共查询到20条相似文献,搜索用时 0 毫秒
1.
Morphological findings or evaluations of the nervous system have traditionally concentrated on cell somata; evaluations of the white matter have not been put forward up to now. This study was conducted to evaluate the white matter in the spinal cord with the LPH discriminative staining method which was proposed by Goto(1)). Thanks to the minimum shrinkage ratio (10 ± 0% in length) which this technique allows, it is possible to evaluate the sizes of nerve axons, and to compare the arrangement of nerve fibers in various parts of the spinal white matter. As the axonal sizes reflect nerve conduction velocities, we would like to emphasize that these sizes or the differences in the arrangement of axons may be important for a better understanding of neurosymptomatology. 相似文献
2.
J. D. Kocsis 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1985,57(3):620-624
Summary Sections of dorsal columns of the spinal cord were removed from rats of various ages and studied in a sucrose gap chamber. The potassium channel blocking agent, 4-aminopyridine (4-AP), led to a pronounced increase in the area of the compound action potential of immature dorsal column axons. During the course of maturation this effect was attenuated but not lost. Occlusion experiments indicate that the 4-AP-elicited increase in area of the response was likely the result of multiple action potential discharge, an effect also present in dorsal root but not ventral root fibers (Bowe et al. 1985). These results indicate that the 4-AP-elicited changes in action potential characteristics previously described for sensory fibers in the peripheral nervous system are also present in the central nervous system extensions of these axons. 相似文献
3.
4.
Vitellaro-Zuccarello L Mazzetti S Madaschi L Bosisio P Gorio A De Biasi S 《Neuroscience》2007,144(3):865-877
We investigated the effect of a single administration of recombinant human erythropoietin (rhEPO) on the preservation of the ventral white matter of rats at 4 weeks after contusive spinal cord injury (SCI), a time at which functional recovery is significantly improved in comparison to the controls [Gorio A, Necati Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Enver Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450-9455; Gorio A, Madaschi L, Di Stefano B, Carelli S, Di Giulio AM, De Biasi S, Coleman T, Cerami A, Brines M (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci U S A 102:16379-16384]. Specifically, we examined, by morphological and cytochemical methods combined with light, confocal and electron microscopy, i) myelin preservation, ii) activation of adult oligodendrocyte progenitors (OPCs) identified for the expression of NG2 transmembrane proteoglycan, iii) changes in the amount of the chondroitin sulfate proteoglycans neurocan, versican and phosphacan and of their glycosaminoglycan component labeled with Wisteria floribunda lectin, and iv) ventral horn density of the serotonergic plexus as a marker of descending motor control axons. Injured rats received either saline or a single dose of rhEPO within 30 min after SCI. The results showed that the significant improvement of functional outcome observed in rhEPO-treated rats was associated with a better preservation of myelin in the ventral white matter. Moreover, the significant increase of both the number of NG2-positive OPCs and the labeling for Nogo-A, a marker of differentiated oligodendrocytes, suggested that rhEPO treatment could result in the generation of new myelinating oligodendrocytes. Sparing of fiber tracts in the ventral white matter was confirmed by the increased density of the serotonergic plexus around motor neurons. As for chondroitin sulfate proteoglycans, only phosphacan, increased in saline-treated rats, returned to normal levels in rhEPO group, probably reflecting a better maintenance of glial-axolemmal relationships along nerve fibers. In conclusion, this investigation expands previous studies supporting the pleiotropic neuroprotective effect of rhEPO on secondary degenerative response and its therapeutic potential for the treatment of SCI and confirms that the preservation of the ventral white matter, which contains descending motor pathways, may be critical for limiting functional deficit. 相似文献
5.
《解剖科学进展》2017,(6)
目的研究脊髓钝挫伤(spinal cord contusion,SCC)后,原肌球蛋白4(tropomyosin 4,TPM4)在脊髓的表达和定位,探讨TPM4在脊髓损伤中的作用。方法 SD大鼠随机分为sham组与SCC组,Allen's打击法建立SCC模型,RT-PCR技术检测TPM4 mRNA的表达,IHC技术检测TPM4在白质的定位。结果 SCC组TPM4的表达量在3d下降(P0.05),7d、14d TPM4的表达量随时间延长有上升趋势,但是仍然低于sham组;TPM4主要表达在神经胶质细胞、神经纤维和血管上。结论 TPM4可能在脊髓钝挫伤神经纤维的修复和重塑中起重要作用。 相似文献
6.
Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth 总被引:4,自引:0,他引:4
E. Kunkel-Bagden B. S. Bregman 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1990,81(1):25-34
Summary Fetal spinal cord transplants placed into the site of a neonatal spinal cord lesion alter the response of immature CNS neurons to injury. The transplants prevent the retrograde cell death of immature axotomized neurons and support the growth of axons into and through the site of injury. In the present experiments we used a battery of locomotor tasks to determine if these transplants are also capable of promoting the recovery of motor function after spinal cord injury at birth. Embryonic (E14) spinal cord transplants were placed into the site of a spinal cord over-hemisection in rat pups. Three groups of animals were used: 1) normal control animals, 2) animals with a spinal cord hemisection only, and 3) animals with a spinal cord transplant at the site of the hemisection. Eight to twelve weeks later, the animals were trained and videotaped while crossing runways requiring accurate foot placement and footprinted while walking on a treadmill. The videotapes and footprints were analyzed to obtain quantitative measures of locomotor function. Footprint analysis revealed that the animals' base of support during locomotion was increased by a neonatal hemisection. The base of support in animals with transplants was similar to control values. Animals with a hemisection rotated their hindlimbs further laterally than did control animals during locomotion. A transplant at the site of injury modified this response. Normal animals were able to cross a grid runway quickly with only a few errors. In contrast, animals with a hemisection took a longer time and made more errors while crossing. The presence of a transplant at the site of injury enabled the animals to cross the grid more quickly and to make fewer errors than the animals with a hemisection only. Animals that received the transplants demonstrated qualitative and quantitative improvements in several parameters of locomotion. Spinal cord transplants at the site of neonatal spinal cord injury result in enhanced sparing or recovery of motor function. We suggest that this transplant induced recovery of function is a consequence of the anatomical plasticity elicited by the transplants. 相似文献
7.
Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury 总被引:2,自引:0,他引:2
Detailed analysis of the structural changes that follow human clinical spinal cord injury is limited by difficulties in achieving adequate tissue fixation. This study bypasses this obstacle by examining the spinal cord from paraplegic domestic animals, enabling us to document the ultrastructural changes at different times following injury. In all but one case, injury resulted from a combination of contusion and compression. There was infarction and hemorrhage, followed by gray matter destruction and the rapid development of a variety of white matter changes including axon swelling and myelin degeneration. Axons greater than 5 microm in diameter were more susceptible to degenerative changes, whereas smaller axons, particularly those in the subpial region, were relatively well preserved. Demyelinated axons were seen within 2 weeks after injury and, at later time points, both Schwann cell and oligodendrocyte remyelination was common. More subtle white matter abnormalities were identified by examining sagittal sections, including focal accumulation of organelles in the axoplasm and partial and paranodal myelin abnormalities. These observations serve to validate observations from experimental models of spinal contusion but also highlight the complexity of naturally occurring (ie, clinical) spinal injury. They also raise the possibility that focal abnormalities such as paranodal demyelination may contribute to early axonal dysfunction and possibly to progressive tissue damage. 相似文献
8.
Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats 总被引:5,自引:0,他引:5
Treatment with agmatine, decarboxylated arginine, proved to be non-toxic and to exert neuroprotective effects in several models of neurotoxic and ischemic brain and spinal cord injuries. Here we sought to find out whether agmatine treatment would also prove beneficial in a rat spinal cord ischemia model (balloon occlusion of the abdominal aorta bellow the branching point of the left subclavian artery for 5 min). Agmatine was injected (100 mg/kg, i.p. ) 5 min after beginning of re-perfusion and again once daily for the next 3 post-operative days. Motor performance ('combined motor score') was recorded for up to 17 days post-operative and motoneuron cell counts (in representative spinal cord sections) performed on the 17th post-operative day. Agmatine treatment was found to accelerate recovery of motor deficits and to prevent the loss of motoneurons in the spinal cord after transient ischemia. Together, the present and previous findings demonstrate that agmatine is an efficacious neuroprotective agent and that this naturally occurring non-toxic compound should be tried for therapeutic use after neurotrauma and in neurodegenerative diseases. 相似文献
9.
Guízar-Sahagún G Ibarra A Espitia A Martínez A Madrazo I Franco-Bourland RE 《Neuroscience》2005,130(3):639-649
Secondary damage after spinal cord (SC) injury remains without a clinically effective drug treatment. To explore the neuroprotective effects of cell-permeable reduced glutathione monoethyl ester (GSHE), rats subjected to SC contusion using the New York University impactor were randomly assigned to receive intraperitoneally GSHE (total dose of 12 mg/kg), methylprednisolone sodium succinate (total dose of 120 mg/kg), or saline solution as vehicle. Motor function, assessed using the Basso-Beattie-Bresnahan scale for 8 weeks, was significantly better in GSHE (11.2+/-0.6, mean+/-S.E.M., n=8, at 8 weeks) than methylprednisolone (9.3+/-0.6) and vehicle (9.4+/-0.7) groups. The number of neurons in the red nuclei labeled with FluoroRuby placed caudally to the injury site was significantly higher in GSHE (158+/-9.3 mean+/-S.E.M., n=4) compared with methylprednisolone (53+/-14.7) and vehicle (46+/-16.4) groups. Differences in the amount of spared SC tissue at the epicenter and neighboring areas were not significant among experimental groups. In a second series of experiments, using similar treatment groups (n=6), regional changes in microvascular SC blood flow were evaluated for 100 min by laser-Doppler flowmetry after clip compression injury. SC blood flow fell in vehicle-treated rats 20% below baseline and increased significantly with methylprednisolone approximately 12% above baseline; changes were not greater than 5% in rats given GSHE. In conclusion, GSHE given to rats early after moderate SC contusion/compression improves functional outcome and red nuclei neuron survival significantly better than methylprednisolone and vehicle, and stabilizes SC blood flow. These results support further investigation of reduced glutathione supplementation after acute SC injury for future clinical application. 相似文献
10.
Shi R 《Journal of neurocytology》2004,33(2):203-211
Membrane damage has been postulated as a critical factor in mediating axonal degeneration in brain and spinal cord trauma. Despite compelling evidence of membrane disruption as a result of physical insults in both in vivo and in vitro studies, the dynamics of such damage over the time post injury in in vivo studies has not been well documented. Using a well-characterized in vivo guinea pig spinal cord compression model and horseradish peroxidase exclusion assay, we have documented significant membrane disruption at 1 hr, 3 days, and 7 days following injury. Furthermore, the membrane damage was found to spread laterally 10 mm beyond the center of original compression site in both rostral and caudal directions. A second-degree polynomial fit of the measured data predicts a bilateral spread of approximately 20-21 mm of membrane disruption from the epicenter of injury over a period of about 20 days. Thus, this study shows that membrane damage exists days, and possibly weeks, after spinal cord trauma in live guinea pigs. This provides the evidence necessary to investigate the role of membrane damage in triggering axonal deterioration in the future. Furthermore, this study has also revealed a long therapeutical window for membrane repair and functional enhancement following traumatic injury in the central nervous system. 相似文献
11.
The spinothalamic tract (STT) is the primary pathway carrying nociceptive information from the spinal cord to the brain in humans. The aim of this study was to understand better the organization of STT axons within the spinal cord white matter of monkeys. The location of STT axons was determined using method of antidromic activation. Twenty-six lumbar STT cells were isolated. Nineteen were classified as wide dynamic range neurons and seven as high-threshold cells. Fifteen STT neurons were recorded in the deep dorsal horn (DDH) and 11 in superficial dorsal horn (SDH). The axons of 26 STT neurons were located at 73 low-threshold points (<30 microA) within the lateral funiculus from T(9) to C(6). STT neurons in the SDH were activated from 33 low-threshold points, neurons in the DDH from 40 low-threshold points. In lower thoracic segments, SDH neurons were antidromically activated from low-threshold points at the dorsal-ventral level of the denticulate ligament. Neurons in the DDH were activated from points located slightly ventral, within the ventral lateral funiculus. At higher segmental levels, axons from SDH neurons continued in a position dorsal to those of neurons in the DDH. However, axons from neurons in both areas of the gray matter were activated from points located in more ventral positions within the lateral funiculus. Unlike the suggestions in several previous reports, the present findings indicate that STT axons originating in the lumbar cord shift into increasingly ventral positions as they ascend the length of the spinal cord. 相似文献
12.
目的:探讨丹曲林(dantrolene,DA)对大鼠急性脊髓损伤后脊髓白质的保护作用。方法:采用钳夹法制作大鼠急性脊髓损伤模型(SCI)。将48只成年雄性Sprague-Dawley大鼠体重280~310 g,随机分成3组,每组16只,假手术组(Sham组):只行椎板切除术;SCI组:术前1 d腹腔注射生理盐水;丹曲林处理组(DA组):术前1 d腹腔注射10 mg/kg丹曲林。SCI损伤后3、7、14、21、28 d利用BBB评分量表评估大鼠后肢运动功能恢复情况;术后24 h,利用抗NF200单克隆抗体的免疫荧光组织化学法标记轴突,观察各组轴突的形态和数量变化;Western Blot方法检测各组脊髓损伤部位的髓鞘碱性蛋白(Myelin basic protein,MBP)和环核苷酸磷酸二酯酶(2’,3’-cyclic nucleotide phosphodiesterase,CNPase)的蛋白表达水平。结果:不同时间点SCI组大鼠的BBB评分显著低于Sham组,提示SCI模型制备成功。注射丹曲林后,不同时间点SCI动物的BBB评分明显升高(P0.05),提示丹曲林可促进大鼠后肢运动功能的恢复。NF200免疫荧光组织化学法显示:Sham组轴突长,排列有序、分布均匀;SCI后24 h,NF200+纤维断裂、数量减少、排列紊乱、部分甚至卷曲;给予丹曲林后,NF200+纤维数量显著增多且较长,排列较规则。Western Blot结果显示:SCI组CNPase,MBP蛋白的表达量较Sham组显著降低(P0.01),给予丹曲林后可明显升高两者的表达(P0.01)。结论:丹曲林对急性脊髓损伤大鼠白质具有一定的保护作用。 相似文献
13.
14.
目的:观察大鼠脊髓缺血再灌注损伤过程中细胞凋亡、caspase-12的表达变化规律,以探讨其分子机制。方法:采用自制压迫装置制备脊髓压迫缺血再灌注模型。运用形态学、分子生物学等方法,分别于缺血再灌注后3、7、11、23和47h,观察脊髓缺血再灌注损伤后,脊髓的病理变化和内质网的形态学改变、细胞凋亡及caspase-12的表达变化的规律。结果:脊髓缺血再灌注3h后,出现不同程度的细胞肿胀,神经元退行性变及内质网结构变化;随着再灌注时间的延长,神经元和神经胶质细胞凋亡数明显增加,并伴有caspase-12的表达增强;capspase-12表达与细胞凋亡的时空变化规律相一致。结论:在脊髓缺血再灌注过程中神经细胞凋亡是引起脊髓继发性损伤的主要病理因素,caspase-12可能参与了脊髓缺血再灌注损伤所导致的细胞凋亡。 相似文献
15.
Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury 总被引:6,自引:0,他引:6
Recent work has suggested a potential role for voltage-gated Ca(2+) channels in the pathophysiology of anoxic central nervous system white matter injury. To examine the relevance of these findings to neurotrauma, we conducted electrophysiological studies with inorganic Ca(2+) channels blockers and L- and N-subtype-specific calcium channel antagonists in an in vitro model of spinal cord injury. Confocal immunohistochemistry was used to examine for localization of L- and N-type calcium channels in spinal cord white matter tracts. A 30-mm length of dorsal column was isolated from the spinal cord of adult rats, pinned in an in vitro recording chamber and injured with a modified clip (2g closing force) for 15s. The functional integrity of the dorsal column was monitored electrophysiologically by quantitatively measuring the compound action potential at two points with glass microelectrodes. The compound action potential decreased to 71.4+/-2.0% of control (P<0. 05) after spinal cord injury. Removal of extracellular Ca(2+) promoted significantly greater recovery of compound action potential amplitude (86.3+/-7.6% of control; P< 0.05) after injury. Partial blockade of voltage-gated Ca(2+) channels with cobalt (20 microM) or cadmium (200 microM) conferred improvement in compound action potential amplitude. Application of the L-type Ca(2+) channel blockers diltiazem (50 microM) or verapamil (90 microM), and the N-type antagonist omega-conotoxin GVIA (1 microM), significantly enhanced the recovery of compound action potential amplitude postinjury. Co-application of the L-type antagonist diltiazem with the N-type blocker omega-conotoxin GVIA showed significantly greater (P<0.05) improvement in compound action potential amplitude than application of either drug alone. Confocal immunohistochemistry with double labelling for glial fibrillary acidic protein, GalC and NF200 demonstrated L- and N-type Ca(2+) channels on astrocytes and oligodendrocytes, but not axons, in spinal cord white matter.In conclusion, the injurious effects of Ca(2+) in traumatic central nervous system white matter injury appear to be partially mediated by voltage-gated Ca(2+) channels. The presence of L- and N-type Ca(2+) channels on periaxonal astrocytes and oligodendrocytes suggests a role for these cells in post-traumatic axonal conduction failure. 相似文献
16.
Delcour M Olivier P Chambon C Pansiot J Russier M Liberge M Xin D Gestreau C Alescio-Lautier B Gressens P Verney C Barbe MF Baud O Coq JO 《Brain pathology (Zurich, Switzerland)》2012,22(1):1-16
Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in open-field test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD. 相似文献
17.
Siobhan S. McMahon Silke Albermann Gemma E. Rooney Cathal Moran Jacqueline Hynes Yolanda Garcia Peter Dockery Timothy O'Brien Anthony J. Windebank Frank P. Barry 《Journal of anatomy》2009,215(3):267-279
Considerable evidence has shown that the immunosuppressant drug cyclosporin A (CsA) may have neuroprotective properties which can be exploited in the treatment of spinal cord injury. The aim of this study was to investigate the cellular environment within the spinal cord following injury and determine whether CsA has an effect on altering cellular interactions to promote a growth-permissive environment. CsA was administered to a group of rats 4 days after they endured a moderate contusion injury. Functional recovery was assessed using the Basso Beattie Bresnahan (BBB) locomotor rating scale at 3, 5 and 7 weeks post-injury. The rats were sacrificed 3 and 7 weeks post-injury and the spinal cords were sectioned, stained using histological and immunohistochemical methods and analysed. Using stereology, the lesion size and cellular environment in the CsA-treated and control groups was examined. Little difference in lesion volume was observed between the two groups. An improvement in functional recovery was observed within CsA-treated animals at 3 weeks. Although we did not see significant reduction in tissue damage, there were some notable differences in the proportion of individual cells contributing to the lesion. CsA administration may be used as a technique to control the cell population of the lesion, making it more permissive to neuronal regeneration once the ideal environment for regeneration and the effects of CsA administration at different time points post-injury have been identified. 相似文献
18.
Necker R 《Journal of chemical neuroanatomy》2004,27(2):109-117
In the spinal cord of birds a considerable number of neuronal somata is located outside the gray matter. Some of these neurons form segmental marginal nuclei, which lie at the border of the spinal cord near the dentate ligament. In lumbosacral segments these marginal nuclei form accessory lobes which bulge into the vertebral canal. These lobes consist in neurons which are embedded into glia-derived glycogen cells. Furthermore, there are neurons in the white matter near the accessory lobes and numerous paragriseal cells lying in the lateral and ventral funiculus. Glycogen cells are present both in the lobes and in the glycogen body which fills the lumbosacral spinal rhomboid sinus. Immunoreactivity of glial fibrillary acidic protein, a marker of astrocytes, was used to characterize the surrounding of marginal neurons. Astrocytes were numerous in cervical marginal nuclei but rare in accessory lobes. There is cytological (distribution of Nissl substance) and immunocytochemical evidence (immunoreactivity of medium-sized neurofilament, glutamic acid decorboxylase and glutamatergic AMPA receptor subtype GluR2/3) that neurons of the accessory lobes and the nearby white matter are similar, whereas paragriseal cells are different. 相似文献
19.
背景:骨髓间充质干细胞移植治疗脊髓损伤被视为一种有前途的治疗方法,如何更有效地促进骨髓间充质干细胞在脊髓损伤区存活,加速脊髓损伤肢体运动功能的恢复是目前研究的重点。前期研究发现,低频电磁场能够促进骨髓间充质干细胞的增殖分化,低频电磁场是否可应用于骨髓间充质干细胞移植治疗脊髓损伤还需进一步研究。
目的:探讨低频电磁场对移植骨髓间充质干细胞脊髓损伤大鼠后肢运动功能恢复的影响。
方法:采用脊髓压迫法制备64只T10不完全性脊髓损伤大鼠模型,随机等分为对照组、骨髓间充质干细胞组、电磁场组和电磁场+骨髓间充质干细胞组。造模成功后,骨髓间充质干细胞组和电磁场+骨髓间充质干细胞组大鼠脊髓损伤原部位注射大鼠全贴壁法分离培养BrdU标记的骨髓间充质干细胞,对照组和电磁场组注射a-MEM培养液。造模术后24 h,电磁场组和电磁场+骨髓间充质干细胞组予60 min/d的低频电磁场刺激(频率50 Hz、强度5 mT)。
结果与结论:骨髓间充质干细胞移植后第21天,电磁场+骨髓间充质干细胞组BBB评分与其他组相比,差异有显著性意义(P < 0.05),与其他各组比较,电磁场+骨髓间充质干细胞组移植细胞后,大鼠BrdU阳性细胞在脊髓损伤区域生长并与脊髓组织融合,存活细胞数量较其他组多;空洞面积小;损伤区胶质纤维酸性蛋白表达更少,而基质金属蛋白2表达更多;脊髓损伤大鼠下肢运动功能恢复最快(P < 0.05)。提示低频电磁场促进了移植骨髓间充质干细胞脊髓损伤大鼠后肢运动功能的恢复,可能与低频电磁场有利于损伤区移植骨髓间充质干细胞的存活,上调基质金属蛋白2的表达并减少胶质瘢痕的形成有关。 相似文献
20.
The present study investigated effects of human umbilical cord blood derived CD34+ cells on sensorimotor, cognitive, and histological outcome in rats following focal cerebral ischemia. Halothane anesthetized adult male Wistar rats were subjected to transient or permanent occlusion of the middle cerebral artery (MCAO) followed by intravenous administration of CD34+ cells (5 x 10(5) or 2 x 10(6)) after 24 h recovery. The beam-walking and cylinder tests were used to assess sensorimotor function, and Morris water-maze examined cognitive performance during a 25 day follow-up period. Subsequently, rats were perfused for measurement of infarct volumes and detection of CD34' cells in the brain by immunohistochemistry (MAB1281). MCAO rats showed minor or no spontaneous recovery in sensorimotor function during the follow-up. The recovery profile was similar in MCAO controls and in MCAO rats that received CD34+ cells, although CD34+ cells seemed to improve the use of impaired forelimb. There was also a trend toward improved water-maze performance by CD34+ cells in transient MCAO rats. Infarct volumes assessed from Nissl-stained sections on postoperative day 25 did not differ between the experimental groups. MAB 1281-positive cells were not detected in the brain of MCAO rats that received CD34+ cells. The present study suggests that CD34+ cells might improve functional outcome in MCAO rats after systemic administration, but do not significantly provide neuroprotection. 相似文献