首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Arterial ATP-sensitive K+ (K(ATP)) channels are critical regulators of vascular tone, forming a focal point for signaling by many vasoactive transmitters that alter smooth muscle contractility and so blood flow. Clinically, these channels form the target of antianginal and antihypertensive drugs, and their genetic disruption leads to hypertension and sudden cardiac death through coronary vasospasm. However, whereas the biochemical basis of K(ATP) channel modulation is well-studied, little is known about the structural or spatial organization of the signaling pathways that converge on these channels. In this study, we use discontinuous sucrose density gradients and Western blot analysis to show that K(ATP) channels localize with an upstream signaling partner, adenylyl cyclase, to smooth muscle membrane fractions containing caveolin, a protein found exclusively in cholesterol and sphingolipid-enriched membrane invaginations known as caveolae. Furthermore, we show that an antibody against the K(ATP) pore-forming subunit, Kir6.1 co-immunoprecipitates caveolin from arterial homogenates, suggesting that Kir6.1 and caveolin exist together in a complex. To assess whether the colocalization of K(ATP) channels and adenylyl cyclase to smooth muscle caveolae has functional significance, we disrupt caveolae with the cholesterol-depleting agent, methyl-beta-cyclodextrin. This reduces the cAMP-dependent protein kinase A-sensitive component of whole-cell K(ATP) current, indicating that the integrity of caveolae is important for adenylyl cyclase-mediated channel modulation. These results suggest that to be susceptible to protein kinase A-dependent activation, arterial K(ATP) channels need to be localized in the same lipid compartment as adenylyl cyclase; the results also provide the first indication of the spatial organization of signaling pathways that regulate K(ATP) channel activity.  相似文献   

2.
Jiao J  Garg V  Yang B  Elton TS  Hu K 《Hypertension》2008,52(3):499-506
Vascular ATP-sensitive K(+) (K(ATP)) channels are critical regulators of arterial tone and, thus, blood flow in response to local metabolic needs. They are important targets for clinically used drugs to treat hypertensive emergency and angina. It is known that protein kinase C (PKC) activation inhibits K(ATP) channels in vascular smooth muscles. However, the mechanism by which PKC inhibits the channel remains unknown. Here we report that caveolin-dependent internalization is involved in PKC-epsilon-mediated inhibition of vascular K(ATP) channels (Kir6.1 and SUR2B) by phorbol 12-myristate 13-acetate or angiotensin II in human embryonic kidney 293 cells and human dermal vascular smooth muscle cells. We showed that Kir6.1 substantially overlapped with caveolin-1 at the cell surface. Cholesterol depletion with methyl-beta-cyclodextrin significantly reduced, whereas overexpression of caveolin-1 largely enhanced, PKC-induced inhibition of Kir6.1/SUR2B currents. Importantly, we demonstrated that activation of PKC-epsilon caused internalization of K(ATP) channels, the effect that was blocked by depletion of cholesterol with methyl-beta-cyclodextrin, expression of dominant-negative dynamin mutant K44E, or knockdown of caveolin-1 with small interfering RNA. Moreover, patch-clamp studies revealed that PKC-epsilon-mediated inhibition of the K(ATP) current induced by PMA or angiotensin II was reduced by a dynamin mutant, as well as small interfering RNA targeting caveolin-1. The reduction in the number of plasma membrane K(ATP) channels by PKC activation was further confirmed by cell surface biotinylation. These studies identify a novel mechanism by which the levels of vascular K(ATP) channels could be rapidly downregulated by internalization. This finding provides a novel mechanistic insight into how K(ATP) channels are regulated in vascular smooth muscle cells.  相似文献   

3.
4.
-ATP-sensitive potassium (K(ATP)) channels were discovered in ventricular cells, but their roles in the heart remain mysterious. K(ATP) channels have also been found in numerous other tissues, including vascular smooth muscle. Two pore-forming subunits, Kir6.1 and Kir6.2, contribute to the diversity of K(ATP) channels. To determine which subunits are operative in the cardiovascular system and their functional roles, we characterized the effects of pharmacological K(+) channel openers (KCOs, ie, pinacidil, P-1075, and diazoxide) in Kir6.2-deficient mice. Sarcolemmal K(ATP) channels could be recorded electrophysiologically in ventricular cells from Kir6.2(+/+) (wild-type [WT]) but not from Kir6.2(-/-) (knockout [KO]) mice. In WT ventricular cells, pinacidil induced an outward current and action potential shortening, effects that were blocked by glibenclamide, a K(ATP) channel blocker. KO ventricular cells exhibited no response to KCOs, but gene transfer of Kir6.2 into neonatal ventricular cells rescued the electrophysiological response to P-1075. In terms of contractile function, pinacidil decreased force generation in WT but not KO hearts. Pinacidil and diazoxide produced concentration-dependent relaxation in both WT and KO aortas precontracted with norepinephrine. In addition, pinacidil induced a glibenclamide-sensitive current of similar magnitude in WT and KO aortic smooth muscle cells and comparable levels of hypotension in anesthetized WT and KO mice. In both WT and KO aortas, only Kir6.1 mRNA was expressed. These findings indicate that the Kir6.2 subunit mediates the depression of cardiac excitability and contractility induced by KCOs; in contrast, Kir6.2 plays no discernible role in the arterial tree.  相似文献   

5.
AIMS: ATP sensitive K(+) channels (K(ATP)) sense adenine nucleotide concentrations and thus couple the metabolic state of the cell to membrane potential. The hetero-octameric complex of a sulphonylurea receptor (SUR2B) and an inwardly rectifying K(+) channel (Kir6.1) and the corresponding native channel in smooth muscle are relatively insensitive to variations in intracellular ATP. Activation of these channels in blood vessels during hypoxia/ischaemia is thought to be mediated via hormonal regulation such as cellular adenosine release or the release of mediators from the endothelium. In contrast, intracellular ATP prominently inhibits Kir6.2 containing complexes, such as those present in cardiac myocytes. Thus, we investigated differences in the mechanism of metabolic regulation of Kir6.1 and Kir6.2 containing K(ATP) channels. METHODS AND RESULTS: We have heterologously expressed K(ATP) channel subunits in HEK293 and CHO cells and studied their function using (86)Rb efflux and patch clamping. We show that rodent Kir6.1/SUR2B has direct intrinsic metabolic sensitivity independent of any regulation by protein kinase A. In contrast to Kir6.2 containing complexes, this was not endowed by the ATP sensitivity of the pore forming subunit but was instead a property of the SUR2B subunit. Mutagenesis of key residues within the nucleotide-binding domains (NBD) implicated both domains in governing the metabolic sensitivity. CONCLUSION: Kir6.1\SUR2B has intrinsic sensitivity to metabolism endowed by the likely processing of adenine nucleotides at the NBD of SUR2B.  相似文献   

6.
Protein kinase C (PKC) isoforms constitute an important component of the signal transduction pathway used by cardiomyocytes to respond to a variety of extracellular stimuli. Translocation to distinct intracellular sites represents an essential step in the activation of PKC isoforms, presumably as a prerequisite for stable access to substrate. Caveolae are specialized subdomains of the plasma membrane that are reported to concentrate key signaling proteins and may represent a locus for PKC action, given that PKC activators have been reported to dramatically alter caveolae morphology. Accordingly, this study examines whether PKC isoforms initiate signaling in cardiomyocyte caveolae. Phorbol ester-sensitive PKC isoforms were detected at very low levels in caveolae fractions prepared from unstimulated cardiomyocytes; phorbol 12-myristate 13-acetate (PMA) (but not 4alpha-PMA, which does not activate PKC) recruited calcium-sensitive PKCalpha and novel PKCdelta and PKCepsilon to this compartment. The subcellular localization of the phorbol ester-insensitive PKClambda isoform was not influenced by PMA. Endothelin also induced the selective translocation of PKCalpha and PKCepsilon (but not PKCdelta or PKClambda) to caveolae. Multiple components of the extracellular signal-regulated protein kinase (ERK) cascade, including A-Raf, c-Raf-1, mitogen-activated protein kinase kinase, and ERK, were detected in caveolae under resting conditions. Although levels of these proteins were not altered by PMA, translocation of phorbol ester-sensitive PKC isoforms to caveolae was associated with the activation of a local ERK cascade as well as the phosphorylation of a approximately 36-kDa substrate protein in this fraction. Finally, a minor fraction of a protein that has been designated as a receptor for activated protein kinase C resides in caveolae and (along with caveolin-3) could represent a mechanism to target PKC isoforms to cardiomyocyte caveolae. These studies identify cardiomyocyte caveolae as a meeting place for activated PKC isoforms and their downstream target substrates.  相似文献   

7.
ATP-sensitive K(+) channels (K(ATP)) contribute to the regulation of tone in vascular smooth muscle cells. We determined the effects of protein kinase C (PKC) activation on the nucleoside diphosphate-activated (K(NDP)) subtype of vascular smooth muscle K(ATP) channel. Phorbol 12,13-dibutyrate (PdBu) and angiotensin II inhibited K(NDP) activity of C-A patches of rabbit portal vein (PV) myocytes, but an inactive phorbol ester was without effect, and pretreatment with PKC inhibitor prevented the actions of PdBu. Constitutively active PKC inhibited K(NDP) in I-O patches but was without effect in the presence of a specific peptide inhibitor of PKC. PdBu increased the duration of a long-lived interburst closed state but was without effect on burst duration or intraburst kinetics. PdBu treatment inhibited K(NDP), but not a 70-pS K(ATP) channel of rat PV. The results indicate that the K(NDP) subtype of vascular smooth muscle K(ATP) channel is inhibited by activation of PKC. Control of K(NDP) activity by intracellular signaling cascades involving PKC may, therefore, contribute to control of tone and arterial diameter by vasoconstrictors.  相似文献   

8.
The cardiac ATP-sensitive potassium (K(ATP)) channel is potentially composed of an inward rectifier potassium channel (Kir6.1 and/or Kir6.2) subunit and the cardiac type of sulfonylurea receptor (SUR2A). We reported that cardiac Kir6.1 mRNA and protein are specifically upregulated in the non-ischemic as well as the ischemic regions in rats with myocardial ischemia, suggesting that humoral and/or hemodynamic factors are responsible for this regulation. In the present study, pretreatment with TCV-116, an angiotensin (Ang) II type 1 receptor antagonist, completely inhibited the upregulation of Kir6.1 mRNA and protein expression in both regions of rat hearts subjected to 60 min of coronary artery occlusion followed by 24 h of reperfusion; whereas pretreatment with lisinopril, an Ang converting enzyme (ACE) inhibitor, partly inhibited this upregulation. Except for rats pretreated with TCV-116, Kir6.1 mRNA levels were positively correlated with those for brain natriuretic peptide (BNP), a molecular indicator of regional wall stress, in both the non-ischemic and the ischemic regions. Plasma Ang II levels were not elevated in rats with control myocardial ischemia compared with sham rats. Thus, the stress-related induction of cardiac Kir6.1 mRNA and protein expression under myocardial ischemia is inhibited by pretreatment with an AT1 antagonist, but also in part by an ACE inhibitor, suggesting that activation of local renin-angiotensin system may play a role.  相似文献   

9.
Potassium channels that are inhibited by internal ATP (K(ATP) channels) provide a critical link between metabolism and cellular excitability. Protein kinase C (PKC) acts on K(ATP) channels to regulate diverse cellular processes, including cardioprotection by ischemic preconditioning and pancreatic insulin secretion. PKC action decreases the Hill coefficient of ATP binding to cardiac K(ATP) channels, thereby increasing their open probability at physiological ATP concentrations. We show that PKC similarly regulates recombinant channels from both the pancreas and heart. Surprisingly, PKC acts via phosphorylation of a specific, conserved threonine residue (T180) in the pore-forming subunit (Kir6.2). Additional PKC consensus sites exist on both Kir and the larger sulfonylurea receptor (SUR) subunits. Nonetheless, T180 controls changes in open probability induced by direct PKC action either in the absence of, or in complex with, the accessory SUR1 (pancreatic) or SUR2A (cardiac) subunits. The high degree of conservation of this site among different K(ATP) channel isoforms suggests that this pathway may have wide significance for the physiological regulation of K(ATP) channels in various tissues and organelles.  相似文献   

10.
Heart mitochondria contain functional ATP-dependent K+ channels   总被引:7,自引:0,他引:7  
Recent observations challenged the functional importance or even the existence of mitochondrial ATP-dependent K+ (mitoK(ATP)) channels. In the present study, we determined the presence of K(ATP)-channel subunits in mouse heart mitochondria, and investigated whether known openers or blockers of the channel can alter mitochondrial membrane potential. Investigation of the channel composition was performed with antibodies against K(ATP)-channel subunits, namely the sulfonylurea receptor (SUR1 or SUR2) and the inwardly rectifying K+ channel (Kir6.1 or Kir6.2). Specific Kir6.1 and Kir6.2 proteins were found in the mitochondria by western blotting and immunogold electron microscopy. Neither SUR1 nor SUR2 was present in the mitochondria. In contrast, a mitochondrially enriched low molecular weight SUR2-like band was found at approximately 25 kDa. Mitochondrial-transport tags were identified in the sequences of Kir6.1 and Kir6.2, but not in SUR1 or SUR2. The fluorescent BODIPY-glibenclamide labeling of mitochondria indicated direct sulfonylurea binding. Pharmacological characterization of mitoK(ATP) was performed in isolated respiring heart mitochondria. Fluorescent confocal imaging with the membrane potential-sensitive dye MitoFluorRed showed that glibenclamide application changed membrane potential, while the specific mitoK(ATP)-channel openers, diazoxide or BMS-191095, reversed the effect. Mitochondrially formed peroxynitrite is a physiological opener of the channel. We conclude that a functional K(ATP) channel is present in heart mitochondria, which can be opened by diazoxide or BMS-191095. The channel can be composed of Kir6.1 and Kir6.2 subunits and does not contain either SUR1 or SUR2.  相似文献   

11.
Angiostensin II (Ang II) regulates the migration and proliferation of vascular smooth muscle cells. Recent studies indicate that intermediate-conductance Ca2+ -activated K+ (IKca) channels have an important role in cell migration and proliferation. It is not known, however, whether the action of Ang II is linked to IKca channel regulation. Here, we investigated the modulation of IKca channels by Ang II in artery smooth muscle cells. Functional IKca channel expression in cultured embryonic rat aorta smooth muscle (A10) cells was studied using the patch-clamp technique. These cells predominantly express IKca channels. In contrast, large-conductance Ca2+ -activated K+ (BKca) currents were rarely observed in excised patches. Ang II increased the IKca current in a contration-dependent manner. Losartan (1.0 microM), an AT1 selective antagonist, abolished the activation of IKca channels by Ang II. Pretreatment with 100 microM myristoylated protein kinase C inhibitor peptide 20-28 or 10 microM GF109203X completely abolished the AngII-induced activation of IKca currents, whereas the action of Ang II was not prevented in the presence of 100 microM Rp-cyclic 3', 5'-hydrogen phosphotiate adenosine triethylammonium, a protein kinase A inhibitor, or 1.0 microM KT-5823, a protein kinase G inhibitor. A membrane permeant analogue of diacylglycerol 1, 2-dioctanoyl-sn-glycerol (10 microM) induced the activation of IKca currents. These data suggest that Ang II activates IKca channels through the activation of protein kinase C, and the AT1 receptor is involved in the regulation of these channels.  相似文献   

12.
ATP-sensitive K+ (K(ATP)) channels play many important roles in cellular functions, including control of membrane excitability of skeletal muscle and neurons, K+ recycling in renal epithelia, cytoprotection in cardiac ischemia, and insulin secretion from pancreatic beta-cells. K(ATP) channels are composed of pore-forming inwardly rectifying potassium channel (Kir6.2 or Kir6.1) subunits and sulfonylurea receptor (SUR1, SUR2A, or SUR2B) subunits. Kir6.2 or Kir6.1 subunits conjoined with a SUR subunit constitute the various tissue-specific K(ATP) channels with distinct pharmacological properties. Both sulfonylureas and non-sulfonylurea hypoglycemic agents are used in treatment of type 2 diabetes mellitus. While the sulfonylurea receptor (SUR) is the target molecule of all of these hypoglycemic agents, the binding sites differ according to the moiety containing in the agent, and alter the pharmachological properties. In addition, chronic exposure of pancreatic beta-cells to the various agents affects the agent-specific sensitivities differently. Here we distinguish differences in pharmacological profile among the various hypoglycemic agents that reflect their chemical composition. We also suggest possible risk in the use of certain hypoglycemic agents in patients with ischemic heart disease.  相似文献   

13.
Experiments were performed to test the hypothesis that oxidative stress underlies the enhanced tonic dilator impact of inward-rectifier K(+) channels on renal afferent arterioles of rats with streptozotocin-induced diabetes mellitus. Sham and diabetic rats were left untreated or provided Tempol in their drinking water for 26±1 days, after which afferent arteriolar lumen diameter and its responsiveness to K(+) channel blockade were measured using the in vitro blood-perfused juxtamedullary nephron technique. Afferent diameter averaged 19.4±0.8 μm in sham rats and 24.4±0.8 μm in diabetic rats (P<0.05). The decrease in diameter evoked by Ba(2+) (inward-rectifier K(+) channel blocker) was 3 times greater in diabetic rats than in sham rats. Glibenclamide (K(ATP) channel blocker) and tertiapin-Q (Kir1.1/Kir3.x channel blocker) decreased afferent diameter in diabetic rats but had no effect on arterioles from sham rats. Chronic Tempol treatment prevented diabetes mellitus-induced increases in both renal vascular dihydroethidium staining and baseline afferent arteriolar diameter. Moreover, Tempol prevented the exaggeration of afferent arteriolar responses to Ba(2+), tertiapin-Q, and glibenclamide otherwise evident in diabetic rats. Preglomerular microvascular smooth muscle cells expressed mRNA encoding Kir1.1, Kir2.1, and Kir6.1. Neither diabetes mellitus nor Tempol altered Kir1.1, Kir2.1, Kir6.1, or SUR2B protein levels in renal cortical microvessels. To the extent that the effects of Tempol reflect its antioxidant actions, our observations indicate that oxidative stress contributes to the exaggerated impact of Kir1.1, Kir2.1, and K(ATP) channels on afferent arteriolar tone during diabetes mellitus and that this phenomenon involves posttranslational modulation of channel function.  相似文献   

14.
ATP-sensitive K+ (K(ATP)) channels are abundantly expressed in the heart and may be involved in the pathogenesis of myocardial ischemia. These channels are heteromultimeric, consisting of four pore-forming subunits (Kir6.1, Kir6.2) and four sulfonylurea receptor (SUR) subunits in an octameric assembly. Conventionally, the molecular composition of K(ATP) channels in cardiomyocytes and pancreatic beta -cells is thought to include the Kir6.2 subunit and either the SUR2A or SUR1 subunits, respectively. However, Kir6.1 mRNA is abundantly expressed in the heart, suggesting that Kir6.1 and Kir6.2 subunits may co-assemble to form functional heteromeric channel complexes. Here we provide two independent lines of evidence that heteromultimerization between Kir6.1 and Kir6.2 subunits is possible in the presence of SUR2A. We generated dominant negative Kir6 subunits by mutating the GFG residues in the channel pore to a series of alanine residues. The Kir6.1-AAA pore mutant subunit suppressed both wt-Kir6.1/SUR2A and wt-Kir6.2/SUR2A currents in transfected HEK293 cells. Similarly, the dominant negative action of Kir6.2-AAA does not discriminate between either of the wild-type subunits, suggesting an interaction between Kir6.1 and Kir6.2 subunits within the same channel complex. Biochemical data support this concept: immunoprecipitation with Kir6.1 antibodies also co-precipitates Kir6.2 subunits and conversely, immunoprecipitation with Kir6.2 antibodies co-precipitates Kir6.1 subunits. Collectively, our data provide direct electrophysiological and biochemical evidence for heteromultimeric assembly between Kir6.1 and Kir6.2. This paradigm has profound implications for understanding the properties of native K(ATP)channels in the heart and other tissues.  相似文献   

15.
ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.  相似文献   

16.
The cardiac ATP sensitive potassium channel (K(ATP) channel) SUR2A/Kir6.2 is an emerging target for antiarrhythmic intervention. This channel accounts for known electrophysiological derangements soon after the onset of myocardial ischemia. Consequently, blockers of this channel have the potential to prevent ischemic malignant arrhythmias and sudden cardiac death in humans. Since cardiac K(ATP) channels are closed at physiological intracellular ATP concentrations (ATP(i)) and open only when ATP(i) falls below a critical value, these agents do not affect the normal cardiac action potential and should be devoid of proarrhythmic side effects. Due to the existence of isoforms of this channel, mainly in vascular smooth muscle cells, pancreatic beta-cells and cardiac mitochondria, only specific blockers of SUR2A/Kir6.2 will offer a reasonable option for the treatment of cardiovascular patients at risk of sudden cardiac death. Presently known K(ATP) blockers are derived from diverse classes of compounds with antidiabetic sulfonylureas being their most prominent members. Retrospective evaluations of clinical studies with the sulfonylurea glibenclamide in diabetics revealed antifibrillatory activity to be an important additional effect of this class of compounds. However, for the safe treatment of arrhythmias nearly all presently known blockers lack sufficient selectivity, either within the target family or with respect to other ion channels modulating the cardiac action potential. The present article illustrates the new principle in terms of molecular biology and electrophysiology and summarizes all presently known K(ATP) blockers. As a highlight, first strategies to come to selective SUR2A/Kir6.2 blockers, such as HMR 1883, are reviewed.  相似文献   

17.
Roles of KATP channels as metabolic sensors in acute metabolic changes   总被引:12,自引:0,他引:12  
Physiological and pathophysiological roles of K(ATP) channels have been clarified recently in genetically engineered mice. The Kir6.2-containing K(ATP) channels in pancreatic ss-cells and the hypothalamus are essential in the regulation of glucose-induced insulin secretion and hypoglycemia-induced glucagon secretion, respectively, and are involved in glucose uptake in skeletal muscles, thus playing a key role in the maintenance of glucose homeostasis. Disruption of Kir6.1-containing K(ATP) channels in mice leads to spontaneous vascular spasm mimicking vasospastic (Prinzmetal) angina in humans, indicating that the Kir6.1-containing K(ATP) channels in vascular smooth muscles participate in the regulation of vascular tonus, especially in coronary arteries. Together with protective roles of K(ATP) channels against cardiac ischemia and hypoxia-induced seizure propagation, it is now clear that K(ATP) channels, as metabolic sensors, are critical in the maintenance of homeostasis against acute metabolic changes.  相似文献   

18.
ATP-sensitive K+ channels of vascular smooth muscle cells   总被引:8,自引:0,他引:8  
ATP-sensitive potassium channels (K(ATP)) of vascular smooth muscle cells represent potential therapeutic targets for control of abnormal vascular contractility. The biophysical properties, regulation and pharmacology of these channels have received intense scrutiny during the past twenty years, however, the molecular basis of vascular K(ATP) channels remains ill-defined. This review summarizes the recent advancements made in our understanding of the molecular composition of vascular K(ATP) channels with a focus on the evidence that hetero-octameric complexes of Kir6.1 and SUR2B subunits constitute the vascular K(ATP) subtype responsible for control of arterial diameter by vasoactive agonists.  相似文献   

19.
Reactive oxygen species (ROS) are key mediators in signal transduction of angiotensin II (Ang II). However, roles of vascular mitochondria, a major intracellular ROS source, in response to Ang II stimuli have not been elucidated. This study aimed to examine the involvement of mitochondria-derived ROS in the signaling pathway and the vasoconstrictor mechanism of Ang II. Using 5-hydroxydecanoate (5-HD; a specific inhibitor of mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels) and tempol (a superoxide dismutase mimetic), the effects of Ang II and diazoxide (a mitoK(ATP) channel opener) were compared on redox-sensitive mitogen-activated protein (MAP) kinase activation in rat vascular smooth muscle cells (RVSMCs) in vitro and in rat aorta in vivo. Stimulation of RVSMCs by Ang II or diazoxide increased phosphorylated MAP kinases (ERK1/2, p38, and JNK), as well as superoxide production, which were then suppressed by 5-HD pretreatment in a dose-dependent manner, except for ERK1/2 activation by Ang II. The same events were reproduced in rat aorta in vivo. Ang II-like diazoxide depolarized the mitochondrial membrane potential (DeltaPsi(M)) of RVSMCs determined by JC-1 fluorescence, which was inhibited by 5-HD. 5-HD did not modulate Ang II-induced calcium mobilization in RVSMCs and did not affect on the vasoconstrictor effect in either acute or chronic phases of Ang II-induced hypertension. These results reveal that Ang II stimulates mitochondrial ROS production through the opening of mitoK(ATP) channels in the vasculature-like diazoxide, leading to reduction of DeltaPsi(M) and redox-sensitive activation of MAP kinase; however, generated ROS from mitochondria do not contribute to Ang II-induced vasoconstriction.  相似文献   

20.
目的检测血管紧张素II(Ang II)介导的大鼠血管平滑肌细胞(VSMC)增殖过程中信号转导和转录活化因子-1(STAT1)的激活与核转位。方法本文采用Western印迹、非同位素凝胶电泳(EMSA)和免疫荧光染色的方法,观察Ang II刺激大鼠主动脉VSMC前后,细胞中STAT1的活化状态与定位。结果VSMC经Ang II干预后,胞内磷酸化的STAT1(p-STAT1)蛋白表达增加(P<0.01),达峰后随时间梯度逐渐下降,Ang II干预15 min后检测到胞核内有蛋白-DNA复合物形成。这一反应可被血管紧张素II 1型受体(AT1)阻滞剂Losartan以及Jak2抑制剂AG490抑制(P<0.01)。免疫荧光染色结果也显示Ang II干预后p-STAT1主要在胞核内表达。结论Ang II可以通过和AT1受体结合,激活Jak/STAT通路,在Ang II介导的大鼠VSMC增殖过程中发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号