首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The myosin heavy chain (MHC) composition of single fibres from m. vastus lateralis was analysed by one-dimensional electrophoresis and immunoblotting in three groups of young men with distinct difference in physical activity patterns. No major co-existence of MHC isoforms was found in the group with some daily physical activity. In the very sedentary group, however, 19±5% (P<0.05) of the fibres exhibited coexistence of MHC type IIa and IIb. Further, in the endurance trained group co-existence of MHC type I and IIa was manifested in 36±4% (P<0.05) of the fibres. Disuse and extreme usage of muscle both give rise to an elevation in co-expression of MHC isoforms in single muscle fibres but of markedly different combination of isoforms.  相似文献   

3.
Aim: To examine the effects of low‐volume muscle endurance training on muscle oxidative capacity, endurance and strength of the forearm muscle during 21‐day forearm immobilization (IMM‐21d). Methods: The non‐dominant arm (n = 15) was immobilized for 21 days with a cast and assigned to an immobilization‐only group (Imm‐group; n = 7) or an immobilization with training group (Imm+Tr‐group; n = 8). Training comprised dynamic handgrip exercise at 30% of pre‐intervention maximal voluntary contraction (MVC) at 1 Hz until exhaustion, twice a week during the immobilization period. The duration of each exercise session was 51.7 ± 3.4 s (mean ± SE). Muscle oxidative capacity was evaluated by the time constant for phosphocreatine recovery (τoffPCr) after a submaximal handgrip exercise using 31phosphorus‐magnetic resonance spectroscopy. An endurance test was performed at 30% of pre‐intervention MVC, at 1 Hz, until exhaustion. Results: τ offPCr was significantly prolonged in the Imm‐group after 21 days (42.0 ± 2.8 and 64.2 ± 5.1 s, pre‐ and post‐intervention respectively; P < 0.01) but did not change for the Imm+Tr‐group (50.3 ± 3.0 and 48.8 ± 5.0 s, ns). Endurance decreased significantly for the Imm‐group (55.1 ± 5.1 and 44.7 ± 4.6 s, P < 0.05) but did not change for the Imm+Tr‐group (47.9 ± 3.0 and 51.7 ± 4.0 s, ns). MVC decreased similarly in both groups (P < 0.01). Conclusions: Twice‐weekly muscle endurance training sessions, each lasting approx. 50 s, effectively prevented a decrease in muscle oxidative capacity and endurance; however, there was no effect on MVC decline with IMM‐21d.  相似文献   

4.
5.
6.
The distribution of fast and slow isoforms of troponin C, I, and T components and myosin heavy chains was investigated in histochemically typed myofibrillar ATPase intermediate (IM) fibres, that is, fibres that stain after both acid and alkaline preincubation in stainings for myofibrillar ATPase. In addition to the previously described IM fibres of types IIC and IB, fibres that displayed staining characteristics between types IIC and IB were observed and termed type IIC-IB. The IM fibres constitute less than 1% of the fibres in normal human limb and abdominal muscles. The IM fibres studied here resulted from extensive endurance training of human triceps brachii muscle (n = 6) and were induced by conversion of a proportion (13%) of type II fibres. The immunohistochemical stains of serial sections with antibodies to slow isoforms of troponin I, T, C and myosin heavy chain showed no staining of type II fibres but intense staining of types I and IB fibres, whereas type IIC fibres stained with intermediate intensity. The antibodies to fast isoforms of the troponin components and myosin heavy chain did not give rise to staining of type I fibres but dark staining of type II fibres. Type IB fibres stained with intermediate intensity and type IIC was either as dark as type II or slightly lighter. Type IIC-IB fibres showed staining intensities intermediate between those observed for types IB and IIC in the immunohistochemical stains. It is therefore concluded that training-induced myofibrillar ATPase intermediate human skeletal muscle fibres are characterized by the coexistence of slow and fast isoforms of contractile and regulatory proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.  相似文献   

8.
9.
10.
11.
Summary Biopsies from the medial gastrocnemius muscle of three experienced endurance runners who had completed an ultramarathon run (160 km) the previous day were assessed for their oxidative characteristics (fibre types, capillarization and mitochondria content). Also, a regional comparison was made for fibres located centrally (completely surrounded by other fibres) versus fibres located peripherally (next to the interfascicular space) and the capillarization of these peripheral fibres was determined. Subsarcolemmal mitochondria were abundant and compartmentalized close to the capillaries. The number of capillaries around fibres ranged from 5.8 to 8.5 and 5.7 to 8.5, and the number of capillaries·mm–2 ranged from 665 to 810 and 727 to 762, for type I (slow twitch) and type 11 (fast twitch) fibres, respectively. Central fibres contained a greater number of capillaries and more capillaries·mm–2 than their peripheral counterparts. Peripheral fibres contained more capillaries · m–1 between fibres than at the interfascicular space. Type I fibres were more distributed (63%–78%) and larger than type II fibres. An abundance of subsarcolemmal mitochondria located close to the capillaries, efficient capillary proliferation between fibres where sharing can occur and greater relative distribution and size of type I fibres are, collectively, efficient characteristics of extreme endurance training.  相似文献   

12.
Six healthy subjects performed endurance training of the same duration with legs and arms consecutively. Performance and muscle structure were measured before and after training in lower and upper limbs. Training induced similar increases in maximal oxygen consumption (6 ± 1 vs. 7 ± 2 mL min?1 kg?1: legs vs. arms, P > 0.05) and mitochondrial volume in leg and arm muscles (42 ± 12 vs. 31 ± 11%: legs vs. arms, P > 0.05). The gain in mitochondrial volume after training was achieved solely by increasing the fraction of mitochondria (+40 ± 11%, P < 0.05) in the same muscle volume (+2 ± 2%, P > 0.05) in the legs. In contrast, increased muscle volume (+14 ± 3%, P < 0.05), in addition to a tendency for an increase in mitochondrial fraction (+16 ± 11%, P > 0.05), occurred in the arms after training. Thus, similar improvements in muscle oxidative capacity in upper and lower limbs were brought about by different mechanisms. It is suggested that due to infrequent use and a lack of load-bearing function, arm muscle volume is underdeveloped in untrained, sedentary or detrained/injured subjects and that the mode of endurance training used in this study is sufficient to enlarge arm muscle volume as well as aerobic capacity.  相似文献   

13.
Summary Muscle fiber type composition and capillary supply in rat diaphragm were investigated after 14 weeks of endurance training: body weight and muscle fiber area were significantly decreased, the muscle fiber type composition, capillary to fiber ratio and number of capillaries around each fiber type were unchanged, and the capillary density and number of capillaries around each fiber relative to fiber type areas were significantly increased. These small fiber areas and increased capillary supplies in the trained rats would facilitate oxygen transport to all parts of the muscle fiber during exercise. It is concluded that the changes observed in the trained rat diaphragm appear to enhance the capacity for oxidative metabolism.  相似文献   

14.
The purpose of this study was to investigate the effect of concurrent strength and endurance training on strength, endurance, endocrine status and muscle fibre properties. A total of 45 male and female subjects were randomly assigned to one of four groups; strength training only (S), endurance training only (E), concurrent strength and endurance training (SE), or a control group (C). Groups S and E trained 3 days a week and the SE group trained 6 days a week for 12 weeks. Tests were made before and after 6 and 12 weeks of training. There was a similar increase in maximal oxygen consumption (O2 max) in both groups E and SE (P < 0.05). Leg press and knee extension one repetition maximum (1 RM) was increased in groups S and SE (P < 0.05) but the gains in knee extension 1 RM were greater for group S compared to all other groups (P < 0.05). Types I and II muscle fibre area increased after 6 and 12 weeks of strength training and after 12 weeks of combined training in type II fibres only (P < 0.05). Groups SE and E had an increase in succinate dehydrogenase activity and group E had a decrease in adenosine triphosphatase after 12 weeks of training (P < 0.05). A significant increase in capillary per fibre ratio was noted after 12 weeks of training in group SE. No changes were observed in testosterone, human growth hormone or sex hormone binding globulin concentrations for any group but there was a greater urinary cortisol concentration in the women of group SE and decrease in the men of group E after 12 weeks of training (P < 0.05). These findings would support the contention that combined strength and endurance training can suppress some of the adaptations to strength training and augment some aspects of capillarization in skeletal muscle. Accepted: 10 November 1998  相似文献   

15.
During exercise, patients with cystic fibrosis (CF) dynamically hyperinflate, which imposes both elastic and threshold loads on the inspiratory muscles and places them at a mechanical disadvantage due to muscle shortening. Conversely, dynamic hyperinflation imposes a progressively resistive load and lengthens the expiratory muscles potentially increasing their susceptibility to develop low frequency fatigue (LFF). The aim of the study was to determine whether high intensity endurance exercise leads to the development of LFF in either the diaphragm or expiratory abdominal wall muscles in patients with CF. Ten patients and ten healthy individuals were studied. Twitch transdiaphragmatic pressure (TwP(di)) and twitch abdominal pressure (TwT(10)) were measured before and after exhaustive endurance cycle exercise at 80% of their previously determined maximum work rate. There was no difference in TwP(di) or TwT(10) at 20, 40 or 60 min post exercise compared to pre-exercise resting values in any of the participants, indicating that overt LFF of the respiratory muscles did not develop.  相似文献   

16.
Summary The effects of both the P 3-1-(2-nitrophenyl)ethyl ester of adenosine 5-triphosphate (NPE-caged ATP) and its separate diastereoisomers, and the P 3-3,5-dimethoxybenzoin ester of ATP (DMB-caged ATP) were studied on the unloaded shortening velocity of glycerinated rabbit psoas muscle fibres. The unloaded shortening velocities of the active fibres were measured as a function of ATP concentration (0.1–5 mm) using the slack-test with and without 2 mm caged ATP. Shortening velocity followed a Michaelis-Menten relationship with ATP concentration, the Km for ATP being 170 m. The caged ATP compounds inhibited shortening velocity, in a manner consistent with competitive inhibition, with a Ki of 1–2 mm. The R- and S-diastereoisomers of NPE-caged ATP showed the same degree of competitive inhibition of the shortening velocity, as did DMB-caged ATP. These observations suggest that caged ATP compounds bind to the ATPase site of the actomyosin where they compete with the substrate, Mg2+ATP.  相似文献   

17.
18.
Aim: Exercise training is a strong stimulus for vascular remodelling and could restore age‐induced vascular alterations. The purpose of the study was to test the hypothesis that an increase in vascular bed filtration capacity would corroborate microvascular adaptation with training. Methods: We quantified (1) microvascularization from vastus lateralis muscle biopsy to measure the capillary to fibre interface (LC/PF) and (2) the microvascular filtration capacity (Kf) in lower limbs through a venous congestion plethysmography procedure. Twelve healthy older subjects (74 ± 4 years) were submitted to a 14‐week training programme during which lower‐limbs were trained for endurance exercise. Results: The training programme induced a significant increase in the aerobic exercise capacity of lower limbs (+11%Vo 2peak; P < 0.05; +28% Citrate Synthase Activity; P < 0.01). Kf was largely increased (4.3 ± 0.9 10?3 mL min?1 mmHg?1 100 mL?1 post‐training vs. 2.4 ± 0.8 pre‐training, mean ± SD; P < 0.05) and microvascularization developed as shown by the rise in LC/PF (0.29 ± 0.06 post‐ vs. 0.23 ± 0.06 pre‐training; P < 0.05). Furthermore, Kf and LC/PF were correlated (r = 0.65, P < 0.05). Conclusion: These results demonstrated the microvascular adaptation to endurance training in the elderly. The increase in Kf with endurance training was probably related to a greater surface of exchange with an increased microvessel/fibre interface area. We conclude that measurement of the microvascular filtration rate reflects the change in the muscle exchange area and is influenced by exercise training.  相似文献   

19.
20.
Respiratory muscles can fatigue during prolonged and maximal exercise, thus reducing performance. The respiratory system is challenged during underwater exercise due to increased hydrostatic pressure and breathing resistance. The purpose of this study was to determine if two different respiratory muscle training protocols enhance respiratory function and swimming performance in divers. Thirty male subjects (23.4 ± 4.3 years) participated. They were randomized to a placebo (PRMT), endurance (ERMT), or resistance respiratory muscle training (RRMT) protocol. Training sessions were 30 min/day, 5 days/week, for 4 weeks. PRMT consisted of 10-s breath-holds once/minute, ERMT consisted of isocapnic hyperpnea, and RRMT consisted of a vital capacity maneuver against 50 cm H2O resistance every 30 s. The PRMT group had no significant changes in any measured variable. Underwater and surface endurance swim time to exhaustion significantly increased after RRMT (66%, P < 0.001; 33%, P = 0.003) and ERMT (26%, P = 0.038; 38%, P < 0.001). Breathing frequency (f b) during the underwater endurance swim decreased in RRMT (23%, P = 0.034) and tidal volume (V T) increased in both the RRMT (12%, P = 0.004) and ERMT (7%, P = 0.027) groups. Respiratory endurance increased in ERMT (216.7%) and RRMT (30.7%). Maximal inspiratory and expiratory pressures increased following RRMT (12%, P = 0.015, and 15%, P = 0.011, respectively). Results from this study indicate that respiratory muscle fatigue is a limiting factor for underwater swimming performance, and that targeted respiratory muscle training (RRMT > ERMT) improves respiratory muscle and underwater swimming performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号