首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Electrical stimulation of crayfish giant axons at high frequency activates group II metabotropic and NMDA glutamate receptors on adjacent glial cells via release of N-acetylaspartylglutamate and glutamate formed upon its hydrolysis. This produces a transient depolarization followed by a prolonged hyperpolarization of glial cells that involves nicotinic acetylcholine receptor activation. The hyperpolarization is nearly completely blocked by antagonists of metabotropic glutamate receptors but only slightly reduced by inhibition of NMDA receptors. We report that the NMDA-induced hyperpolarization of glial cells is reduced by decreased calcium in the solution bathing the giant nerve fiber, while removal of sodium ions or block of voltage-dependent calcium channels completely prevents the glial response to NMDA. Inhibition of nicotinic acetylcholine receptors or removal of extracellular Cl(-) converts the glial response from a hyperpolarization to a depolarization that is sensitive to NMDA receptor antagonist. We propose that NMDA receptor activation by glutamate, formed from extracellular N-acetylaspartylglutamate during nerve stimulation, contributes to glial hyperpolarization by increasing intracellular Ca(2+) via opening of voltage-sensitive Ca(2+) channels. Based on our previous work, we propose further that the added Ca(2+) supplements that produced by N-acetylaspartylglutamate and glutamate acting on group II metabotropic glutamate receptors to cause an increased release of acetylcholine and a larger hyperpolarization.  相似文献   

2.
Striatal cholinergic nerve terminals express functional group-II metabotropic (mGlu) and NMDA glutamate receptors. To investigate whether these receptors interact to regulate ACh release, LY354740 (a group-II mGlu receptor agonist) and NMDA were co-applied in striatal synaptosomes and slices. LY354740 prevented the NMDA-evoked [3H]-choline release from synaptosomes and ACh release from slices. In synaptosomes, this modulation was prevented by omega-agatoxin IVA, suggesting that it was mediated by P/Q-type high voltage activated Ca++ channels. In slices, LY341495 (a group-II mGlu receptor antagonist) enhanced the NMDA-induced ACh release, suggesting that group-II mGlu receptor activation by endogenous glutamate inhibits NMDA transmission. Co-immunoprecipitation studies excluded direct group-II mGlu-NMDA receptor interactions. Finally, group-II mGlu negative modulation of NMDA transmission was abolished in dopamine-depleted synaptosomes and slices, suggesting that it relied on endogenous dopamine. We conclude that group-II mGlu receptors attenuate NMDA inputs at striatal cholinergic terminals via Ca++ channel modulation and dopamine-sensitive pathways.  相似文献   

3.
The nucleus basalis magnocellularis (NBM) contains cholinergic neurons that project to the neocortex and is densely innervated by excitatory amino acid-containing terminals. A dysfunction in the balance of excitatory inputs or an alteration in the sensitivity of NBM cells to glutamate may underlie the selective vulnerability to aging. Some large NBM neurons contain neurokinin B (NKB) mRNA. The present study investigated whether α-2-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) orN-methyl-d-aspartate (NMDA) differentially destroy NKB-containing, NKB-receptive, or cholinergic NBM cells, and whether this vulnerability is altered by aging. Injections of AMPA or NMDA significantly decreased neocortical ChAT activity, as compared to control levels, across all three age groups, with no interaction between lesion and age group. The results of in situ hybridization histochemistry and NKB receptor studies suggest that NKB-containing neurons in the NBM, and the neurons they innervate, are not vulnerable to NMDA or AMPA in either young or old rats. While NKB mRNA-positive cells were diffusely distributed throughout the basal forebrain, only a small proportion of the large NBM cells contained NKB mRNA. The results suggest that NKB does not extensively colocalize with acetylcholine within the basal forebrain of rats and that NBM NKB neurons do not directly innervate cholinergic cells.  相似文献   

4.
The involvement of glutamate mediated neurotoxicity in the pathogenesis of Alzheimer's disease is finding increasingly more acceptance in the scientific community. Central to this hypothesis is the assumption that in particular glutamate receptors of the N-methyl-D-aspartate (NMDA) type are overactivated in a tonic rather than a phasic manner. Such continuous mild activation leads under chronic conditions to neuronal damage. Moreover, one should consider that impairment of plasticity (learning) may result not only from neuronal damage per se but also from continuous activation of NMDA receptors. To investigate this possibility we tested whether overactivation of NMDA receptors using either non-toxic doses/concentrations of a direct NMDA agonist or through an indirect approach--decrease in magnesium concentration--produces deficits in plasticity. In fact NMDA both in vivo (passive avoidance test) and in vitro (LTP in CA1 region) impaired learning and synaptic plasticity. Under these conditions memantine which is an uncompetitive NMDA receptor antagonist with features of "improved magnesium" (voltage dependence, affinity) attenuated the deficit. The more direct proof that memantine can act as a surrogate for magnesium was obtained in LTP experiments under low magnesium conditions. In this case as well, impaired LTP was restored in the presence of therapeutically relevant concentrations of memantine (1 microM). In vivo, doses leading to similar brain/serum levels produce neuroprotection in animal models relevant for neurodegeneration in Alzheimer's disease such as neurotoxicity produced by inflammation in the NBM or beta-amyloid injection to the hippocampus. Hence, we postulate that if in Alzheimer's disease overactivation of NMDA receptors occurs indeed, memantine would be expected to improve both symptoms (cognition) and slow down disease progression because it takes over the physiological function of magnesium.  相似文献   

5.
The mechanisms of Ca2+ responses evoked in hippocampal glial cells in situ, by local application of glutamate and by synaptic activation, were studied in slices from juvenile rats using the membrane permeant fluorescent Ca2+ indicator fluo-3AM and confocal microscopy. Ca2+ responses induced by local application of glutamate were unaffected by the sodium channel blocker tetrodotoxin and were therefore due to direct actions on glial cells. Glutamate-evoked responses were significantly reduced by the L-type Ca2+ channel blocker nimodipine, the group I/II metabotropic glutamate receptor antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), and the N-methyl-D-aspartate (NMDA) receptor antagonist (+/-)2-amino-5-phosphonopentanoic acid (APV). However, glutamate-induced Ca2+ responses were not significantly reduced by the non-NMDA receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). These results indicate that local application of glutamate increases intracellular Ca2+ levels in glial cells via the activation of L-type Ca2+ channels, NMDA receptors, and metabotropic glutamate receptors. Brief (1 s) tetanization of Schaffer collaterals produced increases in intracellular Ca2+ levels in glial cells that were dependent on the frequency of stimulation (> or =50 Hz) and on synaptic transmission (abolished by tetrodotoxin). These Ca2+ responses were also antagonized by the L-type Ca2+ channel blocker nimodipine and the metabotropic glutamate receptor antagonist MCPG. However, the non-NMDA receptor antagonist CNQX significantly reduced the Schaffer collateral-evoked Ca2+ responses, while the NMDA antagonist APV did not. Thus, these synaptically mediated Ca2+ responses in glial cells involve the activation of L-type Ca2+ channels, group I/II metabotropic glutamate receptors, and non-NMDA receptors. These findings indicate that increases in intracellular Ca2+ levels induced in glial cells by local glutamate application and by synaptic activity share similar mechanisms (activation of L-type Ca2+ channels and group I/II metabotropic glutamate receptors) but also have distinct components (NMDA vs. non-NMDA receptor activation, respectively). Therefore, neuron-glia interactions in rat hippocampus in situ involve multiple, complex Ca2+-mediated processes that may not be mimicked by local glutamate application.  相似文献   

6.
Prolonged activation of glutamate receptors leads to excitotoxicity. Several processes such as reactive oxygen species (ROS) production and activation of the calcium-dependent protease, calpain, contribute to glutamate-induced damage. It has been suggested that the ROS-producing enzyme, NADPH oxidase (NOX), plays a role in excitotoxicity. Studies have reported NOX activation after NMDA receptor stimulation during excitotoxic damage, but the role of non-NMDA and metabotropic receptors is unknown. We evaluated the roles of different glutamate receptor subtypes on NOX activation and neuronal death induced by the intrastriatal administration of glutamate in mice. In wild-type mice, NOX2 immunoreactivity in neurons and microglia was stimulated by glutamate administration, and it progressively increased as microglia became activated; calpain activity was also induced. By contrast, mice lacking NOX2 were less vulnerable to excitotoxicity, and there was reduced ROS production and protein nitrosylation, microglial reactivity, and calpain activation. These results suggest that NOX2 is stimulated by glutamate in neurons and reactive microglia through the activation of ionotropic and metabotropic receptors. Neuronal damage involves ROS production by NOX2, which, in turn, contributes to calpain activation.  相似文献   

7.
Stimulation of metabotropic glutamate receptors (mGluRs) belonging to group I has been found to reduce N-methyl-D-aspartate (NMDA) receptor function in terms of both intracellular calcium concentration ([Ca2+]i) rise and neurotoxicity in cultured cerebellar granule cells. In the present study, we investigated whether the mGluR-elicited modulation of glutamate responses might rely on the heteromeric composition of NMDA receptor channel. NMDA receptors consist of two distinct groups of subunits: NR1, that is ubiquitously in the receptor complexes; and NR2A-D, that differentiate and potentiate NMDA receptor responses by assembling with NR1. Among NR2 subunits, only NR2A and NR2C mRNAs and relative proteins are detected in cerebellar granule cells at 10 days in vitro. To dissect the involvement of the two different subunits in making the NMDA receptor channel sensitive to modulation by group I mGluR agonists, expression of the NR2C subunit was prevented by treating the cells with specific antisense oligodeoxynucleotide (ODN). The capability of the mGluR agonists, trans-1-amino-cyclopentane-1,3-dicarboxylic acid (tACPD, 100 microM) or 3 hydroxyphenylglycine (3HPG, 100 microM), and the protein kinase C (PKC) activator, 4beta-phorbol-12,13-dibutyrate (PDBu, 1 microM), to inhibit the function of resultant NMDA receptors was then evaluated. We found that depletion of the NR2C subunit abolished the inhibitory effect of group I mGluR stimulation on glutamate-induced [Ca2+]i rise and neurotoxicity. The antisense ODN treatment also prevented the inhibitory effect of PDBu on glutamate responses. Conversely, in NR2C-lacking neurons, both group I mGluRs and PKC stimulation enhanced NMDA receptor-mediated effects. The present findings indicate that the capability of PKC-associated mGluRs to modulate native NMDA receptor function relies on the heteromeric configuration of the receptor-channel complex. Particularly, expression of the NR2C subunit is required to make the NMDA receptor sensitive to inhibitory modulation by mGluRs or PKC activation.  相似文献   

8.
Fragile X syndrome is a common inherited cause of mental retardation that results from the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein thought to regulate translation of bound mRNAs, including its own. Previous studies in our laboratory have shown that FMRP expression increases in the barrel cortex of the rat after unilateral whisker stimulation, a model of experience dependent plasticity. This increase in protein is restricted to sub-cellular fractions enriched for synaptic or poly-ribosomal complexes. Here, we demonstrate that these increases are not accompanied by a change in FMR-1 mRNA levels and that they are blocked by the protein synthesis inhibitor cycloheximide in a dose dependent manner. Whisker stimulation dependent expression of FMRP is also abolished by pharmacological blockade of either NMDA receptors (MK-801, 0.25 mg/kg) or type I metabotropic glutamate receptors (AIDA, 5 mg/kg). In primary cortical neurons, activation of type I mGluRs leads to an increase in FMRP expression that is not effected by blockade of NMDA receptors. Taken together, these studies show that experience regulates FMRP production in vivo at the level of translation and supports a role for FMRP in metabotropic glutamate receptor mediated synaptic plasticity.  相似文献   

9.
Two glutamate receptor agonists, NMDA (N-methyl-d-aspartic acid) and ACPD (cis-(1S/3R)-1-aminocyclopentane-1,3-dicarboxylic acid), induce the reactive oxygen species (ROS) production in rat cerebellum granule cells, whereas the third one, 3-HPG (3-hydroxyphenylglycine), decreases this parameter. The simultaneous presence of 3-HPG, together with NMDA or ACPD, prevents the generation of ROS by neuronal cells. A similar effect of these ligands on Na+/K+-ATPase can be demonstrated: NMDA and ACPD inhibited the enzyme activity, but 3-HPG activated Na+/K+-ATPase and prevented its inhibition by NMDA or ACPD. In terms of current classification, NMDA is an agonist of ionotropic glutamate receptors of the so-called NMDA class, whereas ACPD and 3-HPG belong to metabotropic agonists, the former primarily being an activator of metabotropic glutamate receptors (mGluRs) of groups 2 and 3, and the latter, that of mGluRs of groups 1 and 5. Thus, the data presented illustrate the existence of diverse mechanisms of the cross talk between Na+/K+-ATPase and different glutamate receptors, as well as that between glutamate receptors of different classes.  相似文献   

10.
Alterations in inhibitory and excitatory neurotransmission play a central role in the etiology of epilepsy, with overstimulation of glutamate receptors influencing epileptic activity and corresponding neuronal damage. N‐methyl‐D‐aspartate (NMDA) receptors, which belong to a class of ionotropic glutamate receptors, play a primary role in this process. This study compared the anticonvulsant properties of two NMDA receptor channel blockers, memantine and 1‐phenylcyclohexylamine (IEM‐1921), in a pentylenetetrazole (PTZ) model of seizures in rats and investigated their potencies in preventing PTZ‐induced morphological changes in the brain. The anticonvulsant properties of IEM‐1921 (5 mg/kg) were more pronounced than those of memantine at the same dose. IEM‐1921 and memantine decreased the duration of convulsions by 82% and 37%, respectively. Both compounds were relatively effective at preventing the tonic component of seizures but not myoclonic seizures. Memantine significantly reduced the lethality caused by PTZ‐induced seizures from 42% to 11%, and all animals pretreated with IEM‐1921 survived. Morphological examination of the rat brain 24 hr after administration of PTZ revealed alterations in the morphology of 20–25% of neurons in the neocortex and the hippocampus, potentially induced by excessive glutamate. The expression of the excitatory amino acid transporter 1 protein was increased in the hippocampus of the PTZ‐treated rats. However, dark neurons did not express caspase‐3 and were immunopositive for the neuronal nuclear antigen protein, indicating that these neurons were alive. Both NMDA antagonists prevented neuronal abnormalities in the brain. These results suggest that NMDA receptor channel blockers might be considered possible neuroprotective agents for prolonged seizures or status epilepticus leading to neuronal damage. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
In rat brain stem slices, high concentrations of exogenous glutamate induce long-term potentiation (LTP) of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation. At low concentrations, glutamate can also induce short-term potentiation (STP), indicating that LTP and STP are separate events depending on the level of glutamatergic synapse activation. LTP and STP are prevented by blocking NMDA receptors and nitric oxide (NO) synthesis. Conversely, blocking platelet-activating factor (PAF) and group I metabotropic glutamate receptors only prevents the full development of LTP. Moreover, in the presence of blocking agents, glutamate causes transient inhibition, suggesting that when potentiation is impeded, exogenous glutamate can activate presynaptic mechanisms that reduce glutamate release.  相似文献   

12.
Glutamate mediates its effects in mammals through both ionotropic and metabotropic receptors. Antagonists of ionotropic N-methyl-d-aspartate (NMDA) glutamate receptors elicit neuroprotective and neurotropic effects that have been attributed to Ca2+ block through the membrane ion channel. Nonetheless, molecular and biochemical effects of NMDA receptor antagonism on other glutamate receptor subunits remain poorly understood. We investigated the effects of acute administration of the noncompetitive NMDA receptor antagonist MK-801 on the mRNA expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and metabotropic glutamate receptor (mGluR) subunits to determine the contribution of different glutamate receptors in response to blockade of NMDA receptor channels. In situ hybridization to rat brain sections revealed that AMPA receptor subunits GluR3 and GluR4, and mGluR3 were modestly but significantly decreased ∼10–20%, 8 h following 5 mg/kg MK-801 administration. A time course and dose response study revealed that the effect on mGluR3 was reversed by 24 h and occurred significantly at a dose range from 1 to 5 mg/kg. These results indicate that selected AMPA and mGluR subunit mRNAs respond at the RNA level to the blockade of NMDA receptors.  相似文献   

13.
The possible participation of glutamate and NO/cGMP in the pressor response to 5-HT3 receptor activation in the nucleus tractus solitarii (NTS) was investigated using selective antagonists in urethane-anaesthetized rats. Intra-NTS administration of NMDA and non-NMDA receptor antagonists, but not metabotropic glutamate receptor antagonists, markedly reduced (70%) the increase in blood pressure caused by local application of the potent 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide. The 5-HT3 receptor-mediated pressor response was also significantly attenuated by the local blockade of nitric oxide synthase and soluble guanylyl cyclase. These data suggest that ionotropic glutamate receptors and the associated NO/cGMP transduction mechanism contribute downstream to the pressor effect elicited by 5-HT3 receptor stimulation in the NTS.  相似文献   

14.
N-Acetyl-aspartyl-glutamate (NAAG), an agonist at Group II metabotropic glutamate receptors (mGluR II), also activates the NMDA-type of ionotropic glutamate receptors and, at high micromolar concentrations, has previously been shown to induce neuronal cell death. In the present study we have morphologically quantified the neurotoxic action of intracerebroventricularly administered NAAG on the hippocampal formation and compared it to the action of the selective endogenous NMDA agonist quinolinic acid. Finally, we examined whether the action of NAAG can be modified by NMDA receptor antagonists and mGluR II ligands. NAAG-induced neurodegeneration was found to be less severe than that induced by quinolinate. It was prevented by inhibitors of NMDA receptors and also by an mGluR II agonist (DCG IV) but not by an mGluR II antagonist (EGlu).  相似文献   

15.
Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate.  相似文献   

16.
Whole-cell patch-clamp recordings in rat cerebellar slices were used to investigate the effect of metabotropic glutamate receptor activation on mossy fibre-granule cell synaptic transmission. Transient application of 20 μM 1 S , 3 R -1 -aminocyclopentane-1,3-dicarboxylic acid simultaneously with low-frequency NMDA receptor activation induced long-lasting non-decremental potentiation of both NMDA and non-NMDA receptor-mediated synaptic transmission. Potentiation could be prevented by application of the metabotropic glutamate receptor antagonist (+)- O -methyl-4-carboxyphenyl-glycine at 500 μM. Characteristically, NMDA potentiation was two to three times as large as non-NMDA current potentiation, occurred only in a slow subcomponent, and was voltage independent. This result demonstrates a pivotal role of NMDA receptors in the metabotropic potentiation of transmission, which may be important in regulating cerebellar information processing.  相似文献   

17.
Although they likely involve activation of N-methyl-D-aspartate (NMDA) receptors, the mechanisms giving rise to perinatal hypoxic-ischemic-induced damages remained unclear. The purpose of the present study was to investigate in vivo the mechanisms regulating the glutamate-induced release of toxic hydroxyl radicals (.OH) in neonatal rat. Anesthetized 7-day-old Wistar rat pups bearing a microdialysis cannula implanted in the striatum were perfused with a solution containing salicylate as an.OH trap. Hydroxyl radicals formation was evaluated, after a 3 hr postoperative delay, by measuring the 2,3-DHBA levels by HPLC/EC before, during and over 3 hr after the administration of glutamatergic agonists or antagonists. Administration of NMDA and of ibotenate dramatically increased the efflux of.OH, 17-fold and sixfold, respectively. Glutamate, used at the same concentration did not produce any significant increase in the.OH release and may even decrease this efflux when given at larger concentrations. The NMDA-induced.OH response was partially but progressively reduced by glutamate coinjection and completely blunted by DHPG [(RS)-3, 5-dihydroxyphenylglycine], a group I metabotropic glutamate receptor agonist. Conversely, AIDA [(RS)-1-aminoindan-1,5-dicarboxylic acid], an antagonist of the same receptors, unmasked an.OH response to glutamate. These results are evidence that the glutamate-induced activation of a group I metabotropic glutamate receptor normally protected the neonatal brain from any glutamate activation of NMDA receptor, which otherwise would produce the release of toxic hydroxyl radicals. Targeting group I metabotropic glutamate receptors and/or.OH might contribute to protecting the neonatal brain against perinatal hypoxic-ischemic induced lesions.  相似文献   

18.
The non-competitive NMDA receptor antagonist memantine, currently prescribed for the treatment of Alzheimer's disease, is assumed to prevent the excitotoxicity implicated in neurodegenerative processes. Here, we investigated the actions of memantine on hippocampal function and signalling. In behavioural experiments using the water maze, we observed that memantine (at 2 mg/kg) reversed scopolamine-induced learning deficits in mice. When acutely applied to mouse hippocampal slices, memantine caused a significant upward shift in the population spike input-output relationship at 10 and 100 microM, and a corresponding downward shift in latency, indicative of overall enhanced synaptic transmission. This action was blocked by the muscarinic antagonist scopolamine (10 microM) but not by the NMDA antagonist MK-801 (10 microM) or the GABA antagonist bicuculline (20 microM). Further, memantine occluded potentiation induced by 50 nM carbachol (CCh), while enhancing inhibitory actions of CCh at 1 microM, suggesting additive actions. As anticipated for an NMDA antagonist, 100 microM (but not 10 microM) memantine also inhibited tetanus-induced long-term potentiation (LTP), and NMDA-induced Ca;{2+} signals were blocked in cultured hippocampal neurones at 10 microM (by 88%). Overall, our data suggest actions of memantine beyond NMDA receptor antagonism, including stimulating effects on cholinergic signalling via muscarinic receptors. These interactions with the cholinergic system are likely to contribute to memantine's therapeutic potential.  相似文献   

19.
Okazaki MM  Nadler JV 《Brain research》2001,915(1):3293-69
In many persons with temporal lobe epilepsy, dentate granule cells form an interconnected synaptic network. This recurrent mossy fiber circuit mediates reverberating excitation that may facilitate seizure propagation by synchronizing granule cell discharge. The involvement of specific glutamate receptors in granule cell epileptiform activity evoked by stimulating the mossy fibers was investigated with use of rat hippocampal slices superfused with bicuculline, with or without increasing [K+](o) to 6 mM. The occurrence of short-latency mossy fiber-evoked granule cell epileptiform activity in slices from pilocarpine-treated rats correlated with the presence and extent of recurrent mossy fiber growth. Blockade of AMPA receptors nearly abolished the orthodromic component of the response; subsequent antagonism of kainate receptors as well appeared to have no further action. Antagonism of NMDA receptors reduced the duration of epileptiform discharge, but increased the amplitude of population spikes within the evoked burst. Thus AMPA and NMDA, but perhaps not kainate, receptors play an important role in this type of epileptiform activity. Activation of type II metabotropic glutamate receptors, which inhibits the release of glutamate from mossy fiber boutons, reduced the magnitude of epileptiform discharge. This action was reversed by a partial agonist of these receptors. However, neither an agonist nor an antagonist of type III metabotropic glutamate receptors significantly altered the response. Considering the importance of synchronous granule cell discharge for seizure propagation from the entorhinal cortex to the hippocampus, agonists of type II metabotropic glutamate receptors may be useful in suppressing such discharge both experimentally and clinically.  相似文献   

20.
Both ionotropic and metabotropic glutamate receptors have been implicated in the pathogenesis of neuronal injury. Activation of group I metabotropic glutamate receptors (mGluR) exacerbates neuronal cell death, whereas inhibition is neuroprotective. However, the mechanisms involved remain unknown. Activation of group I mGluR modulates multiple signal transduction pathways including stimulation of phosphoinositide hydrolysis, potentiation of NMDA receptor activity, and release of arachidonic acid. Here we demonstrate that whereas activation of group I mGluR by (S)-3,5-dihydroxyphenylglycine (DHPG) potentiates NMDA-induced currents and intracellular calcium increases in rat cortical neuronal cultures, partial effects of group I mGluR activation or inhibition on neuronal injury induced by oxygen-glucose deprivation remain despite NMDA receptor blockade. DHPG stimulation also increases basal arachidonic acid release from rat neuronal-glial cultures and potentiates injury-induced arachidonic acid release in these cultures. Thus, activation of group I mGluR may exacerbate neuronal injury through multiple mechanisms, which include positive modulation of NMDA receptors and enhanced release of arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号