brain by blood flow, we would expect a perfusion deficit, such as is seen in stroke, to reduce the xenon concentration in the region of the deficit. Thermal polarization yields negligible xenon signal relative to hyperpolarized xenon; therefore, hyperpolarized xenon can be used as a tracer of cerebral blood flow. Using a rat permanent right middle cerebral artery occlusion model, we demonstrated that hyperpolarized 129Xe MRI is able to detect, in vivo, the hypoperfused area of focal cerebral ischemia, that is the ischemic core area of stroke. To the best of our knowledge, this is the first time that hyperpolarized 129Xe MRI has been used to explore normal and abnormal cerebral perfusion. Our study shows a novel application of hyperpolarized 129Xe MRI for imaging stroke, and further demonstrates its capacity to serve as a complementary tool to proton MRI for the study of the pathophysiology during brain hypoperfusion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, hyperpolarized 129Xe MR ventilation and 1H anatomical images were obtained from three subject groups: young healthy volunteers (HVs), subjects with chronic obstructive pulmonary disease (COPD) and age‐matched controls (AMCs). Ventilation images were quantified by two methods: an expert reader‐based ventilation defect score percentage (VDS%) and a semi‐automated segmentation‐based ventilation defect percentage (VDP). Reader‐based values were assigned by two experienced radiologists and resolved by consensus. In the semi‐automated analysis, 1H anatomical images and 129Xe ventilation images were both segmented following registration to obtain the thoracic cavity volume and ventilated volume, respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the thoracic cavity volume, and heterogeneity was analyzed using the coefficient of variation (CV). The reader‐based VDS% correlated strongly with the semi‐automatically generated VDP (r = 0.97, p < 0.0001) and with CV (r = 0.82, p < 0.0001). Both 129Xe ventilation defect scoring metrics readily separated the three groups from one another and correlated significantly with the forced expiratory volume in 1 s (FEV1) (VDS%: r = –0.78, p = 0.0002; VDP: r = –0.79, p = 0.0003; CV: r = –0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HVs and AMCs), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between subjects with COPD with similar ventilation defect scores, but visibly different ventilation patterns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The feasibility of ventilation imaging with hyperpolarized (HP) 129Xe MRI has been investigated for quantitative and regional assessment of ventilation in spontaneously breathing mice. The multiple breath ventilation imaging technique was modified to the protocol of spontaneous inhalation of HP 129Xe delivered continuously from a 129Xe polarizer. A series of 129Xe ventilation images was obtained by varying the number of breaths before the 129Xe lung imaging. The fractional ventilation, r, was successfully evaluated for spontaneously breathing mice. An attempt was made to detect ventilation dysfunction in the emphysematous mouse lung induced by intratracheal administration of porcine pancreatic elastase (PPE). As a result, the distribution of fractional ventilation could be visualized by the r map. Significant dysfunction of ventilation was quantitatively identified in the PPE‐treated group. The whole‐lung r value of 0.34 ± 0.01 for control mice (N = 4) was significantly reduced, to 0.25 ± 0.07, in PPE‐treated mice (N = 4) (p = 0.038). This study is the first application of multiple breath ventilation imaging to spontaneously breathing mice, and shows that this methodology is sensitive to differences in the pulmonary ventilation. This methodology is expected to improve simplicity as well as noninvasiveness when assessing regional ventilation in small rodents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Fast apparent transverse relaxation (short T2*) is a common obstacle when attempting to perform quantitative 1H MRI of the lungs. While T2* times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129Xe), T2* can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2* of HP 129Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi‐echo radial flyback imaging sequence and use it to measure HP 129Xe T2* at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient‐refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129Xe T2* in vivo for 10 healthy C57Bl/6 J mice and found T2* ~ 5 ms in the lung airspaces. Interestingly, T2* was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2* relaxation within porous media.  相似文献   

8.
Pulmonary diseases usually result in changes of the blood‐gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129Xe MR via chemical shift saturation recovery (CSSR) and diffusion‐weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood‐gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath‐hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g), is proposed to evaluate the gas exchange function. Hyperpolarized 129Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age‐matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.  相似文献   

9.
Hyperpolarized 129Xe gas MR has been a powerful tool for evaluating pulmonary structure and function due to the extremely high enhancement in spin polarization, the good solubility in the pulmonary parenchyma, and the excellent chemical sensitivity to its surrounding environment. Generally, the quantitative structural and functional information of the lung are evaluated using hyperpolarized 129Xe by employing the techniques of chemical shift saturation recovery (CSSR) and xenon polarization transfer contrast (XTC). Hyperpolarized 129Xe chemical exchange saturation transfer (Hyper‐CEST) is another method for quantifying the exchange information of hyperpolarized 129Xe by using the exchange of xenon signals according to its different chemical shifts, and it has been widely used in biosensor studies in vitro. However, the feasibility of using hyperpolarized 129Xe CEST to quantify the pulmonary gas exchange function in vivo is still unclear. In this study, the technique of CEST was used to quantitatively evaluate the gas exchange in the lung globally and regionally via hyperpolarized 129Xe MRS and MRI, respectively. A new parameter, the pulmonary apparent gas exchange time constant (Tapp), was defined, and it increased from 0.63 s to 0.95 s in chronic obstructive pulmonary disease (COPD) rats (induced by cigarette smoke and lipopolysaccharide exposure) versus the controls with a significant difference (P = 0.001). Additionally, the spatial distribution maps of Tapp in COPD rats' pulmonary parenchyma showed a regionally obvious increase compared with healthy rats. These results indicated that hyperpolarized 129Xe CEST MR was an effective method for globally and regionally quantifying the pulmonary gas exchange function, which would be helpful in diagnosing lung diseases that are related to gas exchange, such as COPD.  相似文献   

10.
During the measurement of hyperpolarized 129Xe magnetic resonance imaging (MRI), the diffusion‐weighted imaging (DWI) technique provides valuable information for the assessment of lung morphometry at the alveolar level, whereas the chemical shift saturation recovery (CSSR) technique can evaluate the gas exchange function of the lungs. To date, the two techniques have only been performed during separate breaths. However, the request for multiple breaths increases the cost and scanning time, limiting clinical application. Moreover, acquisition during separate breath‐holds will increase the measurement error, because of the inconsistent physiological status of the lungs. Here, we present a new method, referred to as diffusion‐weighted chemical shift saturation recovery (DWCSSR), in order to perform both DWI and CSSR within a single breath‐hold. Compared with sequential single‐breath schemes (namely the ‘CSSR + DWI’ scheme and the ‘DWI + CSSR’ scheme), the DWCSSR scheme is able to significantly shorten the breath‐hold time, as well as to obtain high signal‐to‐noise ratio (SNR) signals in both DWI and CSSR data. This scheme enables comprehensive information on lung morphometry and function to be obtained within a single breath‐hold. In vivo experimental results demonstrate that DWCSSR has great potential for the evaluation and diagnosis of pulmonary diseases.  相似文献   

11.
The longitudinal relaxation time of hyperpolarized (HP) (129)Xe in the brain is a critical parameter for developing HP (129)Xe brain imaging and spectroscopy and optimizing the pulse sequences, especially in the case of cerebral blood flow measurements. Various studies have produced widely varying estimates of HP (129)Xe T(1) in the rat brain. To make improved measurements of HP (129)Xe T(1) in the rat brain and investigate how low signal-to-noise ratio (SNR) contributes to these discrepancies, we developed a multi-pulse protocol during the washout of (129)Xe from the brain. Afterwards, we applied an SNR threshold theory to both the multi-pulse protocol and an existing two-pulse protocol. The two protocols yielded mean +/- SD HP (129)Xe T(1) values in the rat brain of 15.3 +/- 1.2 and 16.2 +/- 0.9 s, suggesting that the low SNR might be a key reason for the wide range of T(1) values published in the literature, a problem that might be easily alleviated by taking SNR levels into account.  相似文献   

12.
Diffusion‐weighted 1H‐MRS (DW‐MRS) allows for noninvasive investigation of the cellular compartmentalization of cerebral metabolites. DW‐MRS applied to the congenital portal systemic shunt (PSS) mouse brain may provide specific insight into alterations of cellular restrictions associated with PSS in humans. At 14.1 T, adult male PSS and their age‐matched healthy (Ctrl) mice were studied using DW‐MRS covering b‐values ranging from 0 to 45 ms/μm2 to determine the diffusion behavior of abundant metabolites. The remarkable sensitivity and spectral resolution, in combination with very high diffusion weighting, allowed for precise measurement of the diffusion properties of endogenous N‐acetyl‐aspartate, total creatine, myo‐inositol, total choline with extension to glutamine and glutamate in mouse brains, in vivo. Most metabolites had comparable diffusion properties in PSS and Ctrl mice, suggesting that intracellular distribution space for these metabolites was not affected in the model. The slightly different diffusivity of the slow decaying component of taurine (0.015 ± 0.003 μm2/ms in PSS vs 0.021 ± 0.002 μm2/ms in Ctrl, P < 0.05) might support a cellular redistribution of taurine in the PSS mouse brain.  相似文献   

13.
Hyperpolarized 13C MRI takes advantage of the unprecedented 50 000‐fold signal‐to‐noise ratio enhancement to interrogate cancer metabolism in patients and animals. It can measure the pyruvate‐to‐lactate conversion rate, kPL, a metabolic biomarker of cancer aggressiveness and progression. Therefore, it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that modulate kPL estimation were identified and investigated in model simulations and through in vivo animal studies using several specifically designed pulse sequences. These factors included a magnetization spoiling effect due to RF pulses, a crusher gradient‐induced flow suppression, and intrinsic image weightings due to relaxation. Simulation showed that the RF‐induced magnetization spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a significantly higher apparent kPL with an additional gradient that leads to flow suppression (kPL,FID‐Delay,Crush/kPL,FID‐Delay = 1.37 ± 0.33, P < 0.01, N = 6), which agrees with simulation outcomes (12.5% kPL error with Δv = 40 cm/s), indicating that the gradients predominantly suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed free induction decay (FID) acquisition versus a minimum‐TE version (kPL,FID‐Delay/kPL,FID = 0.67 ± 0.09, P < 0.01, N = 5), and the lactate peak had broader linewidth than pyruvate (Δωlactateωpyruvate = 1.32 ± 0.07, P < 0.000 01, N = 13). This illustrated that lactate's T2*, shorter than that of pyruvate, can affect calculated kPL values. We also found that an FID sequence yielded significantly lower kPL versus a double spin‐echo sequence that includes spin‐echo spoiling, flow suppression from crusher gradients, and more T2 weighting (kPL,DSE/kPL,FID = 2.40 ± 0.98, P < 0.0001, N = 7). In summary, the pulse sequence, as well as its interaction with pharmacokinetics and the tissue microenvironment, can impact and be optimized for the measurement of kPL. The data acquisition and analysis pipelines can work synergistically to provide more robust and reproducible kPL measures for future preclinical and clinical studies.  相似文献   

14.
The purpose of this study was to measure the sodium transverse relaxation time T2* in the healthy human brain. Five healthy subjects were scanned with 18 echo times (TEs) as short as 0.17 ms. T2* values were fitted on a voxel‐by‐voxel basis using a bi‐exponential model. Data were also analysed using a continuous distribution fit with a region of interest‐based inverse Laplace transform. Average T2* values were 3.4 ± 0.2 ms and 23.5 ± 1.8 ms in white matter (WM) for the short and long components, respectively, and 3.9 ± 0.5 ms and 26.3 ± 2.6 ms in grey matter (GM) for the short and long components, respectively, using the bi‐exponential model. Continuous distribution fits yielded results of 3.1 ± 0.3 ms and 18.8 ± 3.2 ms in WM for the short and long components, respectively, and 2.9 ± 0.4 ms and 17.2 ± 2 ms in GM for the short and long components, respectively. 23Na T2* values of the brain for the short and long components for various anatomical locations using ultra‐short TEs are presented for the first time.  相似文献   

15.
Rituximab therapy alters all aspects of B‐cell participation in the disturbed immune response of rheumatoid arthritis patients. To determine the impact of B‐cell depletion on other immune compartments, we analysed levels of soluble and surface interleukin‐15 (IL‐15) along with the frequency of IL‐15‐related subsets after rituximab treatment. We then studied the correlation of observed changes with clinical activity. Heparinized blood samples from 33 rheumatoid arthritis patients were collected on days 0, 30, 90 and 180 after each of three rituximab cycles. Serum cytokine levels were determined by ELISA. Interleukin‐15 trans‐presentation was analysed by cytometry. Flow cytometry with monoclonal antibodies was performed to analyse circulating cell subsets. Interleukin‐15 was detected in the serum of 25 patients before initiating the treatment. Rituximab then progressively reduced serum IL‐15 (138 ± 21 pg/ml at baseline, 48 ± 18 pg/ml after third cycle, P = 0·03) along with IL‐17 (1197 ± 203 pg/ml at baseline, 623 ± 213 pg/ml after third cycle, P = 0·03) and tended to increase the frequency of circulating regulatory T cells (3·1 ± 1 cells/μl at baseline, 7·7 ± 2 cells/μl after third cycle). Rituximab also significantly decreased IL‐15 trans‐presentation on surface monocytes of patients negative for IL‐15 serum (mean fluorescence intensity: 4·82 ± 1·30 at baseline, 1·42 ± 0·69 after third cycle P = 0·05). Reduction of serum IL‐15 was associated with decrease in CD8+ CD45RO+/RA+ ratio (1·17 ± 0·21 at baseline, 0·36 ± 0·06 at third cycle, P = 0·02). DAS28, erythrocyte sedimentation rate and C‐reactive protein correlated significantly with CD8+ CD45RO+/RA+ ratio (R = 0·323, R = 0·357, R = 0·369 respectively, P < 0·001). Our results suggest that sustained clinical improvement after rituximab treatment is associated with IL‐15/memory T‐cell‐related mechanisms beyond circulating B cells.  相似文献   

16.
Changes in the kinetics of the creatine kinase (CK) shuttle are sensitive markers of cardiac energetics but are typically measured at rest and in the prone position. This study aims to measure CK kinetics during pharmacological stress at 3 T, with measurement in the supine position. A shorter “stressed saturation transfer” (StreST) extension to the triple repetition time saturation transfer (TRiST) method is proposed. We assess scanning in a supine position and validate the MR measurement against biopsy assay of CK activity. We report normal ranges of stress CK forward rate (kfCK) for healthy volunteers and obese patients. TRiST measures kfCK in 40 min at 3 T. StreST extends the previously developed TRiST to also make a further kfCK measurement during <20 min of dobutamine stress. We test our TRiST implementation in skeletal muscle and myocardium in both prone and supine positions. We evaluate StreST in the myocardium of six healthy volunteers and 34 obese subjects. We validated MR‐measured kfCK against biopsy assays of CK activity. TRiST kfCK values matched literature values in skeletal muscle (kfCK = 0.25 ± 0.03 s?1 vs 0.27 ± 0.03 s?1) and myocardium when measured in the prone position (0.32 ± 0.15 s?1), but a significant difference was found for TRiST kfCK measured supine (0.24 ± 0.12 s?1). This difference was because of different respiratory‐ and cardiac‐motion‐induced B0 changes in the two positions. Using supine TRiST, cardiac kfCK values for normal‐weight subjects were 0.15 ± 0.09 s?1 at rest and 0.17 ± 0.15 s?1 during stress. For obese subjects, kfCK was 0.16 ± 0.07 s?1 at rest and 0.17 ± 0.10 s?1 during stress. Rest myocardial kfCK and CK activity from LV biopsies of the same subjects correlated (R = 0.43, p = 0.03). We present an independent implementation of TRiST on the Siemens platform using a commercially available coil. Our extended StreST protocol enables cardiac kfCK to be measured during dobutamine‐induced stress in the supine position.  相似文献   

17.
The goal of the study was to establish early hyperpolarized (HP) 13C MRI metabolic and perfusion changes that predict effective high‐intensity focused ultrasound (HIFU) ablation and lead to improved adjuvant treatment of partially treated regions. To accomplish this a combined HP dual‐agent (13C pyruvate and 13C urea) 13C MRI/multiparametric 1H MRI approach was used to measure prostate cancer metabolism and perfusion 3–4 h, 1 d, and 5 d after exposure to ablative and sub‐lethal doses of HIFU within adenocarcinoma of mouse prostate tumors using a focused ultrasound applicator designed for murine studies. Pathologic and immunohistochemical analysis of the ablated tumor demonstrated fragmented, non‐viable cells and vasculature consistent with coagulative necrosis, and a mixture of destroyed tissue and highly proliferative, poorly differentiated tumor cells in tumor tissues exposed to sub‐lethal heat doses in the ablative margin. In ablated regions, the intensity of HP 13C lactate or HP 13C urea and dynamic contrast‐enhanced (DCE) MRI area under the curve images were reduced to the level of background noise by 3–4 h after treatment with no recovery by the 5 d time point in either case. In the tissues that received sub‐lethal heat dose, there was a significant 60% ± 12.4% drop in HP 13C lactate production and a significant 30 ± 13.7% drop in urea perfusion 3–4 h after treatment, followed by recovery to baseline by 5 d after treatment. DCE MRI Ktrans showed a similar trend to HP 13C urea, demonstrating a complete loss of perfusion with no recovery in the ablated region, while having a 40%–50% decrease 3–4 h after treatment followed by recovery to baseline values by 5 d in the margin region. The utility of the HP 13C MR measures of perfusion and metabolism in optimizing focal HIFU, either alone or in combination with adjuvant therapy, deserves further testing in future studies.  相似文献   

18.
Systemic sclerosis (SSc) is a complex disease characterized by immune dysregulation, extensive vascular damage and widespread fibrosis. Human leucocyte antigen‐G (HLA‐G) is a non‐classic class I major histocompatibility complex (MHC) molecule characterized by complex immunomodulating properties. HLA‐G is expressed on the membrane of different cell lineages in both physiological and pathological conditions. HLA‐G is also detectable in soluble form (sHLA‐G) deriving from the shedding of surface isoforms (sHLA‐G1) or the secretion of soluble isoforms (HLA‐G5). Several immunosuppressive functions have been attributed to both membrane‐bound and soluble HLA‐G molecules. The plasma levels of sHLA‐G were higher in SSc patients (444·27 ± 304·84 U/ml) compared to controls (16·74 ± 20·58 U/ml) (P < 0·0001). The plasma levels of transforming growth factor (TGF)‐β were higher in SSc patients (18 937 ± 15 217 pg/ml) compared to controls (11 099 ± 6081 pg/ml; P = 0·003), and a significant correlation was found between TGF‐β and the plasma levels of total sHLA‐G (r = 0·65; P < 0·01), sHLA‐G1 (r = 0·60; P = 0·003) and HLA‐G5 (r = 0·47; P = 0·02). The percentage of HLA‐G‐positive monocytes (0·98 ± 1·72), CD4+ (0·37 ± 0·68), CD8+ (2·05 ± 3·74) and CD4+CD8+ double‐positive cells (14·53 ± 16·88) was higher in SSc patients than in controls (0·11 ± 0·08, 0·01 ± 0·01, 0·01 ± 0·01 and 0·39 ± 0·40, respectively) (P < 0·0001). These data indicate that in SSc the secretion and/or shedding of soluble HLA‐G molecules and the membrane expression of HLA‐G by peripheral blood mononuclear cells (PBMC) is clearly elevated, suggesting an involvement of HLA‐G molecules in the immune dysregulation of SSc.  相似文献   

19.
Two spectral editing techniques for the simultaneous detection of glutathione (GSH) and lactate (Lac) in the human brain at 3 T are described and evaluated. These methods, ‘sMEGA’ (sinc‐MEscher and GArwood) and ‘DEW’ (Double Editing With), were optimized to detect GSH and Lac simultaneously at 3 T using density‐matrix simulations and validation in phantoms. Simulations to test for co‐edited metabolites within the detected GSH region of the spectrum were also performed. In vivo data were acquired in the midline parietal region of seven subjects using both methods, and compared with conventional MEGA‐PRESS (MEscher and GArwood‐Point RESolved Spectroscopy) acquisitions of GSH and Lac. Simulations and phantom experiments showed that sMEGA and DEW had a high editing efficiency for both GSH and Lac. In the phantom, the editing efficiency of GSH was >88% relative to a conventional GSH MEGA‐PRESS acquisition, whereas, for Lac, the editing efficiency was >95% relative to a conventional Lac MEGA‐PRESS acquisition. Simulations also showed that the editing efficiency of both methods was comparable with separate MEGA‐PRESS acquisitions of the same metabolites. In addition, simulations and in vivo spectra showed that, at a TE of 140 ms, there was a partial overlap between creatine (Cr) and GSH peaks, and that N‐acetyl aspartate/N‐acetyl aspartyl glutamate (NAA/NAAG) were sufficiently resolved from GSH. In vivo measurements showed that both sMEGA and DEW edited GSH and Lac reliably with the same editing efficiency as conventional MEGA‐PRESS acquisitions of the same metabolites, with measured GSH integrals of 2.23 ± 0.51, 2.31 ± 0.38, 2.38 ± 0.53 and measured Lac integrals of 1.72 ± 0.67, 1.55 ± 0.35 and 1.53 ± 0.54 for MEGA‐PRESS, DEW and sMEGA, respectively. Simultaneous detection of GSH and Lac using sMEGA and DEW is possible at 3 T with high editing efficiency.  相似文献   

20.
Schistosoma japonicum infection can induce granulomatous inflammation and cause tissue damage in the mouse liver. The cytokine secretion profile of T helper (Th) cells depends on both the nature of the activating stimulus and the local microenvironment (e.g. cytokines and other soluble factors). In the present study, we found an accumulation of large numbers of IFN‐γ+ IL‐4+ CD4+ T cells in mouse livers. This IFN‐γ+ IL‐4+ cell population increased from 0·68 ± 0·57% in uninfected mice to 7·05 ± 3·0% by week 4 following infection and to 9·6 ± 5·28% by week 6, before decreasing to 6·3 ± 5·9% by week 8 in CD4 T cells. Moreover, IFN‐γ+ IL‐4+ Th cells were also found in mouse spleen and mesenteric lymph nodes 6 weeks after infection. The majority of the IFN‐γ+ IL‐4+ Th cells were thought to be related to a state of immune activation, and some were memory T cells. Moreover, we found that these S. japonicum infection‐induced IFN‐γ+ IL‐4+ cells could express interleukin‐2 (IL‐2), IL‐9, IL‐17 and high IL‐10 levels at 6 weeks after S. japonicum infection. Taken together, our data suggest the existence of a population of IFN‐γ+ IL‐4+ plasticity effector/memory Th cells following S. japonicum infection in C57BL/6 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号