首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To facilitate the management of multidrug-resistant (MDR) tuberculosis, two nucleic acid sequence-based methods, the GenoType MTBDRplus test and DNA sequencing, were assessed for the rapid detection of drug-resistant Mycobacterium tuberculosis for the first time in the Asia-Pacific region. The performances of these two assays in detecting the presence of rifampin (rifampicin) (RIF) and isoniazid (INH) resistance-associated mutations in the rpoB, katG, inhA regulatory region, inhA, and oxyR-ahpC genes were compared to that of a conventional agar proportion drug susceptibility test. A total of 242 MDR and 30 pansusceptible M. tuberculosis isolates were evaluated in this study. The sensitivities obtained for RIF-resistant detection by the GenoType MTBDRplus test and by resistance gene sequencing were 95.5% and 97.9%, respectively. The sensitivities for INH resistance detection by the GenoType MTBDRplus test and by resistance gene sequencing were 81.8% and 93.4%, respectively. Together, the sensitivity for MDR tuberculosis detection was 78.5% with the GenoType MTBDRplus test and 91.3% by resistance gene sequencing. The specificity for RIF resistance, INH resistance, and MDR detection was 100% by both methods. The GenoType MTBDRplus test has the advantage of a short turnaround time for drug-resistant M. tuberculosis detection. Overall, the two assays performed equally well in detecting RIF resistance (P = 0.13). However, DNA sequencing demonstrated superior performance in detecting INH resistance (P < 0.001) and MDR tuberculosis (P < 0.001). We suggest that new alleles of INH resistance genes should be evaluated to improve the sensitivity of the GenoType MTBDRplus test, especially for different geographic areas with genetically diverse M. tuberculosis strains.The emergence of multidrug-resistant tuberculosis (MDR-TB), defined as infection with a Mycobacterium tuberculosis complex isolate resistant to at least isoniazid (INH) and rifampin (rifampicin) (RIF), is a public health concern and threatens global TB control programs (22). In Taiwan, approximately 15,000 new TB cases are diagnosed annually, of which an estimated 4% are MDR-TB (12). Therefore, the Taiwan Centers for Disease Control (CDC) not only has strengthened directly observed treatment in the management of TB as of 2006, to prevent MDR generation, but also has implemented a DOTS-Plus (directly observed treatment, short-course) strategy for the management of MDR-TB patients as of 2007 (8). However, this program can be hampered by delayed laboratory diagnosis. The completion of diagnosis by conventional methods and drug susceptibility testing (DST) of M. tuberculosis normally take months.The World Health Organization and partners have endorsed the use of the molecular test GenoType MTBDRplus (Hain Lifescience GmbH, Nehren, Germany) for rapid detection of high-risk MDR-TB cases, even directly from certain clinical specimens (1, 4, 6, 10, 15, 21). The GenoType MTBDRplus test is a PCR-based amplification and reverse blotting assay that employs specific probes hybridized to nitrocellulose strips to detect RIF and INH resistance. The assay detects mutations in the rpoB gene for RIF resistance, in the katG gene for high-level INH resistance, and in the inhA regulatory region gene for low-level INH resistance. To evaluate the reliability of the assay, DNA sequencing analyses of rpoB for RIF and katG, the inhA regulatory region gene, inhA, or oxyR-ahpC for INH were conducted in parallel.Our previous study demonstrated the genetic diversity of MDR M. tuberculosis isolates with novel alleles in the rpoB gene in Taiwan (11). Likewise, the distribution of M. tuberculosis isolates differs in different geographic regions (5, 11). The GenoType MTBDRplus test has been assessed in Europe (6, 10, 15, 21), South Africa (4), and the Caribbean (1), but not in the Asia-Pacific region, where there is a high prevalence of Beijing family M. tuberculosis isolates. Here we report the performance of the revised GenoType MTBDRplus test compared to that of DNA sequencing using a culture-based phenotypic DST, which is considered the gold standard for routine clinical practice.  相似文献   

2.
Purpose: The emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is a major public health problem. The diagnosis of MDR-TB is of paramount importance in establishing appropriate clinical management and infection control measures. The aim of this study was to evaluate drug resistance and mutational patterns in clinical isolates MDR-TB by GenoType® MTBDRplus assay. Material and Methods: A total of 350 non-repeated sputum specimens were collected from highly suspected drug-resistant pulmonary tuberculosis (PTB) cases; which were processed by microscopy, culture, differentiation and first line drug susceptibility testing (DST) using BacT/ALERT 3D system. Results: Among a total of 125 mycobacterium tuberculosis complex (MTBC) strains, readable results were obtained from 120 (96%) strains by GenoType® MTBDRplus assay. Only 45 MDR-TB isolates were analysed for the performance, frequency and mutational patterns by GenoType® MTBDRplus assay. The sensitivity of the GenoType® MDRTBplus assay for detecting individual resistance to rifampicin (RIF), isoniazid (INH) and multidrug resistance was found to be 95.8%, 96.3% and 97.7%, respectively. Mutation in codon S531L of the rpoB gene and codon S315T1 of katG genes were dominated in MDR-TB strains, respectively (P < 0.05). Conclusions: The GenoType® MTBDRplus assay is highly sensitive with short turnaround times and a rapid test for the detection of the most common mutations conferring resistance in MDR-TB strains that can readily be included in a routine laboratory workflow.  相似文献   

3.
Molecular diagnostics for Mycobacterium tuberculosis have recently been endorsed by the World Health Organization. The Xpert MTB/RIF assay was endorsed for use on patient material, regardless of smear gradation, while the GenoType MTBDRplus (version 1) has been limited for use on smear-positive patient material. In this study, we evaluated the diagnostic performance of the Xpert MTB/RIF and GenoType MTBDRplus (version 2) assays on smear-positive and smear-negative patient specimens submitted to a high-throughput diagnostic laboratory. A total of 282 consecutive specimens were subjected to the two new molecular assays, and their performance characteristics were assessed relative to the routine diagnostic standard. Both assays showed similar diagnostic performance characteristics. The sensitivities of the GenoType MTBDRplus (v2.0) and Xpert MTB/RIF assays for the detection of culture-positive M. tuberculosis were 73.1% and 71.2%, respectively, while the specificities of both assays were 100%. Both assays were able to diagnose the presence of M. tuberculosis in 57 to 58% of smear-negative cases, suggesting that the performance characteristics were dependent on bacillary load. The detection of M. tuberculosis in culture-negative specimens confirmed that molecular assays should not be used for treatment monitoring. The sensitivity and specificity for rifampin resistance detection were 100% in both assays; however, the GenoType MTBDRplus (v2.0) assay provided additional information on isoniazid susceptibility. The GenoType MTBDRplus (v2.0) assay will complement the Xpert MTB/RIF screening assay by validating rifampin susceptibility and providing information on isoniazid susceptibility. In addition, the GenoType MTBDRplus (v2.0) assay will provide pharmacogenetic information that may be critical in guiding appropriate treatment.  相似文献   

4.
The purpose of this study was to evaluate the GenoType MTBDRplus assay (Hain Lifescience GmbH, Nehren, Germany) for its ability to detect resistance to rifampin (RIF) and isoniazid (INH) in Mycobacterium tuberculosis clinical strains and directly in clinical samples. A total of 62 clinical strains characterized with the Bactec 460TB system were included. For the INH-resistant strains, the MIC was measured and sequencing was performed. Sixty-five clinical samples from 28 patients (39 smear-positive samples and 26 smear-negative samples) were also tested directly. The corresponding isolates of the clinical specimens were studied with the Bactec 460TB system. The overall rates of concordance of the MTBDRplus assay and the Bactec 460TB system for the detection of RIF and INH susceptibility in clinical strains were 98.3% (61/62) and 79% (49/62), respectively. The rate of concordance between the Bactec 460TB system and the MTBDRplus test for the detection of INH resistance in the group of 27 strains with low-level resistance was 62.9% (17/27), and that for the detection of INH resistance in the group of 21 strains with high-level resistance was 85.71% (18/21). Valid test results were obtained for 78.45% (51/65) of the clinical samples tested. The rates of concordance between both assays for the detection of drug resistance in these samples were 98% (50/51) for RIF and 96.2% (49/51) for INH. Taking into account only one sample per patient, the overall rate of concordance between both tests was 92.85% (26/28). The GenoType MTBDRplus assay is easy to perform and is a useful tool for the management of tuberculosis, as it allows the detection of resistance to RIF and INH in M. tuberculosis strains and also in clinical samples.  相似文献   

5.
We evaluated high-resolution melting (HRM) curve analysis as a tool for detecting rifampin (RIF) and isoniazid (INH) resistance in Mycobacterium tuberculosis in an accurate, affordable, and rapid manner. Two hundred seventeen M. tuberculosis clinical isolates of known resistance phenotype were used. Twenty-nine known rpoB mutant DNAs, including rare mutations, were also included. Four pairs of primers were designed: rpoB-F/R (for codons 516 to 539 of rpoB), rpoB-516F/R (for codons 508 to 536 of rpoB), katG-F/R (for the codon 315 region of katG), and inhA-F/R (for the nucleotide substitution of C to T at position −15 of inhA). An HRM curve was generated for each isolate after real-time PCR differentiated the mutant from the wild-type strains. DNA sequencing of the target regions was performed to confirm the results of the HRM curve analysis. All but one of the 73 RIF-resistant (RIF-R) strains and all 124 RIF-susceptible (RIF-S) isolates were correctly identified by HRM curve analysis of rpoB. Twenty-seven of 29 known rpoB mutants were detected. In HRM curve analysis of katG and inhA, 90 INH-R strains that harbored katG or inhA mutations, or both, and all INH-S strains were correctly identified. Ten phenotypically INH-R strains not harboring katG or inhA mutations were not detected. The HRM curve analysis will be a useful method for detection of RIF and INH resistance in M. tuberculosis in a rapid, accurate, simple, and cost-effective manner.The rates of mortality and morbidity from tuberculosis (TB) remain high, despite intense worldwide efforts. One of the major factors sustaining the current TB epidemic is the increasing drug resistance of Mycobacterium tuberculosis strains (2). In the early 1990s, multidrug-resistant (MDR) TB cases that were resistant to at least rifampin (RIF) plus isoniazid (INH) arose (6). When the frequency and distribution of extensively drug-resistant (XDR) TB cases were assessed in 2004 by the U.S. Centers for Disease Control and Prevention and the World Health Organization, several cases of drug-resistant tuberculosis consistent with an XDR phenotype were found (7). This study revealed that 20% of the isolates met the MDR criteria; 2% of those were classifiable as XDR; and 4%, 15%, and 19% of the XDR TB cases were from the United States, South Korea, and Latvia, respectively (7). Thus, it is crucial that rapid drug susceptibility tests be developed to prevent the spread of MDR and XDR TB.Although drug susceptibility testing (DST) is a prerequisite for accurate results, such testing requires much time and labor (3). Therefore, several molecular techniques have been applied to detect mutations related to drug resistance (5, 10). Resistance to RIF and INH, the mainstays of antituberculosis treatment, is mainly attributable to mutations in genes encoding the drug target or drug-converting enzymes (8). Early studies demonstrated that 95% of the resistance to RIF is associated with mutation of the RIF resistance-determining region of rpoB, whereas mutations in katG and the regulatory zone of inhA are most frequently associated with INH resistance (11).The oligonucleotide chip method and real-time PCR have been used for detection of drug-resistant M. tuberculosis (17, 21, 27, 29). A novel method of high-resolution melting (HRM) curve analysis is an accurate and simple technique for analyzing the genotype without the need for specific probes. The dye LC Green, SYTO9, or Eva Green saturates amplified DNA, unlike SYBR green dye, during homogeneous melting curve analysis. Also, HRM curve analysis generates a difference plot curve, which analyzes nucleic acid sequences with high accuracy. Application of genotyping by HRM curve analysis has followed (13, 19). The aim of the study described here was to develop a useful molecular tool for the identification of drug resistance in M. tuberculosis in an accurate, rapid, and cost-effective manner.  相似文献   

6.
In Iran, patients showing rifampicin (RIF) resistance detected by the Xpert® MTB/RIF assay are considered as candidates for multidrug-resistant tuberculosis (MDR-TB) treatment. Despite the fact that RIF resistance has been used as a proxy for MDR-TB, little is known about the proportion of isoniazid (INH) resistance patterns in RIF-resistant TB. We systematically searched MEDLINE, Embase, and other databases up to March 2017 for studies addressing the proportion of INH resistance patterns in RIF-resistant TB in Iran. The data were pooled using a random effects model. Heterogeneity was assessed using Cochran’s Q and I2 statistics. A total of 11 articles met the eligibility criteria. Data analysis demonstrated that 33.3% of RIF-resistant isolates from new TB cases and 14.8% of RIF-resistant isolates from previously treated cases did not display resistance to INH. The relatively high proportion of INH susceptibility among isolates with RIF resistance indicated that RIF resistance may no longer predict MDR-TB in Iran. Therefore, the detection of RIF resistance by the Xpert MTB/RIF assay will require complementary detection of INH resistance by other drug susceptibility testing (DST) methods in order to establish the diagnosis of MDR-TB.  相似文献   

7.
To rapidly detect rifampin, isoniazid and multidrug resistance in Mycobacterium tuberculosis isolates, a new system (BluePoint MtbDR, Bio Concept Inc., Taichung, Taiwan) including an oligonucleotide array and an automatic reader was evaluated. The array simultaneously identifies M. tuberculosis and predominant mutations in the rpoB, katG and inhA upstream regulatory region (inhA-r) genes. The system was assessed with 324 clinical M. tuberculosis isolates, including 210 multidrug-resistant, 41 rifampin mono-resistant, 34 isoniazid mono-resistant and 39 fully susceptible isolates. The results were compared with those obtained using the GenoType MTBDRplus test, drug-resistant gene sequencing and conventional drug susceptibility testing. The detection limit of the array was 25 pg DNA. The array and the GenoType MTBDRplus test detected 179 (85.2%) and 182 (86.7%) multidrug-resistant M. tuberculosis strains, respectively. The sensitivities of the array for detecting rifampin and isoniazid resistance were 98.4% and 87.7%, respectively, whereas the sensitivities of the GenoType MTBDRplus test for detecting rifampin and isoniazid resistance were 98.8% and 88.9%, respectively. No significant difference was found between the tests with respect to their sensitivities to detect multidrug resistance (p 0.66), rifampin resistance (p 0.69) or isoniazid resistance (p 0.68). The discrepancies were mainly attributed to rare mutations in inhA-r, which were not included in the array. The array can directly reveal transmission-associated mutations, which are useful for epidemiological investigations. The turnaround time of the array test was 6–7 h. This study confirms the feasibility of using this system for rapid and accurate diagnosis of isoniazid and rifampin resistance in M. tuberculosis.  相似文献   

8.
Purpose: Molecular methods which allow rapid detection of tuberculosis as well as drug resistance directly from clinical samples have become the most popular diagnostic methodology with the emergence of multidrug resistant tuberculosis. The aim of the present study was to evaluate the performance of a line probe assay, GenoType MTBDRplus for the rapid detection of Mycobacterium tuberculosis and mutations causing rifampicin and INH resistance directly in smear positive pulmonary specimens and also in M. tuberculosis isolates grown from various clinical specimens. Materials and Methods: The MTBDRplus assay was done directly on 37 smear positive pulmonary specimens and also on 69 M. tuberculosis isolates obtained by rapid automated culture using Bact/Alert 3D. The results were compared with phenotypic drug susceptibility testing (1% proportion method) using Bact/Alert 3D. Results: The sensitivity and specificity for detection of resistance to rifampicin was 100% and 97.3%, and to INH was 91.9% and 98.4%, respectively, in comparison with the phenotypic drug susceptibility testing. Conclusion: MTBDRplus assay had good sensitivity and specificity with turn around time of less than 48 hours. It may be a useful tool for rapid detection of multidrug resistant tuberculosis at a tertiary care centre.  相似文献   

9.
The current study describes the development of a unique real-time PCR assay for the detection of mutations conferring drug resistance in Mycobacterium tuberculosis. The rifampicin resistance determinant region (RRDR) of rpoB and specific regions of katG and the inhA promoter were targeted for the detection of rifampin (RIF) and isoniazid (INH) resistance, respectively. Additionally, this assay was multiplexed to discriminate Mycobacterium tuberculosis complex (MTC) strains from nontuberculous Mycobacteria (NTM) strains by targeting the IS6110 insertion element. High-resolution melting (HRM) analysis following real-time PCR was used to identify M. tuberculosis strains containing mutations at the targeted loci, and locked nucleic acid (LNA) probes were used to enhance the detection of strains containing specific single-nucleotide polymorphism (SNP) transversion mutations. This method was used to screen 252 M. tuberculosis clinical isolates, including 154 RIF-resistant strains and 174 INH-resistant strains based on the agar proportion method of drug susceptibility testing (DST). Of the 154 RIF-resistant strains, 148 were also resistant to INH and therefore classified as multidrug resistant (MDR). The assay demonstrated sensitivity and specificity of 91% and 98%, respectively, for the detection of RIF resistance and 87% and 100% for the detection of INH resistance. Overall, this assay showed a sensitivity of 85% and a specificity of 98% for the detection of MDR strains. This method provides a rapid, robust, and inexpensive way to detect the dominant mutations known to confer MDR in M. tuberculosis strains and offers several advantages over current molecular and culture-based techniques.The World Health Organization (WHO) estimates that approximately one-third of the world''s population is infected with Mycobacterium tuberculosis, with an estimated 9.27 million new cases reported in 2007 (20). In that year alone, an estimated 1.77 million people died from this treatable disease. Despite this significant burden, only a limited number of tests have been developed and implemented for the rapid diagnosis of tuberculosis (TB). Further, since the majority of TB disease burden occurs in underdeveloped and resource-limited settings, the need for a cost-efficient method is paramount.The emergence of drug-resistant strains of M. tuberculosis is one of the most critical issues facing TB researchers and clinicians today. Multidrug-resistant (MDR) M. tuberculosis is defined as being resistant to the two best first-line drugs used to treat TB: rifampin (RIF) and isoniazid (INH). Extensively drug-resistant (XDR) M. tuberculosis is defined as having additional resistance to a fluoroquinolone (ciprofloxacin, moxifloxicin, etc.) and an injectable drug (kanamycin, capreomycin, or amakacin), the two best classes of second-line drugs. The WHO estimates that 5% of new TB cases are MDR, with approximately 10% of those actually being XDR (20). Compounding this problem is the fact that no new drugs have been developed and approved for the treatment of TB in the past 30 years (16). The limited number of antibiotics available to treat TB necessitates rapid diagnosis not only to reduce the spread of drug-resistant strains but also to monitor and limit the emergence of newly resistant strains.While RIF and INH are very effective in the treatment of susceptible strains of M. tuberculosis, drug resistance can emerge quickly, in part due to patient nonadherence to the multidrug regimen or noncontinuous treatment. The molecular basis of resistance to these drugs is well documented. The target of RIF is the β-subunit of bacterial DNA-dependent RNA polymerase, which is encoded by the rpoB gene. At the genetic level, the majority of RIF resistance is due to the accumulation of mutations within an 81-bp region of rpoB, termed the rifampicin resistance determinant region (RRDR). Mutations within this region account for up to 98% of the RIF resistance observed (15). The strong correlation between genotypic changes in this region resulting in phenotypic resistance makes the RRDR an optimal target for the design of rapid molecular diagnostics.There are two described mechanisms that account for the majority of INH resistance. The most common mechanism involves mutations within the katG gene, which encodes a catalase peroxidase whose activity is required for the activation of INH (9). Nucleotide changes resulting in amino acid substitutions at codon 315 of katG account for up to 50% of the clinical resistance to INH (15). Another less common mutation occurs in the promoter region of the inhA gene, which encodes enoyl-ACP reductase, which is required for mycolic acid biosynthesis (18). Mutations at this locus account for up to 34% of the clinical INH resistance observed and are typically found in combination with additional mutations in katG (15).The vast majority of mutations that occur within rpoB, katG, and the inhA promoter regions are due to accumulation of single-nucleotide polymorphisms (SNPs), of which there are four classes (8). Class I SNPs, also called transitions, are changes in which a purine is exchanged for a purine (A/G→G/A) or a pyrimidine is exchanged for a pyrimidine (C/T→T/C) (8). Class II, III, and IV SNP changes are collectively referred to as transversions, and all involve the change of a purine to a pyrimidine, or vice versa (17). Class II changes result in A/C→C/A or T/G→G/T transversions, class III changes result in C/G→G/C transversions, and class IV changes result in A/T→T/A changes (8). These genetic mutations often result in phenotypic changes, such as RIF and INH resistance observed in M. tuberculosis, and are excellent targets for rapid molecular diagnostics.A significant obstacle in controlling TB is the amount of time required to reach a diagnosis. Due to the slow growth rate of M. tuberculosis, the initial diagnosis can take up to 6 weeks, with up to an additional 12 weeks to obtain drug susceptibility profiles for clinical isolates, depending on the techniques available to the laboratory. These labor-intensive methods can cause significant delays in identifying MDR or XDR cases, adjusting treatment regimens, and initiating epidemiological investigations. Recently, attention has shifted toward the development of dependable, molecular-based assays that can rapidly detect drug resistance. The development of new methodologies could potentially reduce the time required to diagnose drug resistance so that effective treatment regimens can be established. Direct sequencing of genes known to have a role in antibiotic resistance is one method that is currently used. However, while reliable, it is costly and may not be readily available. Another rapid method, the GenoType MTBDRplus assay (Hain Lifescience GmbH, Nehren, Germany), has made substantial contributions to the area of rapid diagnostics but still requires approximately 8 h to complete the assay and additional training to ensure that results are interpreted correctly (7). High-resolution melt (HRM) analysis is a molecular technique that can be used for detecting subtle genetic changes, such as SNPs conferring drug resistance in M. tuberculosis. By slowly melting the DNA amplicon products of a real-time PCR assay, slight genetic differences can be visualized by changes in dissociation profiles.The current study describes the use of multiple real-time PCR chemistries and HRM technology to detect RIF, INH, and more importantly, MDR strains of M. tuberculosis. This novel assay design is also capable of distinguishing M. tuberculosis complex bacteria (MTC) from nontuberculous mycobacterium (NTM) strains. This assay provides a rapid, robust, and inexpensive way to identify MDR TB that could result in numerous advantages over current molecular and culture-based techniques.  相似文献   

10.
Staphylococcus argenteus is a novel Staphylococcus species closely related to Staphylococcus aureus that has been recently described. In this study, we investigated the proportion and the characteristics of S. argenteus recovered from humans in Belgium. S. aureus. human isolates collected in Belgium from 2006 to 2015 (n?=?1,903) were retrospectively characterised via the presence of non-pigmented colonies on chocolate agar, spa typing and rpoB sequencing to determine if some of them were in fact S. argenteus. Out of 73 strains non-pigmented on chocolate plates, 3 isolates (0.16 %) showed rpoB sequences, in addition to spa and sequence types (ST2250/t5787, ST2250/t6675, ST3240/t6675), related to S. argenteus. Two of them were methicillin-resistant, harbouring a SCCmec type IV. The three S. argenteus isolates carried genes (sak, scn) of the immune evasion cluster. This first Belgian nationwide analysis showed a low occurrence of S. argenteus. Further studies should be conducted to identify the distribution range and the clinical impact of this new species.  相似文献   

11.
Previous evaluations of the molecular GenoType tests have promoted their use to detect resistance to first- and second-line antituberculosis drugs in different geographical regions. However, there are known geographic variations in the mutations associated with drug resistance in Mycobacterium tuberculosis, and especially in South America, there is a paucity of information regarding the frequencies and types of mutations associated with resistance to first- and second-line antituberculosis drugs. We therefore evaluated the performance of the GenoType kits in this region by testing 228 M. tuberculosis isolates in Colombia, including 134 resistant and 94 pansusceptible strains. Overall, the sensitivity and specificity of the GenoType MTBDRplus test ranged from 92 to 96% and 97 to 100%, respectively; the agreement index was optimal (Cohen''s kappa, >0.8). The sensitivity of the GenoType MTBDRsl test ranged from 84 to 100% and the specificity from 88 to 100%. The most common mutations were katG S315T1, rpoB S531L, embB M306V, gyrA D94G, and rrs A1401G. Our results reflect the utility of the GenoType tests in Colombia; however, as some discordance still exists between the conventional and molecular approaches in resistance testing, we adhere to the recommendation that the GenoType tests serve as early guides for therapy, followed by phenotypic drug susceptibility testing for all cases.  相似文献   

12.
Chryssanthou E, Ängeby K. The GenoType® MTBDRplus assay for detection of drug resistance in Mycobacterium tuberculosis in Sweden. APMIS 2012; 120: 405–9. The performance of the GenoType®MTBDRplus assay was compared with conventional drug susceptibility testing (DST) in 604 patients with tuberculosis. The study comprised 477 Mycobacterium tuberculosis complex isolates and 127 preparations of DNA from clinical specimens which had been tested positive for M. tuberculosis by COBAS®TaqMan® 48. By DST, isoniazid (INH) monoresistance was diagnosed in 56 (9.3%), rifampicin (RMP) monoresistance in 2 (0.3%) and multidrug resistance (MDR) in 21 (3.5%) of the cases. The sensitivity of the MTBDRplus assay was 87.5%, 100% and 95.2% for INH resistance, RMP resistance and MDR respectively. The specificity was 100% for all resistance patterns. The dominating mutations in RMP and INH resistant isolates were in codon 531 of the rpoB gene and codon 315 of the KatG gene. The turnaround time for detection of drug resistance can be shortened from a median of 21 days for DST to 7 days for the MTBDRplus assay. This may have a significant impact on routine work flow of a mycobacteriology laboratory.  相似文献   

13.
Dried culture spots (DCS) of inactivated Mycobacteria strains designed as part of an external quality assessment (EQA) program for the GeneXpert system has applications to other molecular tuberculosis (TB) diagnostic platforms. DCS tested on the GenoType MTBDRplus and Mycobacterium CM assays performed well with MTBDRplus version 2 but require increased bacterial concentration for use with version 1.  相似文献   

14.
We evaluated the performance of the molecular lab-on-chip-based VerePLEX Biosystem for detection of multidrug-resistant tuberculosis (MDR-TB), obtaining a diagnostic accuracy of more than 97.8% compared to sequencing and MTBDRplus assay for Mycobacterium tuberculosis complex and rifampin and isoniazid resistance detection on clinical isolates and smear-positive specimens. The speed, user-friendly interface, and versatility make it suitable for routine laboratory use.Multidrug-resistant tuberculosis (MDR-TB) requires long and expensive treatment and often results in poor clinical outcome in both low- and high-income countries (1, 2). The World Health Organization (WHO) has endorsed specific molecular diagnostics to improve fast diagnosis of MDR-TB (3,5). However, the genotypic diversity and geographical distribution of Mycobacterium tuberculosis complex (MTBC), together with the inability to provide appropriate interpretation of silent mutations and the limited versatility are some of the restraints undermining the effectiveness of the current tools on a global scale (6,13).In the present study, we evaluated a lab-on-chip (LoC) device, developed by STMicroelectronics (Geneva, Switzerland) and marketed by Veredus Laboratories (Republic of Singapore) as the VerePLEX Biosystem, for the diagnosis of MDR-TB and detection of common nontuberculous mycobacteria (NTM). The molecular assay was evaluated on both clinical isolates and direct specimens in low- and high-burden settings.We tested 91 MTBC isolates (see Table S1 in the supplemental material) harboring different patterns of mutations in rpoB, katG, and inhA genes to evaluate the probes on the array listed in 14). An additional 116 MTBC culture-negative specimens were included in the analysis. DNA from isolates and specimens was extracted by thermal lysis and sonication as described elsewhere (15). Phenotypic drug susceptibility testing (DST) for rifampin (RIF) and isoniazid (INH) was performed according to international recommendations (16). Some of the specimens were tested in a representative high-burden setting in Uganda (Nsambya Hospital, Kampala, Uganda), by trained staff.

TABLE 1

Probes spotted onto the array and targeted mycobacterial species and MDR-TB targets included in the assay
Targeted mycobacterial species or MDR-TB targetProbe(s)
Targeted Mycobacterium species
    M. aviumMYC4a
    M. intracellulareMYC5a
    M. simiae, M. kansasii, M. scrofulaceumMYC6a
    M. abscessus, M. chelonaeMYC8a
    M. xenopiMYC17a
    M. haemophylumMYC19a
    M. fortuitumMYC31a
    M. tuberculosis complexMYC15a-MYC16a
MDR-TB targets
    rpoB
        WT codons 510 to 513L511_w3a
        L511P mutantL511P_m3
        WT codons 515 to 518D516_w5
        D516V mutantD516V_m1
        WT codons 523 to 526H526_w14
        H526D mutantH526D_m2
        H526Y mutantH526Y_m5
        WT codons 530 to 533S531L_w1
        S531L mutantS531L_m2
    katG
        WT codons 313 to 317S315_w2
        S315T1 mutantS315T1_m2
        S315T2 mutantS315T2_m1
    inhA
        WT nucleotides −21 to −7inhA_w3
        T-8A mutantInhA–8T>A_m2
        T-8C mutantInhA–8T>C_m2
        C-15T mutantInhA–15C>T_m3
Open in a separate windowDNA samples extracted from both isolates and specimens were tested in parallel, and results were compared with GenoType MTBDRplus (Hain Lifescience, Nehren, Germany) assay and Sanger sequencing performed as described elsewhere (17).The VerePLEX Biosystem consists of a single disposable device comprising microfluidic PCR and microarray modules. The platform includes a temperature control system (TCS) and an optical reader (OR) which allows automatic analysis of the microarray, providing a user-friendly diagnostic report (see Fig. S2 in the supplemental material) (18). The protocols for MDR-TB assay are described in Text S3, and the primers are shown in Table S4. The assay allows detection of MTBC and other common NTM, together with the most frequent mutations affecting the rpoB, katG, and inhA genes, which are involved in phenotypic resistance to RIF and INH in MTBC.  相似文献   

15.
Given the increases in drug-resistant tuberculosis, laboratory capacities for drug susceptibility testing are being scaled up worldwide. A laboratory must decide among several endorsed methodologies. We evaluated 87 Mycobacterium tuberculosis isolates for concordance of susceptibility results across six methods: the L-J proportion method, MGIT 960 SIRE AST, Gene/Xpert MTB/RIF, GenoType MTBDRplus line probe assay, MycoTB MIC plate, and a laboratory-developed mycobacteriophage quantitative PCR (qPCR)-based method. Most (80%) isolates were multidrug resistant. Of the culture-based methods, the mycobacteriophage qPCR method was fastest, the L-J proportion method was the slowest, and the MGIT method required the most repeat testing (P < 0.05). For isoniazid (INH), 82% of isolates were susceptible by all methods or resistant by all methods, whereas for rifampin (RIF), ethambutol (EMB), and streptomycin (STR), such complete concordance was observed in 77%, 50%, and 51% of isolates, respectively (P < 0.05 for INH or RIF versus EMB or STR). The discrepancies of EMB and STR stemmed largely from diminished concordance of the MGIT EMB results (kappa coefficient range, 0.26 to 0.30) and the L-J STR result (kappa range, 0.35 to 0.45) versus other methods. Phage qPCR and the MycoTB MIC plate were the only methods that yielded second-line susceptibilities and revealed significant quantitative correlations for all drugs except cycloserine, as well as moderate to excellent kappa coefficients for all drugs except for para-aminosalicylic acid. In summary, the performance of M. tuberculosis susceptibility testing differs by platform and by drug. Laboratories should carefully consider these factors before choosing one methodology, particularly in settings where EMB and STR results are clinically important.  相似文献   

16.
Detection of drug resistance plays a critical role in tuberculosis treatment. The aim of this study was to evaluate the performance of GenoType Mycobacteria Drug Resistance (MTBDR) assay (Hain Lifescience, Germany) and to compare it with radiometric BACTEC 460 TB system (Becton Dickinson, USA) for the detection of rifampicin (RIF) and isoniazid (INH) resistance in 84 Mycobacterium tuberculosis complex (MTBC) isolates. RIF resistance was identified in 6 of 7 (85.7%) isolates and INH resistance was identified in 8 of 14 (57.1%) isolates by the GenoType MTBDR assay. Compared with BACTEC system, the sensitivity, specificity, positive predictive value and negative predictive values were 85.7%, 98.7%, 85.7% and 98.7% for RIF resistance; and 57.1%, 100%, 100% and 92.1% for INH resistance, respectively. GenoType MTBDR assay is reliable when tested specimen is resistant to the tested drugs. Although test was more successful in the detection of RIF resistance, it exhibited low sensitivity for the detection of INH resistance.  相似文献   

17.
《Clinical microbiology and infection》2021,27(10):1514.e1-1514.e4
ObjectivesRifampicin (RIF) and isoniazid (INH) are the two most effective first-line antibiotic drugs for the treatment of tuberculosis (TB). The new FluoroType MTBDR (FT-MTBDR) real-time PCR is intended to detect INH and RIF resistance mutations as a second step following a primary Mycobacterium tuberculosis complex (MTBC) PCR. Here we evaluate the feasibility of the FT-MTBDR assay to detect simultaneously MTBC-specific DNA as well as to detect potential INH and RIF resistance through analysing inhA promotor, katG and rpoB sequences in one PCR reaction.MethodsWe analysed 3885 consecutive primary samples with FT-MTBDR and compared the results with microscopy and culture: 978 were from sputum, 2007 from other respiratory tract locations plus gastric lavages, and 875 from extrapulmonary locations, respectively.ResultsOverall, 176 samples were MTBC culture positive and 139 FT-MTBDR positive, providing a FT-MTBDR sensitivity of 0.714 (95% confidence interval 0.640–0.779) and specificity of 0.996 (0.994–0.998), respectively. For the 978 sputum, 96 were MTBC culture positive and 89 FT-MTBDR positive, sensitivity 0.854 (0.764–0.915) and specificity 0.992 (0.983–0.997). Of the 139 MTBC positive, 99 (71%) had interpretable genotypic resistance results for at least one drug, 92 (66%) for both drugs.DiscussionThe ability of FT-MTBDR to detect MTBC is adequate with the significant added feature of simultaneous genotypic resistance detection of both INH and RIF in a single PCR reaction.  相似文献   

18.

Background

Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy.

Methods

In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd ?/?, lacking γδT cells), and TCRα-deficient (Tcra ?/?, lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze.

Results

White matter development was normal in Tcrd ?/? and Tcrα ?/? compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα ?/? mice, but not in the Tcrd ?/? mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα ?/? mice, but no such effect was observed in Tcrd ?/? mice.

Conclusions

Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.
  相似文献   

19.
We performed the first studies of analytic sensitivity, analytic specificity, and dynamic range for the new Xpert MTB/RIF assay, a nucleic acid amplification-based diagnostic system that detects Mycobacterium tuberculosis and rifampin (RIF) resistance in under 2 h. The sensitivity of the assay was tested with 79 phylogenetically and geographically diverse M. tuberculosis isolates, including 42 drug-susceptible isolates and 37 RIF-resistant isolates containing 13 different rpoB mutations or mutation combinations. The specificity of the assay was tested with 89 nontuberculosis bacteria, fungi, and viruses. The Xpert MTB/RIF assay correctly identified all 79 M. tuberculosis isolates and correctly excluded all 89 nontuberculosis isolates. RIF resistance was correctly identified in all 37 resistant isolates and in none of the 42 susceptible isolates. Dynamic range was assessed by adding 102 to 107 CFU of M. tuberculosis into M. tuberculosis-negative sputum samples. The assay showed a log-linear relationship between cycle threshold and input CFU over the entire concentration range. Resistance detection in the presence of different mixtures of RIF-resistant and RIF-susceptible DNA was assessed. Resistance detection was dependent on the particular mutation and required between 65% and 100% mutant DNA to be present in the sample for 95% certainty of resistance detection. Finally, we studied whether assay specificity could be affected by cross-contaminating amplicons generated by the GenoType MTBDRplus assay. M. tuberculosis was not detected until at least 108 copies of an MTBDRplus amplicon were spiked into 1 ml of sputum, suggesting that false-positive results would be unlikely to occur.Conventional diagnostic methods for Mycobacterium tuberculosis are slow and/or lack sensitivity. A number of new diagnostic approaches have brought incremental improvements to detection and drug susceptibility testing; however, the technical complexity of these assays and their dependence on dedicated laboratory infrastructure have limited their adoption, especially in low-resource, high-burden settings (1, 11, 12, 21). The recently introduced Xpert MTB/RIF (manufactured and marketed by Cepheid, Sunnyvale, CA) assay simultaneously detects the presence of M. tuberculosis and its susceptibility to the important first-line drug rifampin (RIF) (7). A sample processing system and an automated heminested real-time PCR assay are integrated into a single disposable cartridge. The assay can be performed directly from a clinical sputum sample or from a decontaminated sputum pellet and can generally be completed in less than 2 h (7).The Xpert MTB/RIF assay detects M. tuberculosis and RIF resistance by PCR amplification of the rifampin resistance-determining region (RRDR) of the M. tuberculosis rpoB gene and subsequent probing of this region for mutations that are associated with RIF resistance. Approximately 95% of RIF-resistant tuberculosis cases contain mutations in this 81-bp region (16). Our previous work has established that the Xpert MTB/RIF assay has a limit of detection (LOD), defined as the minimum number of bacilli that can be detected with 95% confidence) of 131 CFU per ml of clinical sputum (7). The assay was also able to identify RIF resistance in samples containing 23 common clinically occurring rpoB mutations. None of the 20 nontuberculosis mycobacteria (NTM) species tested, including the NTM species commonly described as causing human disease were falsely identified as M. tuberculosis (7), suggesting high specificity. Several small studies using clinical samples demonstrated 98% to 100% sensitivity overall, 72% sensitivity in smear-negative patients, and a specificity of 100% (7).In the present study, we expand upon our previous work and report on several critical analytical assay performance characteristics, including dynamic range, sensitivity, specificity, RIF resistance detection in heterogeneous samples, and resiliency against cross-contamination by other nucleic acid amplification techniques (NAATs).  相似文献   

20.
Nocardia are aerobic Gram-positive saprophytes that are widely distributed in nature, but some species cause nocardiosis, especially opportunistic infections that affect immunocompromised patients mostly. In this study, we developed a multilocus sequence typing (MLST) scheme using seven housekeeping genes (gyrB, hsp65, secA1, rpoB, rpoA, recA, and trpB) for genotyping the most common clinical species, Nocardia farcinica (37 clinical isolates from the patients with nocardiosis and seven from animals in China and 15 reference strains). The results showed that using these loci could perform accurate identification among different species, and high discriminative power within the N. farcinica species. Of the 59?N. farcinica isolates, 44 sequence types have been identified; 32 STs covering 46 isolates could be assigned to six clonal complexes that encompassed most of the collected strains. The results showed that these strains displayed a sufficiently informative population structure using this method. Our study also provided a suitable approach for epidemiological studies of N. farcinica. A large clonal complex comprising 16 strains was identified, and was notable for its wide distribution and host adaptation. This complex should be monitored closely and merits further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号