首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevention of coronary heart disease and cancer by tea,a review   总被引:1,自引:0,他引:1  
Biomedical research has uncovered the mechanisms whereby tea promotes good health and lowers the risk of major chronic diseases, such as heart disease and many types of cancer. The active components in tea are polyphenols, epigallocatechin gallate in green tea, theaflavins and thearubigins in black tea. Green and black tea and the polyphenols have similar beneficial effects. The mechanisms are categorized into 5 groups. 1) Tea polyphenols are powerful antioxidants. They decrease the oxidation of LDL cholesterol and lower the risk of heart disease, and also inhibit action of reactive oxygen species mediating the oxidation of DNA associated with carcinogenesis 2) Tea polyphenols induce detoxifying enzymes, glucuronosyl transferases, eliminating active forms of carcinogens and other toxicants, accounting for the lower cancer risk. 3) Tea polyphenols lower duplication rates of cancer cells and inhibit the growth of cancer, increase apoptosis and lower angiogenesis. 4) Tea polyphenols alter the intestinal bacterial flora, suppressing undesirable bacteria and favoring growth of beneficial bacteria. 5) Aging phenomena, and diseases associated with the formation of reactive oxygen species (ROS) are inhibited. Presented at the 2001 International Conference on O-CHA (tea) Culture and Science, Shizuoka, Japan, October 7, 2001.  相似文献   

2.
Tea drinking has been associated with decreased occurrence of cancer and heart disease. One potential mechanism for these findings is the strong antioxidant effect of tea polyphenols. A phase II randomized controlled tea intervention trial was designed to study the effect of high consumption (4 cups/d) of decaffeinated green or black tea on oxidative DNA damage as measured by urinary 8-hydroxydeoxyguanosine (8-OHdG) among smokers over a 4-mo period. A total of 143 heavy smokers, aged 18-79 y, were randomized to drink either green or black tea or water. Levels of plasma and urinary catechins and urinary 8-OHdG were measured monthly. A total of 133 of 143 smokers completed the 4-mo intervention. Multiple linear regression models were used to estimate the main effects and interaction effect of green and black tea consumption on creatinine-adjusted urinary 8-OHdG, with or without adjustment for potential confounders. Plasma and urinary levels of catechins rose significantly in the green tea group compared with the other two groups. Assessment of urinary 8-OHdG after adjustment for baseline measurements and other potential confounders revealed a highly significant decrease in urinary 8-OHdG (-31%) after 4 mo of drinking decaffeinated green tea (P = 0.002). No change in urinary 8-OHdG was seen among smokers assigned to the black tea group. These data suggest that regular green tea drinking might protect smokers from oxidative damages and could reduce cancer risk or other diseases caused by free radicals associated with smoking.  相似文献   

3.
近10年来,肥胖患病率明显增加,已成为现代医学最严重问题之一。据报道,茶儿茶素尤其是绿茶儿茶素具有抗肥胖作用。然而,由于茶的品种各异,萃取条件不同,以致研究结果出现不一致的结论。最新的研究发现,脂肪酸合酶与肥胖相关,而茶多酚对脂肪酸合酶具有可逆和不可逆的双重作用,这可能成为茶及茶中多酚类化合物抗肥胖作用机制研究的新途径。目前,关于茶减肥的机制性研究主要集中在绿茶及绿茶多酚方面。因此,有必要对其他茶及茶多酚减肥作用及机制进行进一步研究。  相似文献   

4.
Antioxidant effects of tea: evidence from human clinical trials   总被引:1,自引:0,他引:1  
Tea remains the most consumed drink in the world after water, well ahead of coffee, beer, wine and carbonated soft drinks. An accumulated number of population studies suggests that consumption of green and black tea beverages may bring positive health effects (1). One hypothesis explaining such effects is that the high levels of flavonoids in tea can protect cells and tissues from oxidative damage by scavenging oxygen-free radicals. Chemically, the flavonoids found in green and black tea are very effective radical scavengers. The tea flavonoids may therefore be active as antioxidants in the digestive tract or in other tissues after uptake. A substantial number of human intervention studies with green and black tea demonstrates a significant increase in plasma antioxidant capacity in humans approximately 1 h after consumption of moderate amounts of tea (1-6 cups/d). There are initial indications that the enhanced blood antioxidant potential leads to reduced oxidative damage to macromolecules such as DNA and lipids. However, the measurement of oxidative damage through biomarkers needs to be further established. In conclusion, tea flavonoids are potent antioxidants that are absorbed from the gut after consumption. Tea consumption consistently leads to a significant increase in the antioxidant capacity of the blood. Beneficial effects of increased antioxidant capacity in the body may be the reduction of oxidative damage to important biomolecules. The scientific support is strongest for the protection of DNA from oxidative damage after black or green tea consumption. However, the quality of the studies now available is insufficient to draw firm conclusions. Therefore, further evidence from human intervention studies is required.  相似文献   

5.
Tea polyphenolics such as catechins are known to have the potential to inhibit many bacterial pathogens. Helicobacter pylori has been identified as an etiologic agent in the development of gastric ulcer, peptic ulcer, gastritis, and many other stomach-related diseases. In this study, we investigated the effect of 9 tea extracts--3 different brands representing 4 different processed types (white, green, oolong, and black)--on the inhibition of H. pylori. Extraction times of 2 and 5 minutes were compared. Most 5-minute extracts showed H. pylori inhibition, whereas 2-minute extracts only of Choice darjeeling black and Tazo white showed inhibition. No recovery was observed after the addition of 0.5 and 5 mM proline, indicating that tea polyphenols do not inhibit H. pylori by inhibition of proline oxidation via proline dehydrogenase. Extracts that showed inhibition were further evaluated for their effect on beneficial lactic acid bacteria. None of the samples showed inhibition, suggesting that tea might be able to inhibit H. pylori without affecting the beneficial lactic acid bacteria. High-performance liquid chromatography indicated the presence of gallic acid, quercetin, caffeine, and tea catechins (including catechin, epicatechin, and epigallocatechin) in all the tea samples. Our study indicates that tea can be potentially used as a low-cost dietary support to combat H. pylori-linked gastric diseases without affecting the beneficial intestinal bacteria.  相似文献   

6.
Beneficial effects of green tea--a review   总被引:12,自引:0,他引:12  
Tea is the most consumed drink in the world after water. Green tea is a 'non-fermented' tea, and contains more catechins, than black tea or oolong tea. Catechins are in vitro and in vivo strong antioxidants. In addition, its content of certain minerals and vitamins increases the antioxidant potential of this type of tea. Since ancient times, green tea has been considered by the traditional Chinese medicine as a healthful beverage. Recent human studies suggest that green tea may contribute to a reduction in the risk of cardiovascular disease and some forms of cancer, as well as to the promotion of oral health and other physiological functions such as anti-hypertensive effect, body weight control, antibacterial and antivirasic activity, solar ultraviolet protection, bone mineral density increase, anti-fibrotic properties, and neuroprotective power. Increasing interest in its health benefits has led to the inclusion of green tea in the group of beverages with functional properties. However, although all the evidence from research on green tea is very promising, future studies are necessary to fully understand its contributions to human health, and advise its regular consumption in Western diets, in which green tea consumption is nowadays limited and sporadic.  相似文献   

7.
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.  相似文献   

8.
9.
Antioxidative properties of black tea   总被引:12,自引:0,他引:12  
  相似文献   

10.
Green tea composition, consumption, and polyphenol chemistry.   总被引:37,自引:0,他引:37  
Tea is grown in about 30 countries but is consumed worldwide, although at greatly varying levels. It is the most widely consumed beverage aside from water with a per capita worldwide consumption of approximately 0.12 liter per year. Tea is manufactured in three basic forms. Green tea is prepared in such a way as to preclude the oxidation of green leaf polyphenols. During black tea production oxidation is promoted so that most of these substances are oxidized. Oolong tea is a partially oxidized product. Of the approximately 2.5 million metric tons of dried tea manufactured, only 20% is green tea and less than 2% is oolong tea. Green tea is consumed primarily in China, Japan, and a few countries in North Africa and the Middle East. Fresh tea leaf is unusually rich in the flavanol group of polyphenols known as catechins which may constitute up to 30% of the dry leaf weight. Other polyphenols include flavanols and their glycosides, and depsides such as chlorogenic acid, coumarylquinic acid, and one unique to tea, theogallin (3-galloylquinic acid). Caffeine is present at an average level of 3% along with very small amounts of the other common methylxanthines, theobromine and theophylline. The amino acid theanine (5-N-ethylglutamine) is also unique to tea. Tea accumulates aluminum and manganese. In addition to the normal complement of plant cell enzymes, tea leaf contains an active polyphenol oxidase which catalyzes the aerobic oxidation of the catechins when the leaf cell structure is disrupted during black tea manufacture. The various quinones produced by the enzymatic oxidations undergo condensation reactions which result in a series of compounds, including bisflavanols, theaflavins, epitheaflavic acids, and thearubigens, which impart the characteristic taste and color properties of black tea. Most of these compounds readily form complexes with caffeine. There is no tannic acid in tea. Thearubigens constitute the largest mass of the extractable matter in black tea but their composition is not well known. Proanthocyanidins make up part of the complex. Tea peroxidase may be involved in their generation. The catechin quinones also initiate the formation of many of the hundreds of volatile compounds found in the black tea aroma fraction. Green tea composition is very similar to that of the fresh leaf except for a few enzymatically catalyzed changes which occur extremely rapidly following plucking. New volatile substances are produced during the drying stage. Oolong tea is intermediate in composition between green and black teas.  相似文献   

11.
OBJECTIVE: Firstly, to study the effect of tea and tea polyphenols on cardiovascular risk indicators of the inflammatory system (IL6, IL1beta and TNF-alpha, CRP), and on haemostasis and endothelial proteins with an acute phase behaviour (fibrinogen, vWF, PAI-1, FVIIa and u-PA). Secondly, to study the relationship between plasma levels of antioxidants (alpha-tocopherol, beta-carotene and vitamin C) and these acute-phase, cardiovascular risk indicators. DESIGN: Randomized study. SUBJECTS: Sixty-four smoking healthy volunteers were recruited by newspaper advertisements; there were five dropouts. INTERVENTION: Four-week administration of black tea, green tea, green tea polyphenol isolate and mineral water ( 13-16 per group). MEASURES: Plasma levels of the inflammatory markers IL6, IL1beta, TNF-alpha, CRP, fibrinogen, vWF, PAI-1, FVIIa and u-PA and of the antioxidants alpha-tocopherol, beta-carotene and vitamin C. RESULTS: Different dosages of tea polyphenols had no effect on inflammation, haemostasis and endothelial markers. There was a significant negative correlation between the levels of the antioxidant beta-carotene and the inflammation markers IL6 and fibrinogen (r = -0.35 and r = -0.37, respectively, P<0.01) in this group of smokers. Remarkably, there was a significant positive correlation between the levels of the antioxidant alpha-tocopherol and the inflammation marker IL6 (r = 0.28, P<0.05). CONCLUSIONS: Tea drinking had no effect on the levels of the inflammation, haemostasis and endothelial cardiovascular risk factors measured. We did observe a relationship between the antioxidant variables alpha-tocopherol and beta-carotene and inflammation markers in this group of healthy smoking subjects.  相似文献   

12.
BACKGROUND & AIMS: Green tea, an infusion prepared with the leaves of Camellia sinensis is particularly rich in flavonoids, which are strong antioxidants. Tea drinking, by providing antioxidants, may become valuable in several oxidative stress conditions. Our aim was to evaluate the effect of green tea drinking on some factors reflecting the development of oxidative stress in plasma and in erythrocytes. METHODS: The study was performed in 34 Portuguese subjects. We evaluated the total antioxidant status (TAS), the lipid peroxidation products-malonyldialdehyde (MDA) and malonyldialdehyde+4-hydroxy-2(E)-nonenal (MDA+4-HNE)-and the oxidative changes in erythrocyte membrane, namely membrane bound haemoglobin (MBH) and the band 3 profile. Analytical evaluations were performed after 3 weeks drinking 1l of water daily, and after 4 weeks drinking 1l of green tea daily. Tea was prepared daily at the same conditions of temperature, time of infusion and concentration. RESULTS: After green tea drinking, we found a significant reduction in serum levels of MDA and MDA+4-HNE and in the oxidative stress within the erythrocyte, as suggested by a significantly lower value of MBH and by changes in band 3 profile towards a normal mean profile, namely an increase in the band 3 monomer. A rise in the antioxidant capacity was also observed. CONCLUSIONS: Our data suggest for green tea drinking a beneficial effect, by reducing the development or the enhancement of oxidative stress and, therefore, protecting the individual for oxidative stress diseases. Moreover, we propose further studies about the value of band 3 profile and of MBH in providing a cumulative measurement of the effect of green tea drinking upon the oxidative stress in cells. Moreover, further studies are also needed, to clarify the effect of green tea consumption, the value of regular green tea consumption and the way it should be prepared to reach a healthy effect.  相似文献   

13.
Evidence from biochemical and animal models suggests that nutritional antioxidants should inhibit the development of diseases such as CHD and certain cancers. This evidence is not clearly corroborated by intervention studies in human subjects, due, in part, to inadequacies in current analytical methodologies. Although in vitro assays can give useful information on the attributes required by a compound to act as an antioxidant, results may have little nutritional relevance due to limited bioavailability. The determination of antioxidants in blood is often used as a measure of antioxidant status in vivo, but may not necessarily reflect concentrations in target tissues where oxidative stress is greatest. In addition, the accumulation of antioxidants in selective tissues may not be apparent from plasma measurements. Participation in quality-control schemes for antioxidant determination by HPLC allows inter-laboratory comparison of results. Moderation of indices of oxidative damage to lipids, proteins and DNA can provide information on the effectiveness of compounds as nutritional antioxidants. However, most current methods of assessing oxidative stress are subject to confounding factors of non-oxidative origin. Assays for total antioxidant capacity in plasma differ in their type of oxidation source, target and measurement used to detect the oxidized product. They give different results, should never be used in isolation, and results should be interpreted with caution. Until more is known about the activity and metabolic fate of antioxidants, caution should be exercised in the consumption of large amounts of commercially-available antioxidant preparations.  相似文献   

14.
OBJECTIVE: To investigate the effect of black and green tea consumption, with and without milk, on the plasma antioxidant activity in humans. DESIGN: In a complete cross-over design, 21 healthy volunteers (10 male, 11 female) received a single dose of black tea, green tea (2 g tea solids in 300 ml water) or water with or without milk. Blood samples were obtained at baseline and at several time points up to 2 h post-tea drinking. Plasma was analysed for total catechins and antioxidant activity, using the ferric reducing ability of plasma (FRAP) assay. RESULTS: Consumption of black tea resulted in a significant increase in plasma antioxidant activity reaching maximal levels at about 60 min. A larger increase was observed after consumption of green tea. As anticipated from the higher catechin concentration in green tea, the rise in plasma total catechins was significantly higher after consumption of green tea when compared to black tea. Addition of milk to black or green tea did not affect the observed increases in plasma antioxidant activity. CONCLUSIONS: Consumption of a single dose of black or green tea induces a significant rise in plasma antioxidant activity in vivo. Addition of milk to tea does not abolish this increase. Whether the observed increases in plasma antioxidant activity after a single dose of tea prevent in vivo oxidative damage remains to be established. European Journal of Clinical Nutrition (2000) 54, 87-92  相似文献   

15.
Green tea contains polyphenolic antioxidants that have shown anticarcinogenic properties in animal and in vitro experimental studies. Current data regarding absorption and bioavailability of tea antioxidants in humans, however, are conflicting. In this study, plasma and urine antioxidant power after ingestion of green tea was measured using the ferric reducing/antioxidant power (FRAP) assay (US patent pending) to assess absorption, systemic distribution, and renal excretion of green tea antioxidants in healthy adults. Results showed that absorption of green tea antioxidants was rapid, with peak increase in plasma FRAP of around 4% at 40 minutes after ingestion: mean increase was 44 +/- 9 (SE) mumol/l. Excretion of polyphenolic antioxidants was also fast, peaking at 60-90 minutes, with significant correlation between urinary FRAP values and urinary total phenolic concentrations (r = 0.845, p < 0.001). In control studies, no increase in plasma or urine FRAP values was seen after intake of water. Although the amount of antioxidants absorbed was relatively small and the increase in plasma antioxidant power was of short duration, results demonstrate that some potentially anticarcinogenic polyphenolic antioxidants in green tea enter the systemic circulation soon after ingestion and cause a significant increase in plasma antioxidant status. This increase may, in turn, lower oxidative damage to DNA and so decrease risk of cancer.  相似文献   

16.
Green tea catechins are dietary antioxidant compounds that have been shown to protect against myocardial ischemia-reperfusion (IR) injury. Considering reports that catechins can induce phase 2 enzymes in cultured cells and some organs, we hypothesized that part of the protection to heart against IR injury may involve elevation of phase 2 enzyme activities. Rats were fed for 10 days with either control diet (sham and control groups) or the diet mixed with 0.25% green tea extract. At the end of 10 days, hearts were excised and subjected to global ischemia for 20 min followed by reperfusion for 2 hours. The hearts were compared for indices of cell death, oxidative stress, and phase 2 enzyme activities. Hearts from the green tea group had a 65% to 85% decrease in markers of apoptosis, a tendency to higher total glutathione, and higher activities of the phase 2 enzymes glutamate cysteine ligase and quinone reductase. The results support a possible involvement of phase 2 enzymes in the protection by green tea catechins against myocardial IR injury.  相似文献   

17.
The indiscriminate usage of synthetic chemicals and pesticides has led to a widespread contamination of land, water and air with harmful xenobiotics. The exposure to these toxicants results in severe health effects on organisms. Also, some natural foods contain harmless chemical species (nitrate), which however become toxic on certain conditions. Hence it is pertinent to focus attention on commonly consumed plant food materials, which can neutralize the toxicity damage caused by environmental agents. One of the most important sources of antioxidants is green tea. This review focuses on the mechanisms of oxidative damage caused by different xenobiotics and the defensive action of green tea in mitigating the damage. It is concluded that tea polyphenols, catechins and flavonoids scavenge reactive oxygen species and render a protective effect.  相似文献   

18.
Regular tea consumption has been associated with a reduced risk of cancer. As demonstrated in vitro, green tea contains catechins with antioxidant properties. We evaluated the effect of the supplementation of the Jurkat T-cell line with green tea extract on oxidative damage. Cells grown in medium with or without green tea extract (10 mg/L) were treated with Fe(2+) (100 micromol/L) as an oxidative stimulus for 2 h. Cell membrane lipid peroxidation was evaluated by fatty acids pattern analysis and malondialdehyde production in alpha-linolenic acid-loaded cells. Furthermore, oxidative DNA damage (single strand breaks) was detected in cells by the Comet assay and quantified as relative tail moment (RTM). Supplementation with green tea extract significantly decreased malondialdehyde production (1.6 +/- 0.3 vs. 0.6 +/- 0.1 nmol/mg protein, P < 0.05) and DNA damage (0.32 +/- 0.07 vs. 0.12 +/- 0.04 RTM, P < 0.05) after Fe(2+) oxidative treatment. In control cells, there was no effect on membrane distribution of (n-3) fatty acids due to Fe(2+) treatment. Cell enrichment with alpha-linolenic acid increased total membrane (n-3) fatty acids. However, the oxidative treatment did not modify the distribution of polyunsaturated fatty acids. It is likely that the observed protective effects can be attributed to epigallocatechin gallate, which is present mainly (670 g/kg) in green tea extract; however, we cannot exclude contributions by other catechins. These data support a protective effect of green tea against oxidative damage.  相似文献   

19.
茶的抗氧化作用研究   总被引:7,自引:0,他引:7  
韩驰 《卫生研究》2005,34(2):234-237
研究表明茶水及其主要活性成分茶多酚和茶色素均有很强的抗氧化作用 ;而多数学者认为这是预防癌症和心血管疾病的主要机理之一。茶可以诱导体内抗氧化酶活性 ;调节Ⅰ、Ⅱ相解毒酶 ;抑制致癌物的代谢活化 ;减少DNA加和物的形成 ;抑制癌基因的激活 ,减少癌基因的复制 ,阻断癌的启动 ,可改变活性氧所诱发的生长有关的基因表达 ,直接影响转录因子活性 ,以消除氧化损伤所带来的信息通路上的障碍 ;从而抑制肿瘤的异常增生。茶对心血管疾病的预防机理可能与其抗氧化作用能中断或阻止脂质过氧化、清除超氧化物自由基和羟自由基的功效有关。茶色素可抑制低密度脂蛋白氧化修饰和血管细胞粘附 ,降低血浆内皮素水平 ,增加谷胱甘肽过氧化物酶活性 ,具有良好的抗血凝、促纤维蛋白原溶解和显著抑制血小板聚集 ,从而抑制主动脉及冠状动脉内壁粥样硬化斑块的形成 ,达到防治心血管疾病的目的。  相似文献   

20.
BACKGROUND: Green and black tea polyphenols have been extensively studied as cancer chemopreventive agents. Many in vitro experiments have supported their strong antioxidant activity. Additional in vivo studies are needed to examine the pharmacokinetic relation of absorption and antioxidant activity of tea polyphenols administered in the form of green or black tea or tea extract supplements. OBJECTIVE: The purpose of this study was to compare the pharmacokinetic disposition of tea polyphenols and their effect on the antioxidant capacity in plasma 8 h after a bolus consumption of either green tea, black tea, or a green tea extract supplement. DESIGN: Thirty healthy subjects were randomly assigned to 3 different sequences of green tea, black tea, or a green tea extract supplement in a 3 x 3 crossover design with a 1-wk washout period in between treatments. RESULTS: Flavanol absorption was enhanced when tea polyphenols were administered as a green tea supplement in capsule form and led to a small but significant increase in plasma antioxidant activity compared with when tea polyphenols were consumed as black tea or green tea. All 3 interventions provided similar amounts of (-)-epigallocatechin-3-gallate. CONCLUSIONS: Our observations suggest that green tea extract supplements retain the beneficial effects of green and black tea and may be used in future chemoprevention studies to provide a large dose of tea polyphenols without the side effects of caffeine associated with green and black tea beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号