首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic pain conditions for which treatment is sought are characterized usually by complex behavioural disturbances as well as pain. We review here evidence that although chronic constriction injury (CCI) of the sciatic nerve evokes allodynia and hyperalgesia in all rats, persistent social behavioural and sleep disruption occurs only in a subpopulation of animals. The finding that the 'degree of pain', as defined by allodynia and hyperalgesia, is the same in all animals suggests that the complex behavioural disabilities are independent of the level of sensory dysfunction. An absence of correlation between disability and sensory dysfunction is characteristic also of human neuropathic pain. These findings indicate that: (i). in a subpopulation of rats sciatic injury evokes disabilities characteristic of human neuropathic pain conditions; and (ii). testing for sensory dysfunction alone cannot detect this subpopulation.  相似文献   

2.
Recently we developed a neuropathic rat model employing a distal sciatic nerve branch injury, in which rats show vigorous behavioral signs of neuropathic pain. This study was performed to evaluate the crossed-withdrawal reflex in which any stimuli applied to the uninjured side produces allodynic signs on the injured side in our neuropathic pain model. Rats that received neuropathic surgery developed behavioral signs of neuropathic pain. In addition, these rats developed pain responses of the injured paw to stimuli applied to the contralateral uninjured paw, therefore, demonstrating 'the crossed-withdrawal reflex.' Moreover, electrical stimulation of the uninjured paw developed evoked potentials in the ventral root on the injured side. These results suggest that information processing from input on the uninjured side to output on the injured side, can be facilitated in rats with a nerve injury and that neuroplasticity may contribute to the crossed-withdrawal reflex.  相似文献   

3.
Unilateral tight ligation of about half of the sciatic nerve in rats rapidly produces sympathetically dependent neuropathic pain which lasts many months and resembles causalgia in humans. The sensory abnormalities detected at the plantar side of the hindpaws include: (1) nocifensive responses to repetitive light touch (allodynia); (2) bilateral reduction in withdrawal thresholds to repetitive von-Frey hair stimulation (mechanical hyperesthesia); (3) bilateral reduction in withdrawal thresholds to CO2 laser heat pulses; and (4) unilateral increase in response duration to an intense laser heat pulse (thermal hyperalgesia). Using neonatal capsaicin treatment, we determined the type of afferent fiber remaining in the partially injured nerve, which mediates these disorders. Capsaicin, which destroys most C- and some A delta-fibers in peripheral nerves, had no effect on the touch-evoked allodynia and mechanical hyperesthesia that are produced by partial sciatic nerve injury. These disorders were, therefore, mediated by myelinated fibers. In contrast, thermal hyperalgesia failed to develop in capsaicin-treated rats following partial nerve injury. Thus, thermal hyperalgesia produced by partial nerve injury appears to be mediated by heat-nociceptive C-fibers.  相似文献   

4.
It has been shown previously that the synthetic corticosteroid dexamethasone induces apoptosis of granule cells in the dentate gyrus and striatopallidal neurons in the dorsomedial caudate-putamen. We investigated whether or not dexamethasone can induce damage to other neuronal populations. This issue was addressed using OX42 immunohistochemistry to visualise activated microglia and thereby gauge the extent of dexamethasone-induced neuronal death. A single dose of dexamethasone (20mg/kg, i.p.) administered to young male Sprague-Dawley rats induced a strong microglial reaction which was restricted to the striatum, the dentate gyrus and all of the CA subfields of the hippocampus. Some OX42-immunoreactive cells were also seen in the lateral septal nucleus. Subsequent quantitative analysis of silver/methenamine-stained sections confirmed that acute administration of dexamethasone induced apoptosis in the striatum and all regions of the hippocampus at doses as low as 0.7mg/kg. In contrast, dexamethasone failed to induce apoptosis in the lateral septal nucleus at doses up to 20mg/kg. The levels of dexamethasone-induced striatal and hippocampal apoptosis were attenuated by pretreatment with the corticosteroid receptor antagonist RU38486 (Mifepristone), which implies that the cell death was mediated by a corticosteroid receptor-dependent process. We further determined whether dexamethasone induced sublethal damage to neurons by quantifying reductions in the number of microtubule-associated protein-2-immunoreactive striatal and hippocampal cells following injection of the corticosteroid. Dexamethasone induced dramatic decreases in the striatum, with the dorsomedial caudate-putamen being particularly affected. Similar damage was seen in the hippocampus, with the dentate gyrus and CA1 and CA3 subfields being particularly vulnerable.Equivalent corticosteroid-induced neuronal damage may occur in mood disorders, where the levels of endogenous corticosteroids are often raised. Corticosteroid-induced damage of striatal and hippocampal neurons may also account for some of the cognitive deficits seen following administration of the drugs to healthy volunteers.  相似文献   

5.
Ma W  Eisenach JC 《Neuroscience》2003,121(3):691-704
We previously reported the up-regulation of cyclooxygenase 2 (COX2) in injured sciatic nerve of rats with partial sciatic nerve ligation (PSNL) and the reversal of PSNL-elicited tactile allodynia by local injection of the COX inhibitor ketorolac [Eur J Neurosci 15 (2002) 1037]. We further asked whether COX2 up-regulation in injured nerve is a universal phenomenon following various types of nerve injury. In the current study, we observed that abundant COX2 immunoreactive (IR) cell profiles appeared in injured nerves of rats following spinal nerve ligation (SNL), chronic constriction injury (CCI) and complete sciatic nerve transection. Most COX2-IR cells were identified as infiltrating macrophages. Partial injury induced greater COX2 up-regulation than complete injury. COX2 up-regulation reached a peak at 2-4 weeks, evidently declined by 3 months and disappeared by 7 months postlesion. These findings suggest that up-regulation of COX2 in injured nerve is a common event during the initial several months after nerve injury.We observed that local ketorolac-elicited anti-allodynia was closely associated with the abundance of COX2-IR cells in injured nerve, varying with the type of injury and time after injury. The anti-allodynia lasted the longest when local ketorolac was given 2-4 weeks after PSNL, CCI and SNL. The duration of local ketorolac's anti-allodynia was the longest in CCI rats, which also exhibited the most abundant COX2 up-regulation. Local ketorolac's anti-allodynia lasted much shorter when given 2-3 months after lesion. Local ketorolac failed to induce anti-allodynia 7 months after lesion, a time when COX2-IR cells completely disappeared from the injured nerve except a few cells at the injury site. Our data strongly suggest that during the initial several months after nerve injury, peripherally over-produced prostaglandins play an important role in the maintenance of neuropathic pain.  相似文献   

6.
Antidepressants protect against hippocampal volume loss in humans and reverse stress-induced atrophic changes in animals thus supporting the hypothesis that the pathophysiology of stress-related disorders such as depression involves reductions in neuronal connectivity and this effect is reversible by antidepressant treatment. However, it is unclear which brain areas demonstrate such alterations in plasticity in response to antidepressant treatment. The aim of the present study was to examine the effect of antidepressant treatment on the expression of three plasticity-associated marker proteins, the polysialylated form of nerve cell adhesion molecule (PSA-NCAM), phosphorylated cyclic-AMP response element binding protein (pCREB) and growth-associated protein 43 (GAP-43), in the rat brain. To this end, rats were treated either acutely (60 min) or chronically (21 days) with imipramine (30 and 15 mg/kg, respectively) and the expression of PSA-NCAM, pCREB, and GAP-43 was assessed using immunohistochemistry. Initial mapping revealed that chronic imipramine treatment increased expression of these plasticity-associated proteins in the hippocampus, medial prefrontal cortex and piriform cortex but not in the other brain regions examined. Since PSA-NCAM and pCREB are expressed in recently-generated neurons in the dentate gyrus, it is likely that chronic imipramine treatment increased their expression in the hippocampus at least partially by increasing neurogenesis. In contrast, since chronic imipramine treatment is not associated with neurogenesis in the medial prefrontal cortex, increased expression of PSA-NCAM and pCREB in the prelimbic cortex implicates changes in synaptic connectivity in this brain region. Acute treatment with imipramine increased the number of pCREB positive nuclei in the hippocampus and the prefrontal cortex but did not alter expression of GAP-43 or PSA-NCAM in any of the brain regions examined. Taken together, the results of the present study suggest that antidepressant treatment increases synaptic plasticity and connectivity in brain regions associated with mood disorders.  相似文献   

7.
Local destruction or electrostimulation of the hippocampus did not affect pain sensitivity thresholds in rats with intact sciatic nerve. In rats with transected sciatic nerve, local hippocampal damage accelerated the development of a pain syndrome considerably, while hippocampal electrostimulation delayed it so that 80% of the test rats did not appear to have been experiencing pain throughout the 45-day observation period. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 8, pp. 120–122, August, 1994  相似文献   

8.
Chronic neuropathic pain (CNP) is common after peripheral nerve injuries (PNI), but is rather refractory to available anti-pain medication. Advances in neuropathic pain research have identified cellular and molecular cues triggering the onset of neuropathic pain, but the mechanisms responsible for maintenance of chronic pain states are largely unknown. Structural changes such as sprouting of injured A-fibres into the substantia gelatinosa of the dorsal horn in the spinal cord have been proposed to relate to neuropathic pain in partial PNI models. Structural changes in central pain networks may also underlie the more persistent CNP following complete sectioning of a peripheral nerve, because this type of injury results in continuous and spontaneous afferent input to the spinal cord, which can trigger central sensitization. In the present study, the left sciatic nerve was completely sectioned and a 1-cm segment was removed to maintain a chronic pathology, whereas the right sciatic nerve was left intact. Mechanical allodynia was measured up to 84 days after injury, after which synaptic changes were studied in the lumbar substantia gelatinosa. The numbers of larger sized synaptophysin-immunoreactive presynaptic boutons were found to be increased in the substantia gelatinosa ipsilateral to the nerve injury. From these data we conclude that structural synaptic changes within the substantia gelatinosa are present months after complete nerve injury and that this plasticity may be involved in maintaining neuropathic pain states.  相似文献   

9.
A growing interest was recently focused on the use of Botulinum neurotoxin serotype A (BoNT/A) for fighting pain. The aim of this study was to investigate the effects of BoNT/A on neuropathic pain. It was observed that BoNT/A is able to counteract neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve both in mice and in rats. This effect is already present after a single intraplantar (i.pl.) or intrathecal (i.t.) neurotoxin administration that significantly reduces the sciatic nerve ligation-induced mechanical allodynia in mice and rats and thermal hyperalgesia in rats. This effect was evident starting 24 h after the administration of BoNT/A and it was long-lasting, being present 81 or 25 days after i.pl. injection of the higher dose in mice (15 pg/paw) and rats (75 pg/paw), respectively, and 35 days after i.t. injection in rats (75 pg/rat). Moreover, BoNT/A-injected mice showed a quicker recovery of the walking pattern and weight bearing compared to control groups. The behavioral improvement was accompanied by structural modifications, as revealed by the expression of cell division cycle 2 (Cdc2) and growth associated protein 43 (GAP-43) regeneration associated proteins, investigated by immunofluorescence and Western blotting in the sciatic nerve, and by the immunofluorescence expression of S100β and glial fibrillary acidic protein (GFAP) Schwann cells proteins. In conclusion, the present research demonstrate long-lasting anti-allodynic and anti-hyperalgesic effects of BoNT/A in animal models of neuropathic pain together with an acceleration of regenerative processes in the injured nerve, as evidenced by both behavioral and immunohistochemistry/blotting analysis. These results may have important implications in the therapy of neuropathic pain.  相似文献   

10.
The impact of chronic cerebral hypoperfusion on cognitive function and cerebral capillary morphology in the hippocampus was examined. Young adult Wistar rats were subjected to permanent ligation of both common carotid arteries (two-vessel occlusion). One month after vascular occlusion, a small but non-significant impairment in the acquisition of spatial information was registered compared with sham-operated controls. Two months after surgery, the occluded animals displayed an impaired performance throughout the training period. One year after surgery, the acquisition curves demonstrated a significant attenuation of the learning rate in the occluded rats group, whereas no significant differences in long-term retention were observed. Thus, chronic hypoperfusion induced by two-vessel occlusion gave rise to impairment of spatial memory. Following behavioural testing, the rats were killed at the age of 17 months, and capillaries in the CA1 and dentate gyrus were examined using transmission electron microscopy. Typical age-related capillary abnormalities such as degenerative pericytes and thickened basement membranes (with or without fibrosis) were detected in the hippocampus of sham animals. In occluded rats, the occurrence of capillaries displaying such abnormalities almost doubled in the CA1 region, but was similar in the dentate gyrus, compared with sham controls. A highly significant correlation was found between the last Morris maze performance and the percentage of capillaries with deposits in the basement membrane in the hippocampal CA1 area of occluded rats, which was not present in the sham animals. We conclude that a long-term hypoperfusion accelerated the development of age-related ultrastructural aberrations of capillaries in the hippocampal CA1 area, but not in the dentate gyrus. Thus, not only neurons, but also capillaries in the hippocampal CA1 area are sensitive to an impaired microcirculation. Moreover, the cognitive performance of hypoperfused rats correlated closely with the condition of the capillaries in the CA1 area, suggesting that capillary integrity is one of the important determinants of brain function in conditions that compromise cerebral microcirculation.  相似文献   

11.
The thyroid hormone is essential for the proper development of the central nervous system (CNS). Hormone deficiency during CNS development causes neurological abnormalities in the brain. The hippocampus is one of the brain regions vulnerable to hormone deficiency, and the volume of dentate gyrus (DG) and cornu ammonis (CA) are reduced by transient hypothyroidism during CNS development. However, it remains unclear whether transient hypothyroidism specifically reduces the whole hippocampal volume. In the present study, we used magnetic resonance imaging (MRI) to examine the effects of perinatal hypothyroidism on the ratio of hippocampal volume to brain volume as well as brain and hippocampal volumes overall. Perinatal hypothyroidism was induced by adding the anti-thyroid drug, methimazole, to the drinking water of pregnant dams from gestational day 15 to postnatal day 21. The MRI experiment was conducted when the rats were between 7 and 11 months old. The results showed reductions of the hippocampal and brain volume of the treated group. However, the ratio of hippocampal volume to brain volume was comparable between the control and treated groups. These results indicate that perinatal hypothyroidism minimizes the brain as a whole, but does not minimize the hippocampus in particular.  相似文献   

12.
Pleiotrophin (PTN) and midkine (MK) are two growth factors highly redundant in function that exhibit neurotrophic actions and are upregulated at sites of nerve injury, both properties being compatible with a potential involvement in the pathophysiological events that follow nerve damage (i.e. neuropathic pain). We have tested this hypothesis by comparatively studying PTN and MK gene expression in the spinal cord and dorsal root ganglia (DRG) of three rat strains known to differ in their behavioural responses to chronic constriction injury (CCI) of the sciatic nerve: Lewis, Fischer 344 (F344) and Sprague–Dawley (SD). Real time RT-PCR revealed minimal changes in PTN/MK gene expression in the spinal cord after CCI despite the strain considered, but marked changes were detected in DRG. A significant upregulation of PTN gene expression occurred in injured DRG of the F344 strain, the only strain that recovers from CCI-induced mechanical allodynia 28 days after surgery. In contrast, PTN was found to be downregulated in injured DRG of SD rats, the most sensitive strain in behavioural studies. These changes in PTN were not paralleled by concomitant modifications of MK gene expression. The results demonstrate previously unidentified differences between PTN and MK patterns of expression. Furthermore, the data suggest that upregulation of PTN, but not MK, could play an important role in the recovery from CCI.  相似文献   

13.
慢性神经源性疼痛由于其发病机制尚不完全明确,目前还没有十分有效的治疗手段;神经损伤后炎症反应和免疫调节机制在疼痛的发生中发挥着重要作用,透明质酸(HA)近来被认为是炎症和免疫调节中一个重要的调节分子。为了进一步研究HA是否参与到神经损伤后的病理过程中,我们检测了慢性压迫性神经损伤(CC I)大鼠损伤神经的HA含量。结果显示:与正常神经比较,HA的含量在损伤后7 d明显增加,HA合成酶(HAS)的表达也明显上调。4-甲基伞形酮(4-MU)是HAS的一种抑制剂,我们通过给予4-MU抑制HA的合成,研究HA在慢性神经源性疼痛中的作用,发现给药组CC I大鼠损伤足对热痛刺激的敏感性低于未给药组,同时IL-1β的表达量低于未给药组。以上结果提示HA可能通过对炎症因子的调控参与到损伤后的疼痛机制中,这一结果将有助于慢性神经源性疼痛的治疗。  相似文献   

14.
Sympathetic postganglionic fibers sprout in the dorsal root ganglion (DRG) after peripheral nerve injury. Therefore, one possible contributing factor of sympathetic dependency of neuropathic pain is the extent of sympathetic sprouting in the DRG after peripheral nerve injury. The present study compared the extent of sympathetic sprouting in the DRG as well as in the injured peripheral nerve in three rat neuropathic pain models: (1) the chronic constriction injury model (CCI); (2) the partial sciatic nerve ligation injury model (PSI); and (3) the segmental spinal nerve ligation injury model (SSI). All three methods of peripheral nerve injury produced behavioral signs of ongoing and evoked pain with some differences in the magnitude of each pain component. The density of sympathetic fibers in the DRG was significantly higher at all examined postoperative times than controls in the SSI model, while it was somewhat higher than controls only at the last examined postoperative time (20 weeks) in the CCI and PSI models. Therefore, data suggest that, although sympathetic changes in the DRG may contribute to neuropathic pain syndromes in the SSI model, other mechanisms seem to be more important in the CCI and PSI models at early times following peripheral nerve injury.  相似文献   

15.
Limbic and HPA axis function in an animal model of chronic neuropathic pain   总被引:4,自引:0,他引:4  
Chronic pain can be considered a form of chronic stress, and chronic pain patients often have disturbances of the hypothalamic-pituitary-adrenal (HPA) axis, including abnormal cortisol levels. In addition, chronic pain patients have an increased incidence of depression and anxiety, stress-related disorders that are frequently accompanied by disturbances in the limbic system (e.g. hippocampus and amygdala) and the HPA axis. Despite the fact that the literature supports a strong link between chronic pain, stress disorders, and limbic dysfunction, the mechanisms underlying the effects of chronic pain on the HPA axis and limbic system are not understood. The current study employs a rodent neuropathic pain model (chronic constriction injury (CCI) of the sciatic nerve) to assess the long-term impact of chronic pain on the HPA axis and limbic system. Adult male rats received CCI or sham surgery; nociceptive behavioral testing confirmed CCI-induced neuropathic pain. Tests of HPA axis function at 13-23 days postsurgery demonstrated that CCI did not affect indices of basal or restraint stress-induced HPA axis activity. CCI increased the expression of corticotrophin releasing hormone mRNA in the central amygdala, and not the paraventricular nucleus of the hypothalamus or the bed nucleus of the stria terminalis. Moreover, glucocorticoid receptor mRNA expression in CCI rats was increased in the medial and central amygdala, unaffected in the paraventricular nucleus, and decreased in the hippocampus. These results suggest that increased nociceptive sensitivity during chronic pain is associated with alterations in the limbic system, but is dissociated from HPA axis activation.  相似文献   

16.
背景:身体活动作为一种实用模型,可以从各个方面来研究运动与大脑健康之间的关联,从而更清楚地认识运动对大脑的促进作用,特别是身体活动对海马体结构和功能的改变。目的:综述身体活动与海马体和认知方面的研究,并提出目前研究和实际应用方面许多亟待解决的问题。方法:以"Physical activity,Exercise,Hippocampal,Cognition,Neuroplasticity,Adaptive,Mechanisms"为检索词,检索PubMed数据库1995至2019年发表的相关文章,文献检索语种限制为英文。纳入身体活动和海马、认知调节机制和应用方面的相关内容。结果与结论:计算机初检得到142篇文献,排除无关和重复的文献,保留89篇进行综述。海马体齿状回具有神经再生的能力。规律性身体活动对身体和大脑健康产生深远的影响,运动可促进海马体齿状回的神经再生,可增加两三倍,此类神经主要发生在齿状回背侧。此外,运动对神经元的成熟、形态和连接性等特性的改变也十分重要,并能改变新神经元的整合通路,增加传入新生神经元和传入细胞突触的数量。海马体齿状回的神经再生与运动诱导的多种因素有关,新生神经元的发育和整合需要多个神经递质的参与,而运动可通过调节兴奋性和抑制性神经递质,促进海马体突触可塑性的变化;运动诱导的血清脑源性神经营养因子水平升高则可减缓海马体体积的变化;运动的持续时间和强度可差异性地调节脑血流量,进而影响神经元活动,而长期运动后血管内皮生长因子的过表达,则可促进海马体的血管增殖,增加海马体的神经发生。此外,运动也可改变成人新生神经元的突触可塑性和连接网络,增强成人新生神经元与现有海马-内嗅通路的整合。  相似文献   

17.
《Acta histochemica》2014,116(8):1276-1288
Nestin is a protein of embryonic intermediate filaments expressed by multipotent neural stem cells. In the present study, the nestin expression pattern in the mouse hippocampus 1, 2, 3, 4, and 8 days after treatment with trimethyltin (TMT) was examined to explore the possible role played by nestin in chemically induced hippocampal injury. TMT treatment (2.5 mg/kg, intraperitoneally) selectively injured the dentate gyrus (DG) of the mouse hippocampus. The level of hippocampal mRNA encoding nestin increased significantly 2 and 3 days post-treatment and thereafter decreased (at 4 and 8 days post-treatment). The level of nestin protein significantly increased 2 – 4 days post-treatment, particularly in the injured region of the DG, and predominantly in glial fibrillary acidic protein-positive astrocytes in the hippocampal DG. Ki67-positive proliferating cells were increased following TMT treatment and co-localized with nestin-positive reactive astrocytes. Thus, we suggest that nestin contributes to remodeling of the chemically injured DG via glial scar formation and the alteration of neurogenesis.  相似文献   

18.
Li L  Qin H  Shi W  Gao G 《Neuroscience letters》2007,424(3):145-148
Neuropathic pain after periphery nerve injury is frequently accompanied by the regeneration of the injured nerve fibers. We tested in this study whether local administration of Nogo-66, a well-studied axon growth inhibiting peptide in the central nerve system, could reduce the pain related behavior after sciatic nerve transection in rat. Nogo-66 peptide was purified as a GST fusion protein. Its inhibitory function was testified by neurite outgrowth assay of primary cultured neurons, and then it was given directly at the lesion site by a minipump for 2 weeks. Mechanical nociceptive withdrawal responses and heat hyperalgesia responses were assessed during a 4-week period, and autotomy was evaluated during a 6-week period. The results showed that the mechanical allodynia and heat hyperalgesia scores of the rats treated with GST-Nogo-66 were significantly higher than the controls between 7 and 14 days after sciatic nerve transection. The autotomy scores in the GST-Nogo-66 group were significantly lower than the controls from 28 days after surgery. Taken together, the results of our present study suggest that Nogo-66 may be utilized to decrease the neuropathic pain after periphery nerve injury.  相似文献   

19.
Adult neurogenesis in the dentate gyrus of the hippocampus is altered with stress exposure and has been implicated in depression. High levels of corticosterone (CORT) suppress neurogenesis in the dentate gyrus of male rats. However both acute and chronic stress do not consistently reduce adult hippocampal neurogenesis in female rats. Therefore, this study was conducted to investigate the effect of different doses of corticosterone on hippocampal neurogenesis in male and female rats. Rats received 21 days of s.c. injections of either oil, 10 or 40 mg/kg CORT. Subjects were perfused 24 h after the last CORT injection and brains were analyzed for cell proliferation (Ki67-labeling) or immature neurons (doublecortin-labeling). Results show that in both males and females high CORT, but not low CORT, reduced both cell proliferation and the density of immature neurons in the dentate gyrus. Furthermore, high CORT males had reduced density in immature neurons in both the ventral and dorsal regions while high CORT females only showed the reduced density of immature neurons in the ventral hippocampus. The high dose of CORT disrupted the estrous cycle of females. Further, the low dose of CORT significantly reduced weight gain and increased basal CORT levels in males but not females, suggesting a greater vulnerability in males with the lower dose of CORT. Thus we find subtle sex differences in the response to chronic CORT on both body weight and on neurogenesis in the dorsal dentate gyrus that may play a role in understanding different vulnerabilities to stress-related neuropsychiatric disorders between the sexes.  相似文献   

20.
Atorvastatin is a 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor used in treatment of hypercholesterolemia and prevention of coronary heart disease. The aim of this study is to investigate the antihyperalgesic and anti-inflammatory effects of atorvastatin (3, 10, and 30 mg/kg by oral gavages for 14 days) in chronic constriction injury (CCI) model of neuropathic pain in rats. CCI caused significant increase in tumor necrosis factor-α, interleukin 1 beta, prostaglandin E2, along with matrix metalloproteases (MMP-2) and nerve growth factor (NGF) levels in sciatic nerve and spinal cord concomitant with mechanical and thermal hyperalgesia, which were significantly reduced by oral administration of atorvastatin for 14 days as compared to CCI rats. Our study demonstrated that atorvastatin attenuates neuropathic pain through inhibition of cytokines, MMP-2, and NGF in sciatic nerve and spinal cord suggesting that atorvastatin could be an additional therapeutic strategy in management of neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号