首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is 1) to demonstrate reproducibility of spin echo‐echo planar imaging (SE‐EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE‐EPI MRE and gradient recalled echo (GRE) MRE‐derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE‐EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22–66 years) in a 3 T MRI scanner. To demonstrate SE‐EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan. Similar set‐up was used for GRE MRE as well. The displacement data was then processed to obtain overall stiffness estimates of the kidney. Concordance correlation analyses were performed to determine SE‐EPI MRE reproducibility and agreement between GRE MRE and SE‐EPI MRE derived stiffness. A high concordance correlation (ρc = 0.95; p‐value<0.0001) was obtained for SE‐EPI MRE reproducibility. Good concordance correlation was observed (ρc = 0.84; p < 0.0001 for both kidneys, ρc = 0.91; p < 0.0001 for right kidney and ρc = 0.78; p < 0.0001 for left kidney) between GRE MRE and SE‐EPI MRE derived stiffness measurements. Paired t‐test results showed that stiffness value of medulla was significantly (p < 0.0001) greater than cortex using SE‐EPI MRE as well as GRE MRE. SE‐EPI MRE was reproducible and good agreement was observed in MRE‐derived stiffness measurements obtained using SE‐EPI and GRE sequences. Therefore, SE‐EPI can be used for kidney MRE applications.  相似文献   

2.
The current state‐of‐the‐art diagnosis method for deep tissue injury in muscle, a subcategory of pressure ulcers, is palpation. It is recognized that deep tissue injury is frequently preceded by altered biomechanical properties. A quantitative understanding of the changes in biomechanical properties preceding and during deep tissue injury development is therefore highly desired. In this paper we quantified the spatial–temporal changes in mechanical properties upon damage development and recovery in a rat model of deep tissue injury. Deep tissue injury was induced in nine rats by two hours of sustained deformation of the tibialis anterior muscle. Magnetic resonance elastography (MRE), T2‐weighted, and T2‐mapping measurements were performed before, directly after indentation, and at several timepoints during a 14‐day follow‐up. The results revealed a local hotspot of elevated shear modulus (from 3.30 ± 0.14 kPa before to 4.22 ± 0.90 kPa after) near the center of deformation at Day 0, whereas the T2 was elevated in a larger area. During recovery there was a clear difference in the time course of the shear modulus and T2. Whereas T2 showed a gradual normalization towards baseline, the shear modulus dropped below baseline from Day 3 up to Day 10 (from 3.29 ± 0.07 kPa before to 2.68 ± 0.23 kPa at Day 10, P < 0.001), followed by a normalization at Day 14. In conclusion, we found an initial increase in shear modulus directly after two hours of damage‐inducing deformation, which was followed by decreased shear modulus from Day 3 up to Day 10, and subsequent normalization. The lower shear modulus originates from the moderate to severe degeneration of the muscle. MRE stiffness values were affected in a smaller area as compared with T2. Since T2 elevation is related to edema, distributing along the muscle fibers proximally and distally from the injury, we suggest that MRE is more specific than T2 for localization of the actual damaged area.  相似文献   

3.
Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%–20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1–9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10−3 mm2/s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10−5 mm2/s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.  相似文献   

4.
To design and validate a rapid Simultaneous Multi‐slice (SMS) Magnetic Resonance Elastography technique (MRE), which combines SMS acquisition, in‐plane undersampling and an existing rapid Magnetic Resonance Elastography (MREr) scheme to allow accelerated data acquisition in healthy volunteers and comparison against MREr. SMS‐MREr sequence was developed by incorporating SMS acquisition scheme into an existing MREr sequence that accelerates MRE acquisition by acquiring data during opposite phases of mechanical vibrations. The MREr sequence accelerated MRE acquisition by acquiring data during opposite phases of mechanical vibrations. Liver MRE was performed on 23 healthy subjects using MREr and SMS‐MREr sequences, and mean stiffness values were obtained for manually drawn regions of interest. Linear correlation and agreement between MREr‐ and SMS‐MREr‐based stiffness values were investigated. SMS‐MREr reduced the scan time by half relative to MREr, and allowed acquisition of four‐slice MRE data in a single 17‐second breath‐hold. Visual comparison suggested agreement between MREr and SMS‐MREr elastograms. A Pearson's correlation of 0.93 was observed between stiffness values derived from MREr and SMS‐MREr. Bland–Altman analysis demonstrated good agreement, with ?0.08 kPa mean bias and narrow limits of agreement (95% CI: 0.23 to ?0.39 kPa) between stiffness values obtained using MREr and SMS‐MREr. SMS can be combined with other fast MRE approaches to achieve further acceleration. This pushes the limit on the acceleration that can be achieved in MRE acquisition, and makes it possible to conduct liver MRE exams in a single breath‐hold.  相似文献   

5.
In MR elastography (MRE), periodic tissue motion is phase encoded using motion‐encoding gradients synchronized to an externally applied periodic mechanical excitation. Conventional methods result in extended scan time for quality phase images, thus limiting the broad application of MRE in the clinic. For practical scan times, researchers have been relying on one‐dimensional or two‐dimensional motion‐encoding, low‐phase sampling and a limited number of slices, and artifact‐prone, single‐shot, echo planar imaging (EPI) readout. Here, we introduce a rapid multislice pulse sequence capable of three‐dimensional motion encoding that is also suitable for simultaneously encoding motion with multiple frequency components. This sequence is based on a gradient‐recalled echo (GRE) sequence and exploits the principles of fractional encoding. This GRE MRE pulse sequence was validated as capable of acquiring full three‐dimensional motion encoding of isotropic voxels in a large volume within less than a minute. This sequence is suitable for monofrequency and multifrequency MRE experiments. In homogeneous paraffin phantoms, the eXpresso sequence yielded similar storage modulus values as those obtained with conventional methods, although with markedly reduced variances (7.11 ± 0.26 kPa for GRE MRE versus 7.16 ± 1.33 kPa for the conventional spin‐echo EPI sequence). The GRE MRE sequence obtained better phase‐to‐noise ratios than the equivalent spin‐echo EPI sequence (matched for identical acquisition time) in both paraffin phantoms and in vivo data in the liver (59.62 ± 11.89 versus 27.86 ± 3.81, 61.49 ± 14.16 versus 24.78 ± 2.48 and 58.23 ± 10.39 versus 23.48 ± 2.91 in the X, Y and Z components, respectively, in the case of liver experiments). Phase‐to‐noise ratios were similar between GRE MRE used in monofrequency or multifrequency experiments (75.39 ± 14.93 versus 86.13 ± 18.25 at 28 Hz, 71.52 ± 24.74 versus 86.96 ± 30.53 at 56 Hz and 95.60 ± 36.96 versus 61.35 ± 26.25 at 84Hz, respectively). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The purpose of this work is to assess a fast technique that measures tissue stiffness and temperature during focused ultrasound thermal therapy (FUS). A one-dimensional (1D) MR elastography (MRE) pulse sequence was evaluated for the purpose of obtaining rapid measurements of thermally induced changes in tissue stiffness and temperature for monitoring FUS treatments. The accuracy of the 1D measurement was studied by comparing tissue displacements measured by 1D MRE with those measured by the well-established 2D MRE pulse sequence. The reproducibility of the 1D MRE measurement was assessed, in gel phantoms and ex vivo porcine tissue, for varied FUS intensity levels (31.5-199.9 W cm(-2)) and over a range of displacements at the focus (0.1-1 microm). Temperature elevations in agarose gel phantoms were measured using 1D MRE and calibrated using fiberoptic-thermometer-based measurements. The 1D MRE displacement measurements are highly correlated with those obtained with the 2D technique (R(2) = 0.88-0.93), indicating that 1D MRE can successfully measure tissue displacement. Ten repeated trials at each FUS power level yielded a minimum detectable displacement change of 0.2 microm in phantoms and 0.4 microm in tissue (at 95% confidence level). The 1D MRE temperature measurements correlated well with temperature changes measured simultaneously with fiberoptic thermometers (R(2) = 0.97). The 1D MRE technique is capable of detecting tissue displacements as low as 0.4 microm, which is an order of magnitude smaller than 5 microm displacements expected during FUS therapy (Le et al 2005 AIP Conf. Proc.: Ther. Ultrasound 829 186-90). Additionally, 1D MRE was shown to provide adequate measurements of temperature elevations in tissue. These findings indicate that 1D MRE may be an effective tool for monitoring FUS treatments.  相似文献   

7.
Magnetic resonance elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging‐based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes, such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging technique. The technique essentially involves three steps: (1) generating shear waves in the tissue, (2) acquiring MR images depicting the propagation of the induced shear waves, and (3) processing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable, and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs, and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. Clin. Anat. 23:497–511, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
MR elastography (MRE) has been shown to be capable of non-invasively measuring tissue elasticity even in deep-lying regions. Although limited studies have already been published examining in vivo muscle elasticity, it is still not clear over what range the in vivo elasticity values vary. The present study intends to produce further information by examining four different skeletal muscles in a group of 12 healthy volunteers in the age range of 27-38 years. The examinations were performed in the biceps brachii, the flexor digitorum profundus, the soleus and the gastrocnemius. The average shear modulus was determined to be 17.9 (+/- 5.5), 8.7 (+/- 2.8), 12.5 (+/- 7.3) and 9.9 (+/- 6.8) kPa for each muscle, respectively. To ascertain the reproducibility of the examination, the stiffness measurements in two volunteers were repeated seven times for the biceps brachii. These examinations yielded a mean shear modulus of 11.3 +/-.7 and 13.3 +/- 4.7 kPa for the two subjects. For elasticity reconstruction, an automated reconstruction algorithm is introduced which eliminates variation due to subjective manual image analysis. This study yields new information regarding the expected variation in muscle elasticity in a healthy population, and also reveals the expected variability of the MRE technique in skeletal muscle.  相似文献   

9.
Magnetic resonance elastography (MRE) is a non-invasive phase-contrast-based method for quantifying the shear stiffness of biological tissues. Synchronous application of a shear wave source and motion encoding gradient waveforms within the MRE pulse sequence enable visualization of the propagating shear wave throughout the medium under investigation. Encoded shear wave-induced displacements are then processed to calculate the local shear stiffness of each voxel. An important consideration in local shear stiffness estimates is that the algorithms employed typically calculate shear stiffness using relatively high signal-to-noise ratio (SNR) MRE images and have difficulties at an extremely low SNR. A new method of estimating shear stiffness based on the principal spatial frequency of the shear wave displacement map is presented. Finite element simulations were performed to assess the relative insensitivity of this approach to decreases in SNR. Additionally, ex vivo experiments were conducted on normal rat lungs to assess the robustness of this approach in low SNR biological tissue. Simulation and experimental results indicate that calculation of shear stiffness by the principal frequency method is less sensitive to extremely low SNR than previously reported MRE inversion methods but at the expense of loss of spatial information within the region of interest from which the principal frequency estimate is derived.  相似文献   

10.
Blood perfusion in lung parenchyma is an important property for assessing lung function. In small animals, its quantitation is limited even with radioactive isotopes or dynamic contrast‐enhanced MRI techniques. In this study, the feasibility flow‐sensitive alternating inversion recovery (FAIR) for the quantification of blood flow in lung parenchyma in free breathing rats at 7 T has been investigated. In order to obtain sufficient signal from the short T2* lung parenchyma, a 2D ultra‐short echo time (UTE) Look‐Locker read‐out has been implemented. Acquisitions were segmented to maintain acquisition time within an acceptable range. A method to perform retrospective respiratory gating (DC‐SG) has been applied to investigate the impact of respiratory movement. Reproducibilities within and between sessions were estimated, and the ability of FAIR‐UTE to identify the decrease of lung perfusion under hyperoxic conditions was tested. The implemented technique allowed for the visualization of lung parenchyma with excellent SNR and no respiratory artifact even in ungated acquisitions. Lung parenchyma perfusion was obtained as 32.54 ± 2.26 mL/g/min in the left lung, and 34.09 ± 2.75 mL/g/min in the right lung. Application of retrospective gating significantly but minimally changes the perfusion values, implying that respiratory gating may not be necessary with this center‐our acquisition method. A decrease of 10% in lung perfusion was found between normoxic and hyperoxic conditions, proving the feasibility of the FAIR‐UTE approach to quantify lung perfusion changes.  相似文献   

11.
This study aimed to dissociate the intravascular and extravascular contributions to spin‐echo (SE) and gradient‐echo (GE) blood oxygenation level‐dependent (BOLD) signals at 7 T, using dynamic diffusion‐weighted MRS. We simultaneously acquired SE and GE data using a point‐resolved spectroscopy sequence with diffusion weightings of 0, 600, and 1200 s/mm2. The BOLD signals were quantified by fitting the free induction decays starting from the SE center to a mono‐exponential decay function. Without diffusion weighting, BOLD signals measured with SE and GE increased by 1.6 ± 0.5% (TESE = 40 ms) and 5.2 ± 1.4% (nominal TEGE = 40 ms) during stimulation, respectively. With diffusion weighting, the BOLD increase during stimulation measured with SE decreased from 1.6 ± 0.5% to 1.3 ± 0.4% (P < 0.001), whereas that measured by GE was unaffected (P > 0.05); the post‐stimulation undershoots in the BOLD signal time courses were largely preserved in both SE and GE measurements. These results demonstrated the feasiblity of simultaneous SE and GE measurements of BOLD signals with and without interleaved diffusion weighting. The results also indicated a predominant extravascular contribution to the BOLD signal time courses, including post‐stimulation undershoots in both SE and GE measurements at 7 T.  相似文献   

12.
目的 探讨手工缝合肺残面方法肺减客手术治疗重度慢性阻塞性肺气肿的疗效。方法 本组肺减容手术20例,其中双侧肺减容6例,单侧肺减容14倒。切口的选择依据手术切除靶区的位置,其中平卧位正中切口、双侧LVRS1例,侧卧住后外侧开胸LVRS14侧,前外侧开胸LVRS11侧。术前及术后6月查肺功能(FEV1,TLC,RV)、动脉血气分析、6分钟步行距离进行对比。结果 本组无手术死亡,患者术后肺功能指标比术前有明显改善(P〈0.05),动脉血氧分压术后比术前明显提高(P〈0.05),二氧化碳分压术后比术前明显降低(P〈0.05);呼吸困难指数再分级,15例术前3级中6例转为1级,9例转为2级;5例4级中1例转为3级,3例转为2级,1例转为1级。结论 重度肺气肿病人行肺减容手术,能改善患者肺功能,提高生活质量。  相似文献   

13.
In order to acquire consistent k‐space data in MR elastography, a fixed temporal relationship between the MRI sequence and the underlying period of the wave needs to be ensured. To this end, conventional GRE‐MRE enforces synchronization through repeated triggering of the transducer and forcing the sequence repetition time to be equal to an integer multiple of the wave period. For wave frequencies below 100 Hz, however, this leads to prolonged acquisition times, as the repetition time scales inversely with frequency. A previously developed multi‐shot approach (eXpresso MRE) to multi‐slice GRE‐MRE tackles this issue by acquiring an integer number of slices per wave period, which allows acquisition to be accelerated in typical scenarios by a factor of two or three. In this work, it is demonstrated that the constraints imposed by the eXpresso scheme are overly restrictive. We propose a generalization of the sequence in three steps by incorporating sequence delays into imaging shots and allowing for interleaved wave‐phase acquisition. The Ristretto scheme is compared in terms of imaging shot and total scan duration relative to eXpresso and conventional GRE‐MRE and is validated in three different phantom studies. First, the agreement of measured displacement fields in different stages of the sequence generalization is shown. Second, performance is compared for 25, 36, 40, and 60 Hz actuation frequencies. Third, the performance is assessed for the acquisition of different numbers of slices (13 to 17). In vivo feasibility is demonstrated in the liver and the breast. Here, Ristretto is compared with an optimized eXpresso sequence, leading to scan accelerations of 15% and 5%, respectively, without compromising displacement field and stiffness estimates in general. The Ristretto concept allows us to choose imaging shot durations on a fine grid independent of the number of slices and the wave frequency, permitting 2‐ to 4.5‐fold acceleration of conventional GRE‐MRE acquisitions.  相似文献   

14.
The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for noninvasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves.  相似文献   

15.
The purpose of this work was to develop magnetic resonance elastography (MRE) for the fast and reproducible measurement of spatially averaged viscoelastic constants of living human brain. The technique was based on a phase-sensitive echo planar imaging acquisition. Motion encoding was orthogonal to the image plane and synchronized to intracranial shear vibrations at driving frequencies of 25 and 50 Hz induced by a head-rocker actuator. Ten time-resolved phase-difference wave images were recorded within 60 s and analyzed for shear stiffness and shear viscosity. Six healthy volunteers (six men; mean age 34.5 years; age range 25-44 years) underwent 23-39 follow-up MRE studies over a period of 6 months. Interindividual mean +/- SD shear moduli and shear viscosities were found to be 1.17 +/- 0.03 kPa and 3.1 +/- 0.4 Pas for 25 Hz and 1.56 +/- 0.07 kPa and 3.4 +/- 0.2 Pas for 50 Hz, respectively (P < or = 0.01). The intraindividual range of shear modulus data was 1.01-1.31 kPa (25 Hz) and 1.33-1.77 kPa (50 Hz). The observed modulus dispersion indicates a limited applicability of Voigt's model to explain viscoelastic behavior of brain parenchyma within the applied frequency range. The narrow distribution of data within small confidence intervals demonstrates excellent reproducibility of the experimental protocol. The results are necessary as reference data for future comparisons between healthy and pathological human brain viscoelastic data.  相似文献   

16.
We herein investigated the potential role of cathepsin L in lung carcinogenesis. Lung cancer cell lines and surgically resected tumors were examined for the expression of the cathepsin L protein and copy number alterations in its gene locus. Cathepsin L was stably expressed in bronchiolar epithelial cells. Neoplastic cells expressed cathepsin L at various levels, whereas its expression was completely lost in most of the lung cancer cell lines (63.6%, 7/11) examined. Furthermore, expression levels were lower in a large fraction of lung tumors (69.5%, 139/200) than in bronchiolar epithelia. The expression of cathepsin L was lost in some tumors (16.0%, 32/200). In adenocarcinomas, expression levels were significantly lower in high‐grade tumors than in low‐grade tumors (one‐way ANOVA, P < 0.0500). Copy number alterations were found in 18.0% (36 [32 gain + 4 loss] /200) of lung tumors. No relationship existed between cathepsin L protein expression levels and the copy number of its gene locus (Spearman's rank‐order correlation, P = 0.3096). Collectively, these results suggest that the down‐regulated expression of cathepsin L, which is caused by an undefined mechanism other than copy number alterations, is involved in the progression of lung adenocarcinomas.  相似文献   

17.
The goal of this study was to evaluate the reproducibility and repeatability of tissue sodium concentration (TSC) measurements using 23Na MRI in skeletal muscle tissue. 23Na MRI was performed at 3 T on the right lower leg of eight healthy volunteers (aged 28 ± 4 years). The examinations were repeated at the same site after ~ 22 weeks to assess the variability over a medium‐term period. Additionally, they were scanned at a second site shortly before or shortly after the first visit (within 3 weeks) to evaluate the inter‐site reproducibility. Moreover, we analysed the effect of B0 correction on the variability. Coefficients of variations (CVs) from mean TSC values as well as Bland–Altman plots were used to assess intra‐site repeatability and inter‐site reproducibility. In phantom measurements, the B0 correction improved the quantitative accuracy. We observed differences of up to 4.9 mmol/L between the first and second visit and a difference of up to 3.7 mmol/L between the two different sites. The CV for the medium‐term repeatability was 15% and the reproducibility CV was 9%. The Bland–Altman plots indicated high agreement between the visits in all muscle regions. The systematic bias of ?0.68 mmol/L between site X and Y (P = 0.03) was slightly reduced to ?0.64 mmol/L after B0 correction (P = 0.04). This work shows that TSC measurements in healthy skeletal muscle tissue can be performed with good repeatability and reproducibility, which is of importance for future longitudinal or multicentre studies.  相似文献   

18.
磁共振弹性成像的初步实验研究   总被引:1,自引:0,他引:1  
目的:研究磁共振弹性成像(MRE)技术。方法:研制外部激发装置,设计成像脉冲序列,制作模拟人体软组织的体模。激发装置由序列控制,于体模表面产生低频率剪切波。脉冲序列采用梯度回波序列,在x、y或z轴上施加运动敏感梯度(MSG)。剪切波导致的介质内的周期性移位可使接收信号产生周期性相位位移,从测得的相位位移就能计算出每个体素的移位值,直接显示介质内剪切波的传播。通过调整相位偏置,获得一个完整周期内剪切波的动态传播图像。相位图经局部频率估算法(LFE)处理后计算出量化的弹性模景图。实验采用浓度为1.0%和1.5%不同弹性的琼脂凝胶体模,激发频率分别采用150Hz、200Hz、250Hz和300Hz。结果:MRE的相位图显示了剪切波在体模内的传播,剪切波的波长随激发频率和体模弹性变化。波长与激发频率呈反比,与体模弹性呈正比。剪切波的波长在不同激发频率和不同浓度体模之间呈严格的比例关系。计算出的弹性模量图清楚显示了两种浓度介质的弹性对比。结论:MRE的相位图可显示剪切波在介质内的传播,弹性图可量化和显示介质的弹性模量。  相似文献   

19.
The purpose of this work was to assess trans‐perineal prostate magnetic resonance elastography (MRE) for (1) repeatability in phantoms/volunteers and (2) diagnostic power as correlated with histopathology in prostate cancer patients. The three‐dimensional (3D) displacement field was obtained using a fractionally encoded gradient echo sequence using a custom‐made transducer. The repeatability of the method was assessed based on three repeat studies and by changing the driving frequency by 3% in studies on a phantom and six healthy volunteers. Subsequently, 11 patients were examined with MRE prior to radical prostatectomy. The areas under the receiver operating characteristic curves were calculated using a windowed voxel‐to‐voxel approach by comparing the 2D registered slides, masked with the Gleason score. For the repeatability study, the average intraclass correlation coefficient for elasticity images was 99% for repeat phantom studies, 98% for ±6 Hz phantom studies, 95% for volunteer repeat studies with 2 min acquisition time, 82% for ±2 Hz volunteer studies with 2 min acquisition time and 73% for repeat volunteer studies with 8 min acquisition time. For the patient study, the average elasticity was 8.2 ± 1.7 kPa in the prostate capsule, 7.5 ± 1.9 kPa in the peripheral zone (PZ), 9.7 ± 3.0 kPa in the central gland (CG) and 9.0 ± 3.4 kPa in the transition zone. In the patient study, cancerous tissue with Gleason score at least 3 + 3 was significantly (p < 0.05) different from normal tissue in 10 out of 11 cases with tumors in the PZ, and 6 out of 9 cases with tumors in the CG. However, the overall case‐averaged area under the curve was 0.72 in the PZ and 0.67 in the CG. Cancerous tissue was not always stiffer than normal tissue. The inversion algorithm was sensitive to (i) vibration amplitude and displacement nodes and (ii) misalignment of the 3D wave field due to subject movement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In MR elastography (MRE), zeroth moment balanced motion‐encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal‐to‐noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion‐reducing encoding efficiency. Thus, in GRE‐MRE, T2* decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs). We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time‐reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed “unipolar MRE” technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration. In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two‐transverse TR approximation for diffusion‐weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE‐MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE‐MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain‐SNR relative to conventional GRE‐MRE and allows for the recovery of high stiffness inclusions, where conventional GRE‐MRE fails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号