首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of Centrifugal Blood Pump Based on the Motor Current   总被引:1,自引:0,他引:1  
Abstract: In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degrees, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the scction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.  相似文献   

2.
In this study, a detection algorithm for suction and regurgitation of the centrifugal pump during left heart bypass without relying on external flow or pressure sensors was developed and evaluated in acute studies using adult goats. The detection scheme relies on power spectral density (PSD) analysis of the motor current waveform through which the waveform deformation index (WDI) is obtained. This index is defined as the ratio of the fundamental component of the PSD to the higher PSD components, and its value increases with the deformation of the basic waveform. By assuming that the undistorted motor current waveform can be represented by a pure sine waveform, we theoretically synthesized various waveforms which have different second harmonic components. We were able to synthesize the waveform whose shape was close to the distorted motor current waveform under varying suction levels obtained in a mock loop study. From this study, we came to the conclusion that the WDI value of 0.2 can serve as a threshold level in deciding the suction and regurgitation speeds (rpm) during left heart bypass. In the study using adult goats, we were successful in minimizing both regurgitation and suction when the centrifugal pump speed was adjusted based on the WDI algorithm. The resultant bypass flow ranged from 1.5 to 2.0 L/min which was around 60% of the total flow. Further study is underway to evaluate the applicability of the WDI method in optimizing bypass pump flow.  相似文献   

3.
In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.  相似文献   

4.
Control strategy for rotary blood pumps   总被引:1,自引:0,他引:1  
The control strategy for ventricular support with a centrifugal blood pump was examined in this study. The control parameter was the pump rpm that determines pump flow. Optimum control of pump rpm that reflects the body's demand is important for long-term, effective, and safe circulatory support. Moreover, continuous, reliable monitoring of ventricular function will help successfully wean the patients from the ventricular assist device (VAD). The control strategy in this study includes determination of the target pump rpm that can provide the flow required by the body, fine-rpm-tuning to minimize deleterious effects such as suction in the ventricle, and assessment of ventricular function for successful weaning from VADs. To determine the target pump rpm, we proposed to use the relation between the native heart rate and cardiac output, and the relation between the pump rpm and centrifugal pump output. For fine-tuning of the pump rpm, the motor current waveform was used. We computed the power spectral density of the motor current waveform and calculated the ratio of the fundamental to the higher order components. When this ratio was larger than approximately 0.2, we assumed there would be a suction effect in the ventricle. As for assessment of ventricular function, we used the amplitude of the motor current waveform. The control system implemented using a DSP functioned properly in the mock circulatory loop as well as in acute animal experiments. The motor current also showed a good correlation with the ventricular pressure in acute animal experiments.  相似文献   

5.
Abstract: A compact eccentric inlet port centrifugal blood pump (C1E3) has been perfected for a long-term centrifugal ventricular assist device as well as a cardiopulmonary bypass pump. The C1E3 pump incorporates a sealless design and a blood stagnation free structure. The pump's impeller is magnetically coupled to the driver magnet in a sealless manner. The latest hemolysis study reveals that hemolysis is affected by the magnetic coupling distance between the driver and impeller magnet. Furthermore, a floating phenomenon can be observed in a pivot bearing supported pump. Attention was focused on the relationship between the floating phenomenon's characteristics and the magnetic coupling design in the C1E3 pump. Studies were conducted to evaluate the hydromechanical performance in the floating phenomenon. In this study, the relationship between the magnetic coupling design and the floating phenomenon was verified with a smooth spinning condition. The optimized magnetic coupling distance for the floating mode was estimated to be 12 mm for left ventricular assist device and 9 mm for cardiopulmonary bypass pump. Obtaining an optimal spinning condition is required for regulating the magnetic coupling force. To develop a double pivot bearing pump, it is necessary to establish an optimal spinning and/or floating condition and to determine the proper magnetic coupling and magnetic force between the impeller and driver.  相似文献   

6.
Abstract: We have developed a compact, seal-less, allpurpose centrifugal pump, the Baylor C-Gyro pump, which is intended as a long-term ventricular assist device (VAD) as well as a cardiopulmonary bypass pump. In attaining this goal, we began with eliminating the shaft seals by adopting a pivot bearing system at the impeller shaft. In addition, a ring magnet encased in the bottom of the impeller was coupled magnetically to a driver magnet placed outside the pump housing (Cl Prototype). This first model yielded satisfactory performance in vitro with a flow rate of 8 L/min against 250 mm Hg at 2,400 rpm, and an index of hemolysis (IH) of 0.0083 g/100 L using bovine blood. In the second model, the C1 Eccentric Inlet Port Model, the inlet bearing support bar in the prototype were eliminated without reducing the prototype's performance. These designs for antithrombogenicity are being tested by the first in vivo experiment, which has lasted for more than 2 weeks.  相似文献   

7.
Abstract We specially devised 3 types of turbo pumps, a centrifugal pump (CFP), a mixed flow pump (MFP), and an axial flow pump (AFP), and analyzed their in vitro performance. The common structural design elements were an impeller diameter of 20 mm and sealless magnet couple driving. In vitro tests were carried out using heparinized fresh bovine blood. The hemolysis was comprehensively evaluated at 7–16 points by changing the flow rate and pressure head (mapping of hemolytic property). The maximum efficiency (motor output to pump output) was 44.9% at 7,000 rpm, 3.17 L/min, 191 mm Hg in the CFP; 66.3% at 7,000 rpm, 6.9 L/min, 136 mm Hg in the MFP; and 20.6% at 9,000 rpm, 5.54 L/min, 74 mm Hg in the AFP, respectively. The minimum normalized index of hemolysis (NIH) (g/100 L) was 0.038 at 5,000 rpm, 4.60 L/min, 38 mm Hg in the CFP; 0.010 at 7,000 rpm, 8.22 L/min, 100 mm Hg in the MFP; and 0.033 at 7,000 rpm, 2.84 L/min, 48 mm Hg in the AFP, respectively. The best efficiency and NIH were achieved in the MFP.  相似文献   

8.
Abstract: To be able to salvage heart failure patients, the need for an economical permanent ventricular assist device is increasing. To meet this increasing demand, a miniaturized centrifugal blood pump has been developed as a permanently implantable device. The Gyro permanently implantable model (PI-601) incorporates a sealless design with a blood stagnation free structure. The pump impeller is magnetically coupled to the driver magnet in a sealless manner. This pump is atraumatic and antithrombogenic and incorporates a double pivot bearing system. A miniaturized actuator was utilized in this system in collaboration with the University of Vienna. The priming volume of this pump is 20 ml. The overall size of the pump actuator package is 53 mm in height and 65 mm in diameter, 145 ml of displacement volume, and 305 g in weight. Testing to date has included in vitro hydraulic performance and hemolysis. This pump can provide 5 L/min against a 110 mm Hg total pressure head at 2,000 rpm and 8 Limin against 150 mm Hg at 2,500 rpm. The normalized index of hemo-lysis (NIH) value of this pump was 0.0028 g/100 L at 5 Limin against 100 mm Hg. A preliminary anatomical study revealed the possibility of the implantability of 2 such systems in biventricular bypass at a preperitoneal location. This system is feasible for use as a permanently implantable biventricular assist device.  相似文献   

9.
Abstract: To clarify the correlation of vibration and thrombus formation inside a rotary blood pump, 40 preliminary vibration studies were performed on pivot bearing centrifugal pumps. No such studies were found in the literature. The primary data acquisition equipment included an accelerometer (Isotron PE accelerometer, ENDEVCO, San Juan Capistrano, CA, U.S.A.), digitizing oscilloscope (TDS 420, Tektronix Inc., Pittsfield, MA, U.S.A.), and pivot bearing centrifugal pumps. The pump impeller was coupled magnetically to the driver magnet. The accelerometer was mounted on the top of the pump casing to sense radial and axial accelerations. To simulate the 3 common areas of thrombus formation, a piece of silicone rubber was attached to each of the following 3 locations as described: a circular shape on the center bottom of the impeller (CI), an eccentric shape on the bottom of the impeller (EI), and a circular shape on the center bottom casing (CC). A fast Fourier transform (FFT) method at 5 L/min against 100 mm Hg, with a pump rotating speed of 1,600 rpm was used. The frequency response of the vibration sensors used spans of 40 Hz to 2 kHz. The frequency domain was already integrated into the oscilloscope, allowing for comparison of the vibration results. The area of frequency domain at a radial direction was 206 ± 12.7 mVHz in CI, 239.5 ± 12.1 mVHz in EI, 365 ± 12.9 mVHz in CC, and 163 ± 7.9 mVHz in the control (control vs. CI p = 0.07, control vs. EI p < 0.001, control vs. CC p < 0.001, EI vs. CC p < 0.001, CI vs. CC p < 0.001). Three types of imitation thrombus formations were roughly distinguishable. These results suggested the possibility of detecting thrombus formation using vibration signals, and these studies revealed the usefulness of vibration monitoring to detect thrombus formation in a centrifugal pump.  相似文献   

10.
We are developing a permanently implantable ventricular assist system based on a sealless centrifugal blood pump. The impeller of the pump is supported by a passive radial magnetic bearing acting in synergy with hydrodynamic bearings. Torque is transmitted to the impeller by electromagnetic coupling via an integrated axial flux gap motor. Computer modeling has been used extensively to guide the hydraulic and electromagnetic design of the pump. As part of the development effort, a prototype system was built, which consisted of a radial magnetic bearing, an axial air gap motor, and a pivot bearing to constrain the axial motion. The following testing has been completed to validate the design. First, hydraulic tests have demonstrated sufficient hydraulic performance. Second, preliminary in vitro evaluation of hemolysis was low compared to that of a BioPump control. Third, a 6 h in vivo experiment was successfully completed.  相似文献   

11.
A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis.  相似文献   

12.
To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.  相似文献   

13.
The valvo-pump, an axial nonpulsatile blood pump implanted at the heart valve position, has been developed. The valvo-pump consists of an impeller and a motor, which are encased in a housing. An impeller with 5 vanes (22.0 mm in diameter) is used. The impeller is connected to a samarium-cobalt-rare earth magnet direct current (DC) brushless motor measuring 21.3 mm in diameter and 18.5 mm in length. Sealing is achieved by means of a ferrofluidic seal. A pump flow of 10.5 L/min was obtained at a pump differential pressure of 3.3 kPa (25 mm Hg), and a flow of 4.9 L/min was obtained at 7.0 kPa (53 mm Hg). Sealing was kept perfect against a pressure of 29.3 kPa (220 mm Hg) at 9,000 rpm.  相似文献   

14.
In this study, the effects on varying cardiac function during a left ventricular (LV) bypass from the apex to the descending aorta using a centrifugal blood pump were evaluated by analyzing the left ventricular pressure and the motor current of the centrifugal pump in a mock circulatory loop. Failing heart models (preload 15 mm Hg, afterload 40 mm Hg) and normal heart models (preload 5 mm Hg, afterload 100 mm Hg) were simulated by adjusting the contractility of the latex rubber left ventricle. In Study 1, the bypass flow rate, left ventricular pressure, aortic pressure, and motor current levels were measured in each model as the centrifugal pump rpm were increased from 1,000 to 1,500 to 2,000. In Study 2, the pump rpm were fixed at 1,300, 1,500, and 1,700, and at each rpm, the left ventricular peak pressure was increased from 40 to 140 mm Hg by steps of 20 mm Hg. The same measurements as in Study 1 were performed. In Study 1, the bypass flow rate and mean aortic pressure both increased with the increase in pump rpm while the mean left ventricular pressure decreased. In Study 2, a fairly good correlation between the left ventricular pressure and the motor current of the centrifugal pump was obtained. These results suggest that cardiac function as indicated by left ventricular pressure may be estimated from a motor current analysis of the centrifugal blood pump during left heart bypass.  相似文献   

15.
Abstract: The pivot bearing-supported Gyro C1E3 centrifugal pump is driven by magnetic coupling. The magnetic coupling distance (MCD) between the impeller magnet and the driver magnet affects both hydraulic performance and hemolysis. Although a greater MCD causes less hemolysis, it increases the risk of decoupling of the impeller magnet. Therefore, it is important to consider the effect of the MCD on both hemolysis and decoupling when the C1E3 pump is applied in various circulatory assist conditions. This study investigates the effect of the MCD on decoupling in a C1E3 pump that is driven by the Nd-Fe-B composite ring-shaped magnets. The results will determine which MCD is the most practical in all assist device conditions. The MCD of the C1E3 pump was varied from 9.5 to 14.5 mm by inserting spacers between the bottom pump housing and the driver magnet. At a rotational speed just before the decoupling occurred, the flow rate and total pressure head were measured. The results revealed that a MCD between 9.5 and 14.5 mm was enough to produce a flow rate of more than 10 L/min without decoupling, and a MCD of less than 11.5 mm was required when the total pressure head was more than 500 mm Hg. Thus, the limiting factor for the MCD of the C1E3 pump is the total pressure head rather than the flow rate. An MCD of less than 11.5 mm is required to prevent decoupling of the impeller of the C1E3 pump with the specific Nd-Fe-B magnets in the full range of clinical circulatory assist conditions.  相似文献   

16.
Abstract: The compact eccentric inlet port (ClE3) centrifugal blood pump was developed as a cardiopulmonary bypass (CPB) pump. The C1E3 pump incorporated a seal-less design with a blood stagnation free structure. The pump impeller was magnetically coupled to the driver magnet in a sealless manner. To develop an atraumatic and antithrombogenic centrifugal pump without a shaft seal junction, a double pivot bearing system was introduced. Recently, a mass production model of the C1E3 was fabricated and evaluated. The ratio of the normalized index of hemolysis (NIH) of the C1E3 was 0.007 g/ 100 L, in comparison to the NIH of the BP-80, 0.018 g/ 100 L, each in a CPB condition of 5 Limin against 325 mm Hg. Both pumps were compared in identical in vitro circuits. To further evaluate the pumps during cardio pulmonary bypass for reliability and function, 6 h of CPB was performed on each of 8 bovines using either the C1E3 or BP-80 centrifugal pump. The BP-80 and C1E3 provided pump flows of 5MO ml/kg/min without incident. The hemodynamics were stable, and the hematology and biochemistry data were within normal ranges. There were no statistically significant differences between the 2 groups. Concerning the plasma free hemoglobin values. a mass production model of the C1E3 pump had the same hemolysis levels as the BP-80. Our preliminary studies reveal that the C1E3 pump is reliable. Also, the C1E3 will satisfy clinical requirements as a cardiopulmonary bypass pump.  相似文献   

17.
Abstract: Blood trauma is one of the important performance parameters of centrifugal pumps. To investigate the blood trauma induced by these pumps, in vitro hemolysis tests have become an important procedure and are increasingly used for pump development and comparisons. The Baylor compact eccentric inlet port (C1E) centrifugal blood pump was developed as a long-term centrifugal ventricular assist device (VAD) as well as a cardiopulmonary bypass pump (CPB). The Baylor C1E pump incorporates a seal-less design with a blood stagnation-free structure. This pump can provide flows of 5 L/min against 350 mm Hg of total pressure head at 2,600 revolutions per minute. The pump impeller is magnetically coupled to the driver magnet in a seal-less manner. The latest hemolysis study revealed that hemolysis may be affected by the gap distance between the driver and the impeller magnet. The purpose of this study was to verify the effect of the magnetic coupling distance on the normalized index of hemolysis (NIH) with the C1E model and to obtain an optimal gap distance. The NIH value was clearly decreased by alteration of the magnetic coupling distance from 7.7 to 9.7 mm in CPB and left ventricular assist device (LVAD) conditions. The NIH, when using the pump as an LVAD condition, was reduced to a level of 0.0056 from 0.095 when the magnetic coupling distance was extended. The same results were also obtained when the pumps were used in a CPB condition. The magnetic coupling distance is an important factor for the C1E model in terms of hemolysis. Different coupling forces effect the bearings and impeller stability. These results suggest that an optimal driving condition with a proper magnetic coupling and an optimal force between the impeller and driver is necessary to develop an atraumatic centrifugal pump.  相似文献   

18.
Li G  Zhao H  Zhu X  Ren B 《Artificial organs》2002,26(10):890-893
To achieve the aim of long-term heart-assist with a simple implantable device, we have been trying to develop a minimal intra-aortic impeller blood pump driven by an extracorporeal magnetic device. The purpose of the current study was to evaluate its feasibility by acute in vivo animal tests. The minimal intra-aortic pump was a cage-supported rotor-impeller, 17 mm in diameter with a total length of 30 mm. The driving magnet, mounted extracorporeally, was 55 mm in diameter and 50 mm in length. Seventeen dogs weighing from 28-34 kg were used in the study. After thoracic incision, heparin (50 U/kg) was infused. The impeller pump was inserted into the aortic chamber via a prosthetic vessel and fastened. Thin tubes were inserted into the left ventricular apex and the femoral artery to monitor the left ventricular (LV) and the aortic pressure. After closing the thoracic cavity, the extracorporeal whirling magnet, turned by an electric motor, was placed tightly against the thoracic wall parallel to the intra-aortic pump. The experiments, each lasting for about 40 min, were successful in 7 animals; the other 10 animals died of bleeding during pump implantation and were excluded from the experiment. The peak systolic pressure of the left ventricle could be considerably decreased by the pump and was reduced to as low as 28 mm Hg at a rotational speed of 9,000 rpm, showing that the simple intra-aortic impeller was effective in unloading the natural heart. The novel left ventricular assist device (LVAD) concept of an intra-aortic impeller pump, driven by an extracorporeal magnetic device, is feasible.  相似文献   

19.
The Gyro permanently implantable pump consists of a sealless pump housing and an impeller supported with a double pivot bearing. The secondary vanes are attached to increase the secondary flow to avoid thrombus formation behind the impeller. Flow visualization studies using an oil film method were performed on three types of impellers: no secondary vanes, 0.5 mm height secondary vanes, and 1.0 mm height secondary vanes. Comparison studies of these impellers were performed on the surfaces of the impeller bottom and bottom housing. Regarding the surface of the impeller bottom, the impeller with no secondary vanes had the least stagnant areas around the shaft. On the other hand, the impeller having 1.0 mm height secondary vanes had the most distinguished flow lines on the bottom housing. Overall, the impeller secondary vanes with a height of 0.5 mm (current design) seemed to create the most effective secondary flow.  相似文献   

20.
The Gyro permanently implantable (PI) pump is activated magnetically when a double pivot bearing supported impeller is rotated at predetermined revolutions per minute (rpm). The male bearing shaft of the impeller is supported by the top and bottom female pivot bearing in a loosely mated fashion. The Gyro PI pump's impeller transfers to a floating condition when the rpm is increased. The design objective of the Gyro PI pump is to drive the impeller while maintaining a top contact position to prevent thrombus formation. As a left ventricular assist device (LVAD), the Gyro PI pumps achieved long-term survivals in calves without thrombus formation. However, thrombus formation occurred during a biventricular assist device (BVAD) implantation. Our hypothesis was that the impeller remaining in the bottom contact position during the BVAD experiment caused this thrombus formation. Therefore, a replica of the Gyro PI pump housing was fabricated from a transparent plastic to observe the floating conditions of the impeller. When simulating an LVAD animal experiment, the impeller was at a non-bottom contact position. However, when simulating the BVAD animal experiment, the impeller remained at the bottom contact position. This study shows that the magnet balance affects the antithrombogenicity in a Gyro PI pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号