首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spontaneously ovulating rodent species, the timing of the luteinising hormone (LH) surge is controlled by the master circadian pacemaker in the suprachiasmatic nucleus (SCN). The SCN initiates the LH surge via the coordinated control of two opposing neuropeptidergic systems that lie upstream of the gonadotrophin‐releasing hormone (GnRH) neuronal system: the stimulatory peptide, kisspeptin, and the inhibitory peptide, RFamide‐related peptide‐3 (RFRP‐3; the mammalian orthologue of avian gonadotrophin‐inhibitory hormone [GnIH]). We have previously shown that the GnRH system exhibits time‐dependent sensitivity to kisspeptin stimulation, further contributing to the precise timing of the LH surge. To examine whether this time‐dependent sensitivity of the GnRH system is unique to kisspeptin or a more common mechanism of regulatory control, we explored daily changes in the response of the GnRH system to RFRP‐3 inhibition. Female Syrian hamsters were ovariectomised to eliminate oestradiol (E2)‐negative‐feedback and RFRP‐3 or saline was centrally administered in the morning or late afternoon. LH concentrations and Lhβ mRNA expression did not differ between morning RFRP‐3‐and saline‐treated groups, although they were markedly suppressed by RFRP‐3 administration in the afternoon. However, RFRP‐3 inhibition of circulating LH at the time of the surge does not appear to act via the GnRH system because no differences in medial preoptic area Gnrh or RFRP‐3 receptor Gpr147 mRNA expression were observed. Rather, RFRP‐3 suppressed arcuate nucleus Kiss1 mRNA expression and potentially impacted pituitary gonadotrophs directly. Taken together, these findings reveal time‐dependent responsiveness of the reproductive axis to RFRP‐3 inhibition, possibly via variation in the sensitivity of arcuate nucleus kisspeptin neurones to this neuropeptide.  相似文献   

2.
Many animals synchronise their reproductive activity with the seasons to optimise the survival of their offspring. This synchronisation involves switching on and off their gonadotrophic axis. Ever since their discovery as key regulators of gonadotrophin‐releasing hormone (GnRH) neurones, the hypothalamic RF‐amide peptides kisspeptin and RFamide‐related peptide (RFRP) have been a major focus of research on the seasonal regulation of the gonadotrophic axis. In the present study, we investigated the regulation of both neuropeptides in the Djungarian hamster, a major animal model for the study of seasonal reproduction. During the long‐day breeding period, kisspeptin neurones in the anteroventral periventricular area are solely controlled by a positive sex steroid feedback and, in the arcuate nucleus, they are subject to a very strong negative sex steroid feedback associated with a minor photoperiodic effect. During short‐day sexual quiescence, the disappearance of this hormonal feedback leads to high levels of kisspeptin in arcuate neurones. Notably, chronic central administration of kisspeptin is able to over‐ride the photoperiodic inhibition of the gonadotrophic axis and reactivate the reproductive function. Therefore, our data suggest that kisspeptin secretion by arcuate neurones during sexual quiescence is inhibited by mechanisms upstream of kisspeptin neurones. RFRP expression is solely controlled by photoperiod, being strongly reduced in short days independently of the sex steroid feedback. Thus, kisspeptin and RFRP display contrasting patterns of expression and regulation. Upstream mechanisms controlling these neurones should be the focus of further studies on the roles of these RFamide neuropeptides in the seasonal control of reproduction.  相似文献   

3.
4.
The neuropeptides kisspeptin (encoded by Kiss1) and RFamide‐related peptide‐3 (also known as GnIH; encoded by Rfrp) are potent stimulators and inhibitors, respectively, of reproduction. Whether kisspeptin or RFRP‐3 might act directly on each other's neuronal populations to indirectly modulate reproductive status is unknown. To examine possible interconnectivity of the kisspeptin and RFRP‐3 systems, we performed double‐label in situ hybridisation (ISH) for the RFRP‐3 receptors, Gpr147 and Gpr74, in hypothalamic Kiss1 neurones of adult male and female mice, as well as double‐label ISH for the kisspeptin receptor, Kiss1r, in Rfrp‐expressing neurones of the hypothalamic dorsal‐medial nucleus (DMN). Only a very small proportion (5‐10%) of Kiss1 neurones of the anteroventral periventricular region expressed Gpr147 or Gpr74 in either sex, whereas higher co‐expression (approximately 25%) existed in Kiss1 neurones in the arcuate nucleus. Thus, RFRP‐3 could signal to a small, primarily arcuate, subset of Kiss1 neurones, a conclusion supported by the finding of approximately 35% of arcuate kisspeptin cells receiving RFRP‐3‐immunoreactive fibre contacts. By contrast to the former situation, no Rfrp neurones co‐expressed Kiss1r in either sex, and Tacr3, the receptor for neurokinin B (NKB; a neuropeptide co‐expressed with arcuate kisspeptin neurones) was found in <10% of Rfrp neurones. Moreover, kisspeptin‐immunoreactive fibres did not readily appose RFRP‐3 cells in either sex, further excluding the likelihood that kisspeptin neurones directly communicate to RFRP‐3 neurones. Lastly, despite abundant NKB in the DMN region where RFRP‐3 soma reside, NKB was not co‐expressed in the majority of Rfrp neurones. Our results suggest that RFRP‐3 may modulate a small proportion of kisspeptin‐producing neurones in mice, particularly in the arcuate nucleus, whereas kisspeptin neurones are unlikely to have any direct reciprocal actions on RFRP‐3 neurones.  相似文献   

5.
Gonadotrophin‐releasing hormone (GnRH) is the primary hypothalamic factor responsible for the control of gonadotrophin secretion in vertebrates. However, within the last decade, two other hypothalamic neuropeptides have been found to play key roles in the control of reproductive functions: gonadotrophin‐inhibitory hormone (GnIH) and kisspeptin. In 2000, we discovered GnIH in the quail hypothalamus. GnIH inhibits gonadotrophin synthesis and release in birds through actions on GnRH neurones and gonadotrophs, mediated via GPR147. Subsequently, GnIH orthologues were identified in other vertebrate species from fish to humans. As in birds, mammalian and fish GnIH orthologues inhibit gonadotrophin release, indicating a conserved role for this neuropeptide in the control of the hypothalamic‐pituitary‐gonadal axis across species. Subsequent to the discovery of GnIH, kisspeptin, encoded by the KiSS‐1 gene, was discovered in mammals. By contrast to GnIH, kisspeptin has a direct stimulatory effect on GnRH neurones via GPR54. GPR54 is also expressed in pituitary cells, but whether gonadotrophs are targets for kisspeptin remains unresolved. The KiSS‐1 gene is also highly conserved and has been identified in mammals, amphibians and fish. We have recently found a second isoform of KiSS‐1, designated KiSS‐2, in several vertebrates, but not birds, rodents or primates. In this review, we highlight the discovery, mechanisms of action, and functional significance of these two chief regulators of the reproductive axis.  相似文献   

6.
Pulsatile secretion of gonadotrophin‐releasing hormone (GnRH)/luteinising hormone is indispensable for the onset of puberty and reproductive activities at adulthood in mammalian species. A cohort of neurones expressing three neuropeptides, namely kisspeptin, encoded by the Kiss1 gene, neurokinin B (NKB) and dynorphin A, localised in the hypothalamic arcuate nucleus (ARC), so‐called KNDy neurones, comprises a putative intrinsic source of the GnRH pulse generator. Synchronous activity among KNDy neurones is considered to be required for pulsatile GnRH secretion. It has been reported that gap junctions play a key role in synchronising electrical activity in the central nervous system. Thus, we hypothesised that gap junctions are involved in the synchronised activities of KNDy neurones, which is induced by NKB‐NK3R signalling. We determined the role of NKB‐NK3R signalling in Ca2+ oscillation (an indicator of neuronal activities) of KNDy neurones and its synchronisation mechanism among KNDy neurones. Senktide, a selective agonist for NK3R, increased the frequency of Ca2+ oscillations in cultured Kiss1‐GFP cells collected from the mediobasal hypothalamus of the foetal Kiss1‐green fluorescent protein (GFP) mice. The senktide‐induced Ca2+ oscillations were synchronised in the Kiss1‐GFP and neighbouring glial cells. Confocal microscopy analysis of these cells, which have shown synchronised Ca2+ oscillations, revealed close contacts between Kiss1‐GFP cells, as well as between Kiss1‐GFP cells and glial cells. Dye coupling experiments suggest cell‐to‐cell communication through gap junctions between Kiss1‐GFP cells and neighbouring glial cells. Connexin‐26 and ‐37 mRNA were found in isolated ARC Kiss1 cells taken from adult female Kiss1‐GFP transgenic mice. Furthermore, 18β‐glycyrrhetinic acids and mefloquine, which are gap junction inhibitors, attenuated senktide‐induced Ca2+ oscillations in Kiss1‐GFP cells. Taken together, these results suggest that NKB‐NK3R signalling enhances synchronised activities among neighbouring KNDy neurones, and that both neurone‐neurone and neurone‐glia communications via gap junctions possibly contribute to synchronised activities among KNDy neurones.  相似文献   

7.
Gonadotrophin‐inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in birds as an inhibitory factor for gonadotrophin release. RFamide‐related peptide (RFRP) is a mammalian GnIH orthologue that inhibits gonadotrophin synthesis and release in mammals through actions on gonadotrophin‐releasing hormone (GnRH) neurones and gonadotrophs, mediated via the GnIH receptor (GnIH‐R), GPR147. On the other hand, hypothalamic kisspeptin provokes the release of GnRH from the hypothalamus. The present study aimed to compare the expression of RFRP in the dorsomedial hypothalamus and paraventricular nucleus (DMH/PVN) and that of kisspeptin in the arcuate nucleus (ARC) of the female goat hypothalamus during anoestrous and breeding seasons. Mature female Abadeh does were used during anoestrus, as well as the follicular and luteal phases of the cycle. The number of RFRP‐immunoreactive (‐IR) neurones in the follicular phase was lower than in the luteal and anoestrous stages. Irrespective of the ovarian stage, the number of RFRP‐IR neurones in the rostral and middle regions of the DMH/PVN was higher than in the caudal region. By contrast, the number of kisspeptin‐IR neurones in the follicular stage was greater than in the luteal stage and during the anoestrous stage. Irrespective of the stage of the ovarian cycle, the number of kisspeptin‐IR neurones in the caudal region of the ARC was greater than in the middle and rostral regions. In conclusion, RFRP‐IR cells were more abundant in the rostral region of the DMH/PVN nuclei of the hypothalamus, with a greater number being found during the luteal and anoestrous stages compared to the follicular stage. On the other hand, kisspeptin‐IR neurones were more abundant in the caudal part of the ARC, with a greater number recorded in the follicular stage compared to the luteal and anoestrous stages.  相似文献   

8.
We investigated the effects of the phytoestrogen genistein on gonadotrophin‐releasing hormone (GnRH) neurones using single‐cell electrophysiology on GnRH‐green fluorescent protein (GFP) transgenic juvenile female mice. Perforated patch‐clamp recordings from GnRH‐GFP neurones showed that approximately 83% of GnRH neurones responded to 30 μm genistein with a markedly prolonged membrane depolarisation. This effect not only persisted in the presence of tetrodotoxin, but also in the presence of amino acid receptor antagonists, indicating the direct site of action on postsynaptic GnRH neurones. Using a voltage clamp technique, we found that 30 μm genistein increased the frequency of synaptic current of GnRH neurones clamped at ?60 mV in the presence of glutamate receptor blocker but not GABAA receptor blocker. Pre‐incubation of GnRH neurones with 30 μm genistein enhanced kisspeptin‐induced membrane depolarisation and firing. GnRH neurones of juvenile mice injected with genistein in vivo showed an enhanced kisspeptin response compared to vehicle‐injected controls. The transient receptor potential channel (TRPC) blocker 2‐aminoethoxydiphenyl borate (75 μm ) blocked the genistein‐mediated response on GnRH neurones. These results demonstrate that genistein acts on GnRH neurones in juvenile female mice to induce excitation via GABA neurotransmission and TRPCs to enhance kisspeptin‐induced activation.  相似文献   

9.
The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro‐opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic‐sensing pathway controlling the reproductive neuroendocrine axis. α‐Melanocyte‐stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin‐releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4–8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P < 0.05) in the ARC in heifers that gained 1 kg/day of body weight (high‐gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low‐gain, LG; n = 5). The number of KISS1‐expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double‐immunofluorescence showed limited αMSH‐positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin‐immunoreactive cells in the ARC were observed in close proximity to αMSH‐containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC‐kisspeptin pathway may be important in mediating the nutritional acceleration of puberty in heifers.  相似文献   

10.
The present study was conducted to determine the morphological and functional interaction between kisspeptin and gonadotrophin-releasing hormone (GnRH) neuronal elements at the median eminence in female rats to clarify a possibility that kisspeptin directly stimulates GnRH release at the nerve end. A dual immunoelectron microscopic study of kisspeptin and GnRH showed that the kisspeptin-immunoreactive nerve element directly abutted the GnRH-immunoreactive nerve element, although no obvious synaptic structure was found between kisspeptin and GnRH neurones in the median eminence. The current retrograde tracing study with FluoroGold (FG) indicates that kisspeptin neurones are not in contact with fenestrated capillaries because no FG signal was found in kisspeptin neurones when the FG was injected peripherally. This peripheral FG injection revealed the neuroendocrine neurones projecting to the median eminence because FG-positive GnRH neuronal cell bodies were found in the preoptic area. Synthetic rat kisspeptin (1-52)-amide stimulated GnRH release from the median eminence tissues in a dose-dependent manner. Thus, the present results suggest that kisspeptin at least partly exerts stimulatory effects on GnRH release from the neuronal terminals of GnRH neurones by axo-axonal nonsynaptic interaction in the median eminence.  相似文献   

11.
Insulin in the brain plays an important role in regulating reproductive function, as demonstrated via conditional brain‐specific insulin receptor (Insr) deletion (knockout). However, the specific neuronal target cells mediating the central effects of insulin on the reproductive axis remain unidentified. We first investigated whether insulin can act via direct effects on gonadotrophin‐releasing hormone (GnRH) neurones. After clearly detecting Insr mRNA in an immunopurified GnRH cell fraction, we confirmed the presence of insulin receptor protein (InsR) in approximately 82% of GnRH neurones using dual‐label immunohistochemistry. However, we did not observe any insulin‐induced phospho‐Akt (pAkt) or phospho‐extracellular‐signal‐regulated kinase 1/2 in GnRH neurones, and therefore we investigated whether insulin signals via kisspeptin neurones to modulate GnRH release. Using dual‐label immunohistochemistry, InsRs were detected only in approximately 5% of kisspeptin‐immunoreactive cells. Insulin‐induced pAkt was not observed in any kisspeptin‐immunoreactive cells in either the rostral periventricular region of the third ventricle or arcuate nucleus in response to 200 mU of insulin treatment, although a more pharmacological dose (10 U) induced pronounced (> 20%) pAkt–kisspeptin coexpression in both regions. To confirm that insulin signalling via kisspeptin neurones does not critically modulate reproductive function, we generated kisspeptin‐specific InsR knockout (KIRKO) mice and assessed multiple reproductive and metabolic parameters. No significant differences in puberty onset, oestrous cyclicity or reproductive competency were observed in the female or male KIRKO mice compared to their control littermates. However, significantly decreased fasting insulin (P < 0.05) and a nonsignificant trend towards reduced body weight were observed in male KIRKO mice. Thus, InsR signalling in kisspeptin cells is not critical for puberty onset or reproductive competency, although it may have a small metabolic effect in males.  相似文献   

12.
In seasonally breeding animals, the circadian and photoperiodic regulation of neuroendocrine system is important for precisely‐timed reproduction. Kisspeptin, encoded by the Kiss1 gene, acts as a principal positive regulator of the reproductive axis by stimulating gonadotrophin‐releasing hormone (GnRH) neurone activity in vertebrates. However, the precise mechanisms underlying the cyclic regulation of the kisspeptin neuroendocrine system remain largely unknown. The grass puffer, Takifugu niphobles, exhibits a unique spawning rhythm: spawning occurs 1.5–2 h before high tide on the day of spring tide every 2 weeks, and the spawning rhythm is connected to circadian and lunar‐/tide‐related clock mechanisms. The grass puffer has only one kisspeptin gene (kiss2), which is expressed in a single neural population in the preoptic area (POA), and has one kisspeptin receptor gene (kiss2r), which is expressed in the POA and the nucleus dorsomedialis thalami. Both kiss2 and kiss2r show diurnal variations in expression levels, with a peak at Zeitgeber time (ZT) 6 (middle of day time) under the light/dark conditions. They also show circadian expression with a peak at circadian time 15 (beginning of subjective night‐time) under constant darkness. The synchronous and diurnal oscillations of kiss2 and kiss2r expression suggest that the action of Kiss2 in the diencephalon is highly dependent on time. Moreover, midbrain GnRH2 gene (gnrh2) but not GnRH1 or GnRH3 genes show a unique semidiurnal oscillation with two peaks at ZT6 and ZT18 within a day. The cyclic expression of kiss2, kiss2r and gnrh2 may be important in the control of the precisely‐timed diurnal and semilunar spawning rhythm of the grass puffer, possibly through the circadian clock and melatonin, which may transmit the photoperiodic information of daylight and moonlight to the reproductive neuroendocrine centre in the hypothalamus.  相似文献   

13.
We have shown that native goldfish gonadotrophin inhibitory hormone (gGnIH) differentially regulates luteinsing hormone (LH)‐β and follicle‐stimulating hormone (FSH)‐β expression. To further understand the functions of gGnIH, we examined its interactions with two native goldfish gonadotrophin‐releasing hormones, salmon gonadotrophin‐releasing hormone (sGnRH) and chicken (c)GnRH‐II in vivo and in vitro. Intraperitoneal injections of gGnIH alone reduced serum LH levels in fish in early and mid gonadal recrudescence; this inhibition was also seen in fish co‐injected with either sGnRH or cGnRH‐II during early recrudescence. Injection of gGnIH alone elevated pituitary LH‐β and FSH‐β mRNA levels at early and mid recrudescence, and FSH‐β mRNA at late recrudescence. Co‐injection of gGnIH attenuated the stimulatory influences of sGnRH on LH‐β in early recrudescence, and LH‐β and FSH‐β mRNA levels in mid and late recrudescence, as well as the cGnRH‐II‐elicited increase in LH‐β, but not FSH‐β, mRNA expression at mid and late recrudescence. sGnRH and cGnRH‐II injection increased pituitary gGnIH‐R mRNA expression in mid and late recrudescence but gGnIH reduced gGnIH‐R mRNA levels in late recrudescence. gGnIH did not affect basal LH release from perifused pituitary cells and continual exposure to gGnIH did not alter the LH responses to acute applications of GnRH. However, a short 5‐min GnIH treatment in the middle of a 60‐min GnRH perifusion selectively reduced the cGnRH‐II‐induced release of LH. These novel results indicate that, in goldfish, gGnIH and GnRH modulate pituitary GnIH‐R expression and gGnIH differentially affects sGnRH and cGnRH‐II regulation of LH secretion and gonadotrophin subunit mRNA levels. Furthermore, these actions are manifested in a reproductive stage‐dependent manner.  相似文献   

14.
Pituitary adenylate cyclase‐activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cyclic adenosine monophosphate production in pituitary cells. PACAP and its receptor are expressed not only in the central nervous system, but also in peripheral organs, and function to stimulate pituitary hormone synthesis and secretion as both a hypothalamic‐pituitary‐releasing factor and an autocrine‐paracrine factor within the pituitary. PACAP stimulates the expression of the gonadotrophin α, luteinising hormone (LH) β and follicle‐stimulating hormone (FSH) β subunits, as well as the gonadotrophin‐releasing hormone (GnRH) receptor and its own PACAP type I receptor (PAC1R) in gonadotrophin‐secreting pituitary cells. In turn, GnRH, which is known to be a crucial component of gonadotrophin secretion, stimulates the expression of PACAP and PAC1R in gonadotrophs. In addition, PAC1R and PACAP modulate the functions of GnRH‐producing neurones in the hypothalamus. This review summarises the current understanding of the possible roles of PACAP and PAC1R in modulating hypothalamus and pituitary neuroendocrine cells in the mouse models.  相似文献   

15.
Kisspeptin is essential in reproduction and acts by stimulating neurones expressing gonadotrophin‐releasing hormone (GnRH). Recent studies suggest that kisspeptin has multiple roles in the modulation of neuronal circuits in systems outside the hypothalamic‐pituitary‐gonadal axis. Our recent research using in situ hybridisation (ISH) clarified the histological distribution of Kiss1r (Gpr54)expressing neurones in the rat brain that were presumed to be putative targets of kisspeptin. The arcuate nucleus (ARN) of the hypothalamus is one of the brain regions in which Kiss1r expression in non‐GnRH neurones is prominent. However, the characteristics of Kiss1r‐expressing neurones in the ARN remain unclear. The present study aimed to determine the neurochemical characteristics of Kiss1r‐expressing neurones in the ARN using ISH and immunofluorescence. We revealed that the majority (approximately 63%) of Kiss1r‐expressing neurones in the ARN were pro‐opiomelanocortin (POMC) neurones, which have an anorexic effect in mammals. Additionally, a few Kiss1r‐expressing neurones in the dorsal ARN are tuberoinfundibular dopamine (TIDA) neurones, which control milk production by inhibiting prolactin secretion from the anterior pituitary. TIDA neurones showed a relatively weak Kiss1r ISH signal compared to POMC neurones, as well as low co‐expression of Kiss1r (approximately 15%). We also examined the expression of Kiss1r in neuropeptide Y and kisspeptin neurones, which are reported to arise from POMC‐expressing progenitor cells during development. However, the vast majority of neuropeptide Y and kisspeptin neurones in the ARN did not express Kiss1r. These results suggest that kisspeptin may directly regulate energy homeostasis and milk production by modulating the activity of POMC and TIDA neurones, respectively. Our results provide an insight into the wide variety of roles that kisspeptin plays in homeostatic and neuroendocrine functions.  相似文献   

16.
Since Ernst Knobil proposed the concept of the gonadotrophin‐releasing hormone (GnRH) pulse‐generator in the monkey hypothalamus three decades ago, we have made significant progress in this research area with cellular and molecular approaches. First, an increase in pulsatile GnRH release triggers the onset of puberty. However, the question of what triggers the pubertal increase in GnRH is still unclear. GnRH neurones are already mature before puberty but GnRH release is suppressed by a tonic GABA inhibition. Our recent work indicates that blocking endogenous GABA inhibition with the GABAA receptor blocker, bicuculline, dramatically increases kisspeptin release, which plays an important role in the pubertal increase in GnRH release. Thus, an interplay between the GABA, kisspeptin, and GnRH neuronal systems appears to trigger puberty. Second, cultured GnRH neurones derived from the olfactory placode of monkey embryos exhibit synchronised intracellular calcium, [Ca2+]i, oscillations and release GnRH in pulses at approximately 60‐min intervals after 14 days in vitro (div). During the first 14 div, GnRH neurones undergo maturational changes from no [Ca2+]i oscillations and little GnRH release to the fully functional state. Recent work also shows GnRH mRNA expression increases during in vitro maturation. This mRNA increase coincides with significant demethylation of a CpG island in the GnRH 5′‐promoter region. This suggests that epigenetic differentiation occurs during GnRH neuronal maturation. Third, oestradiol causes rapid, direct, excitatory action in GnRH neurones and this action of oestradiol appears to be mediated through a membrane receptor, such as G‐protein coupled receptor 30.  相似文献   

17.
18.
19.
The neuropeptides neurokinin B (NKB) and kisspeptin are potent stimulators of gonadotrophin‐releasing hormone (GnRH)/luteinsing hormone (LH) secretion and are essential for human fertility. We have recently demonstrated that selective activation of NKB receptors (NK3R) within the retrochiasmatic area (RCh) and the preoptic area (POA) triggers surge‐like LH secretion in ovary‐intact ewes, whereas blockade of RCh NK3R suppresses oestradiol‐induced LH surges in ovariectomised ewes. Although these data suggest that NKB signalling within these regions of the hypothalamus mediates the positive‐feedback effects of oestradiol on LH secretion, the pathway through which it stimulates GnRH/LH secretion remains unclear. We proposed that the action of NKB on RCh neurones drives the LH surge by stimulating kisspeptin‐induced GnRH secretion. To test this hypothesis, we quantified the activation of the preoptic/hypothalamic populations of kisspeptin neurones in response to POA or RCh administration of senktide by dual‐label immunohistochemical detection of kisspeptin and c‐Fos (i.e. marker of neuronal activation). We then administered the NK3R agonist, senktide, into the RCh of ewes in the follicular phase of the oestrous cycle and conducted frequent blood sampling during intracerebroventricular infusion of the kisspeptin receptor antagonist Kp‐271 or saline. Our results show that the surge‐like secretion of LH induced by RCh senktide administration coincided with a dramatic increase in c‐Fos expression within arcuate nucleus (ARC) kisspeptin neurones, and was completely blocked by Kp‐271 infusion. We substantiate these data with evidence of direct projections of RCh neurones to ARC kisspeptin neurones. Thus, NKB‐responsive neurones in the RCh act to stimulate GnRH secretion by inducing kisspeptin release from KNDy neurones.  相似文献   

20.
During evolution, reproductive hormones and their receptors in the brain‐pituitary‐gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin‐releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle‐stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号