首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most plasmas from patients with inhibitors contain antibodies that are reactive with the C2 domain of factor VIII. Previously, we have shown that the variable heavy chain (V(H)) regions of antibodies to the C2 domain are encoded by the closely related germline gene segments DP-10, DP-14, and DP-88, which all belong to the V(H)1 gene family. Here, we report on the isolation and characterization of additional anti-C2 antibodies that are derived from V(H) gene segments DP-88 and DP-5. Competition experiments using murine monoclonal antibodies CLB-CAg 117 and ESH4 demonstrated that antibodies derived from DP-5 and DP-88 bound to different sites within the C2 domain. Epitope mapping studies using a series of factor VIII/factor V hybrids revealed that residues 2223 to 2332 of factor VIII are required for binding of the DP-10-, DP-14-, and DP-88-encoded antibodies. In contrast, binding of the DP-5-encoded antibodies required residues in both the amino- and carboxy-terminus of the C2 domain. Inspection of the reactivity of the antibodies with a series of human/porcine hybrids yielded similar data. Binding of antibodies derived from germline gene segments DP-10, DP-14, and DP-88 was unaffected by replacement of residues 2181 to 2243 of human factor VIII for the porcine sequence, whereas binding of the DP-5-encoded antibodies was abrogated by this replacement. Together these data indicate that antibodies assembled from V(H) gene segments DP-5 and the closely related germline gene segments DP-10, DP-14, and DP-88 target 2 distinct antigenic sites in the C2 domain of factor VIII.  相似文献   

2.
A well-known complication of factor VIII replacement therapy in patients with hemophilia A is the development of inhibitory antibodies. Several studies have demonstrated the presence of a binding site for factor VIII inhibitors in the A3 domain. Six different human monoclonal single-chain variable domain antibody fragments (scFv) directed toward the A3-C1 domains of factor VIII have been isolated, using phage display technology. Sequence analysis revealed that the V(H) domains of 2 scFv were encoded by germline gene segments from the V(H)1 gene family and 4 by germline gene segments belonging to the V(H)3 gene family. Epitope mapping of the scFv was performed, using a series of hybrid factor VIII/factor V light chain fragments. This analysis revealed that 5 of 6 scFv were directed against a region encompassing amino acid sequence Q1778-D1840 in the A3 domain, a previously identified binding site for factor VIII inhibitors. Only 2 of 5 scFv directed against amino acid sequence Q1778-D1840 inhibited the procoagulant activity of factor VIII. Our results define the properties of human antibodies directed against region Q1778-D1840 in the A3 domain. Binding of one, noninhibitory scFv was independent of the region Q1778-D1840, suggesting the presence of an additional binding site for anti-factor VIII antibodies in the A3-C1 domains of factor VIII.  相似文献   

3.
Meeks SL  Healey JF  Parker ET  Barrow RT  Lollar P 《Blood》2008,112(4):1151-1153
The antihuman factor VIII (fVIII) C2 domain immune response in hemophilia A mice consists of antibodies that can be divided into 5 groups of structural epitopes and 2 groups of functional epitopes. Groups A, AB, and B consist of classical C2 antibodies that inhibit the binding of fVIII to phospholipid and von Willebrand factor. Groups BC and C contain nonclassical C2 antibodies that block the activation of fVIII by thrombin or factor Xa. Group BC antibodies are the most common and display high specific inhibitory activity and type II kinetics. The C2 epitope groups recognized by 26 polyclonal human anti-fVIII inhibitor plasmas were identified by a novel competition enzyme-linked immunosorbent assay using group-specific murine monoclonal antibodies. Most of the anti-C2 inhibitor plasmas inhibited the binding of both classical and nonclassical antibodies. These results suggest that nonclassical anti-C2 antibodies contribute significantly to the pathogenicity of fVIII inhibitors.  相似文献   

4.
Lü J  Pipe SW  Miao H  Jacquemin M  Gilbert GE 《Blood》2011,117(11):3181-3189
Factor VIII binds to phosphatidylserine (PS)-containing membranes through its tandem, lectin-homology, C1 and C2 domains. However, the details of C1 domain membrane binding have not been delineated. We prepared 4 factor VIII C1 mutations localized to a hypothesized membrane-interactive surface (Arg2090Ala/Gln2091Ala, Lys2092Ala/Phe2093Ala, Gln2042Ala/Tyr2043Ala, and Arg2159Ala). Membrane binding and cofactor activity were measured using membranes with 15% PS, mimicking platelets stimulated by thrombin plus collagen, and 4% PS, mimicking platelets stimulated by thrombin. All mutants had at least 10-fold reduced affinities for membranes of 4% PS, and 3 mutants also had decreased apparent affinity for factor X. Monoclonal antibodies against the C2 domain produced different relative impairment of mutants compared with wild-type factor VIII. Monoclonal antibody ESH4 decreased the V(max) for all mutants but only the apparent membrane affinity for wild-type factor VIII. Monoclonal antibody BO2C11 decreased the V(max) of wild-type factor VIII by 90% but decreased the activity of 3 mutants more than 98%. These results identify a membrane-binding face of the factor VIII C1 domain, indicate an influence of the C1 domain on factor VIII binding to factor X, and indicate that cooperation between the C1 and C2 domains is necessary for full activity of the factor Xase complex.  相似文献   

5.
The effective activation of factor X by factor IXa requires the co-factor activity of activated factor VIII (FVIII). Factor Xa formation is also dependent on the presence of negatively charged phospholipid. A phospholipid binding domain of FVIII has been reported to be present on the FVIII light chain. Recent observations on a subset of human FVIII inhibitors have implicated the carboxyl-terminal C2 domain of FVIII as containing a possible phospholipid binding site. The purpose of this study was to investigate directly the role of the C2 domain in phospholipid binding. Twenty-six overlapping peptides, which span the entire C2 domain of FVIII, were synthesized. The ability of these peptides to inhibit the binding of purified human FVIII to immobilized phosphatidylserine was evaluated in an enzyme-linked immunosorbent assay. Three overlapping synthetic FVIII peptides, 2303-2317, 2305-2332, and 2308-2322, inhibited FVIII binding to phosphatidylserine by greater than 90% when tested at a concentration of 100 mumols/L. A fourth partially overlapping peptide, 2318-2332, inhibited FVIII binding by 65%. These results suggest that the area described by these peptides, residues 2303 to 2332, may play an important role in the mediation of FVIII binding to phospholipid.  相似文献   

6.
Hsu TC  Pratt KP  Thompson AR 《Blood》2008,111(1):200-208
Activated factor VIII (FVIIIa) forms a procoagulant complex with factor IXa on negatively charged membranes, including activated platelet surfaces. Membrane attachment involves the FVIII C2 domain; involvement of the adjacent C1 domain has not been established. Binding of recombinant FVIII C1C2 and C2 proteins to platelets was detected by flow cytometry using (1) anti-C2 monoclonal antibody ESH8 followed by a phycoerythrin-labeled secondary antibody; (2) biotinylated C1C2 detected by phycoerythrin-labeled streptavidin, and (3) C1C2 and C2 site-specifically labeled with fluorescein. Highest binding and lowest background were obtained using fluorescein-conjugated proteins. More than 90% of activated platelets bound C1C2, compared with approximately 50% for equimolar C2. Estimates using fluorescent microbeads indicated approximately 7,000 C1C2-binding sites per platelet, approximately 1,400 for C2, and approximately 3,000 for fluorescein-labeled FVIIIa. Unlike C2 or FVIII(a), C1C2 bound to approximately 700 sites/platelet before activation. C1C2 binding to activated platelets appeared independent of von Willebrand factor and was competed effectively by FVIII(a), but only partially by excess C2. Fluorescein-labeled FVIIIa was competed much more effectively by C1C2 than C2 for binding to activated platelets. Two monoclonal antibodies that inhibit C2 binding to membranes competed platelet binding of C2 more effectively than C1C2. Thus, the C1 domain of FVIII contributes to platelet-binding affinity.  相似文献   

7.
8.
9.
We characterized seven factor VIII inhibitors with epitopes in the C2 domain of factor VIII using a series of factor V C2 domain chimeras that substituted exon-sized fragments of the C2 domain of factor VIII for the corresponding regions of factor V. All inhibited co-factor activity of factor VIII and six inhibited binding of factor VIII to phosphatidylserine. Inhibitors Hz, JN and GK32 bound epitopes within amino acids S2173-K2281; inhibitors GK24 and TO bound epitopes within amino acids V2223-Y2332; and inhibitors UNC11 and UNC12 bound epitopes throughout the C2 domain (amino acids S2173-Y2332). Inhibitors Hz, JN and UNC12 inhibited the co-factor activity of chimera 5A, which substituted amino acids S2173-Q2222 of factor VIII for the corresponding region of factor V, in a prothrombinase assay. This inhibition could be partially reversed by pre-incubation of chimera 5A with phospholipid vesicles, suggesting that these antibodies interfered with phospholipid binding. Inhibitors UNC11 and UNC12, on the other hand, did not inhibit the binding of chimera 1 A to phosphatidylserine, suggesting that binding to the segment spanning amino acids V2282-Y2332 does not necessarily block phospholipid binding. These results agree with the model of the phospholipid-binding site determined by crystal structure of the C2 domain of factor VIII.  相似文献   

10.
Classic hemophilia A (factor VIII:C deficiency) was diagnosed in a miniature Schnauzer dog and a breeding program established. Inbreeding and crossbreeding produced 16 hemophilic animals. All were initially treated with canine cryoprecipitate, as required, for sporadic hemorrhagic events. Five animals developed potent antibodies to canine factor VIII:C. All were the offspring of obligate carriers, resulting from the mating of a hemophilic purebred miniature Schnauzer male to a normal female Brittany spaniel. The mean age at first treatment and factor VIII exposure at the time of inhibitor development was 10.3 wk and 286.3 U, respectively. The remaining hemophilic animals have not developed antibodies, despite receiving a mean factor VIII dosage of 1.5 X 10(3) U. This group includes animals derived from a mating between the same purebred miniature Schnauzer hemophilic male and a purebred miniature Schnauzer carrier female. In each case, the antibodies recognize both canine and human but not porcine VIII:C. They are non-precipitating IgG immunoglobulins. Following inhibitor development, infusion of canine cryoprecipitate was hemostatically ineffective and factor VIII:C recovery at 30 min was negligible. Infusion of a concentrate of porcine factor VIII resulted in a correction of the hemostatic defect and optimal factor VIII:C recovery. All animals receiving porcine factor VIII:C subsequently developed antibodies to this protein. The chance occurrence of this complication should facilitate further studies directed at elucidating the pathogenesis and management of hemophilia complicated by the development of antibodies to factor VIII:C.  相似文献   

11.
Meeks SL  Healey JF  Parker ET  Barrow RT  Lollar P 《Blood》2007,110(13):4234-4242
The diversity of factor VIII (fVIII) C2 domain antibody epitopes was investigated by competition enzyme-linked immunosorbent assay (ELISA) using a panel of 56 antibodies. The overlap patterns produced 5 groups of monoclonal antibodies (MAbs), designated A, AB, B, BC, and C, and yielded a set of 18 distinct epitopes. Group-specific loss of antigenicity was associated with mutations at the Met2199/Phe2200 phospholipid binding beta-hairpin (group AB MAbs) and at Lys2227 (group BC MAbs), which allowed orientation of the epitope structure as a continuum that covers one face of the C2 beta-sandwich. MAbs from groups A, AB, and B inhibit the binding of fVIIIa to phospholipid membranes. Group BC was the most common group and displayed the highest specific fVIII inhibitor activities. MAbs in this group are type II inhibitors that inhibit the activation of fVIII by either thrombin or factor Xa and poorly inhibit the binding of fVIII to phospholipid membranes or von Willebrand factor (VWF). Group BC MAbs are epitopically and mechanistically distinct from the extensively studied group C MAb, ESH8. These results reveal the structural and functional complexity of the anti-C2 domain antibody response and indicate that interference with fVIII activation is a major attribute of the inhibitor landscape.  相似文献   

12.
Inhibitor neutralization therapy based on factor (F)VIII replacement is used for haemostatic treatment in haemophilia A patients with inhibitors on low responder, but effects appear to depend on various properties of inhibitors. We investigated this nature by evaluating the global coagulation function in timed‐reactions after mixing FVIII (1 U/ml) with anti‐FVIII alloantibodies containing distinct epitopes (2·5 Bethesda units/ml). Thrombin generation assays showed that peak thrombin and mean velocity to peak thrombin were depressed by anti‐C2 type 1 inhibitors to significantly greater extents than by anti‐A2 type 1 and anti‐C2 type 2 (2‐ to 6‐fold and 10‐ to 20‐fold, respectively). In the presence of FVIII‐von Willebrand Factor (VWF) complex, the anti‐C2 type 1‐mediated decreased thrombin generation was reduced by 20–40%, reflecting the protective function of VWF. However, the activities of anti‐A2 type 1 were little affected, and that of anti‐C2 type 2 was rather enhanced by c. 2·5‐fold, relative to FVIII. Clot waveform analysis also showed similar patterns. Anti‐FVIII monoclonal antibodies with well‐defined characteristics demonstrated similar reactions to those with polyclonal inhibitors. In conclusion, the neutralizing effects of FVIII(‐VWF) depending on epitopes could have significant therapeutic implications, and it could be important to determine inhibitor properties in order to predict the effects of infused FVIII in neutralization therapy.  相似文献   

13.
The occurrence of factor VIII (fVIII) inhibitory antibodies is a rare complication of fVIII substitution therapy in mild/moderate hemophilia A patients. fVIII mutations in certain regions such as the C1 domain are, however, more frequently associated with inhibitor, for reasons which remain unclear. To determine whether inhibitors could map to the mutation site, we analyzed at the clonal level the immune response of such a patient with an inhibitor to wild-type but not self-fVIII and an Arg2150His substitution in the C1 domain. Immortalization of the patient B lymphocytes provided a cell line producing an anti-fVIII IgG4kappa antibody, LE2E9, that inhibited fVIII cofactor activity, following type 2 kinetics and prevented fVIII binding to von Willebrand factor. Epitope mapping with recombinant fVIII fragments indicated that LE2E9 recognized the fVIII C1 domain, but not the Arg2150His-substituted C1 domain. Accordingly, LE2E9 did not inhibit Arg2150His fVIII activity. These observations identify C1 as a novel target for fVIII inhibitors and demonstrate that Arg2150His substitution alters a B-cell epitope in the C1 domain, which may contribute to the higher inhibitor incidence in patients carrying such substitution. (Blood. 2000; 95:156-163)  相似文献   

14.
15.
The mechanisms responsible for the low factor VIII (fVIII) activity in the plasma of patients with mild/moderate hemophilia A are poorly understood. In such patients, we have identified a series of fVIII mutations (Ile2098Ser, Ser2119Tyr, Asn2129Ser, Arg2150His, and Pro2153Gln) clustered in the C1 domain and associated with reduced binding of fVIII to von Willebrand factor (vWf). For each patient plasma, the specific activity of mutated fVIII was close to that of normal fVIII. Scatchard analysis showed that the affinity for vWf of recombinant Ile2098Ser, Ser2119Tyr, and Arg2150His fVIII mutants was reduced 8-fold, 80-fold, and 3-fold, respectively, when compared with normal fVIII. Given the importance of vWf for the stability of fVIII in plasma, these findings suggested that the reduction of fVIII binding to vWf resulting from the above-mentioned mutations could contribute to patients' low fVIII plasma levels. We, therefore, analyzed the effect of vWf on fVIII production by Chinese hamster ovary (CHO) cells transfected with expression vectors for recombinant B domain-deleted normal, Ile2098Ser, Ser2119Tyr, and Arg2150His fVIII. These 3 mutations impaired the vWf-dependent accumulation of functional fVIII in culture medium. Analysis of fVIII production by transiently transfected CHO cells indicated that, in addition to the impaired stabilization by vWf, the secretion of functional Ile2098Ser and Arg2150His fVIII was reduced about 2-fold and 6-fold, respectively, by comparison to Ser2119Tyr and normal fVIII. These findings indicate that C1-domain mutations resulting in reduced fVIII binding to vWf are an important cause of mild/moderate hemophilia A.  相似文献   

16.
Scandella  D; Mattingly  M; Prescott  R 《Blood》1993,82(6):1767-1775
Human antibodies that inactivate coagulation factor VIII (fVIII), known as inhibitors, have been shown by immunoblotting or immunoprecipitation assays to bind predominantly to epitopes within the A2 and/or C2 domains of the fVIII protein. Because these assays simply measure antibody binding, a soluble recombinant polypeptide containing the fVIII A2 domain was used to develop a quantitative inhibitor neutralization assay for antibodies that bound only to A2 by immunoblotting assay. Antibodies from six of eight inhibitor plasmas were fully neutralized by A2 (> or = 90%), whereas two were only partially neutralized. These results established the fVIII inhibitor properties of anti-A2 antibodies. In immunoprecipitation assays, five of the eight inhibitors also had significant levels of anti-light-chain antibody. In one case, this light-chain antibody was shown to have inhibitor activity. Because it did not bind to the C2 domain, this antibody appears to define a new inhibitor epitope within the fVIII light chain. Another inhibitor, which was partially neutralized by A2, was not neutralized by the light chain, even though it contained anti- light-chain antibodies by immunoprecipitation assay. Our results show additional complexities of the immune response to fVIII.  相似文献   

17.
Circulating antibodies to factor VIII (anti-VIII, "inhibitors") occurring in patients with hemophilia neutralize porcine factor VIII less readily than human factor VIII in vitro. Over an 18-mo period, 8 patients with anti-VIII were treated with 45 courses (297 infusions) of polyelectrolyte-fractionated porcine factor VIII concentrate (PE porcine VIII). Where no anti-PE porcine VIII was detectable, mean post- infusion rise in plasma factor VIII was 1.29 U/dl/units infused/kg. Above 13 Old Oxford units of anti-PE porcine VIII and 48 Bethesda units of anti-human VIII, there were no postinfusion rises in plasma factor VIII. Where postinfusion rises were detected, clinical responses were good and conventional methods could be used to guide dosage. Ten percent of infusions were followed by febrile reactions, but these were usually mild and decreased in frequency and severity with increasing exposure. Multiple and prolonged courses of therapy were given to some patients without evidence of loss of clinical or laboratory efficacy. PE porcine VIII could provoke anamnestic rises of anti-VIII in susceptible patients, but appeared to have a lower immunogenic potential than human VIII. PE porcine VIII is a rational and effective therapeutic alternative for patients with anti-VIII, particularly those with intermediate level inhibitors who cannot be managed effectively using human factor VIII.  相似文献   

18.
Factor VIII (FVIII), an essential cofactor that accelerates the generation of factor Xa (FXa) in the tenase complex, is activated by proteolytic cleavage by thrombin or FXa. A strong relationship has been reported between high levels of FVIII activity and thrombosis. We have demonstrated previously that an anti-FVIII C2 antibody (ESH8) with a Val-2248-Gly-2285 epitope inhibited FXa-catalysed FVIII activation, and that a synthetic peptide designated EP-2 (residues 2253-2270) blocked C2 domain binding to FXa. We investigated the inhibitory effect of EP-2 on FXa-catalysed FVIII activation and its anticoagulant effect in the blood coagulation system. EP-2 inhibited FXa-catalysed activation in a clotting assay in a dose-dependent manner and reduced FXa generation in a chromogenic assay using FVIII, factor X, factor IXa and phospholipid. The peptide only inhibited FVIII binding to FXa. We also tested the anticoagulant effect of EP-2 in the plasma milieu. The peptide prolonged the activated partial thromboplastin time and activated clotting time in a dose-dependent manner, but not prothrombin time. Our results indicate that EP-2 mediates the anticoagulant effect by specific inhibition of FVIII and FXa interaction in the intrinsic pathway, and that FXa-catalysed FVIII activation plays a significant role in blood clotting. The peptide may provide the basis for the development of novel anticoagulant therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号