首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left-right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1-4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin alpha1/alpha6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS.  相似文献   

2.
Mutations in zinc‐finger in cerebellum 3 (ZIC3) result in heterotaxy or isolated congenital heart disease (CHD). The majority of reported mutations cluster in zinc‐finger domains. We previously demonstrated that many of these lead to aberrant ZIC3 subcellular trafficking. A relative paucity of N‐ and C‐terminal mutations has, however, prevented similar analyses in these regions. Notably, an N‐terminal polyalanine expansion was recently identified in a patient with VACTERL, suggesting a potentially distinct function for this domain. Here we report ZIC3 sequencing results from 440 unrelated patients with heterotaxy and CHD, the largest cohort yet examined. Variants were identified in 5.2% of sporadic male cases. This rate exceeds previous estimates of 1% and has important clinical implications for genetic testing and risk‐based counseling. Eight of 11 were novel, including 5 N‐terminal variants. Subsequent functional analyses included four additional reported but untested variants. Aberrant cytoplasmic localization and decreased luciferase transactivation were observed for all zinc‐finger variants, but not for downstream or in‐frame upstream variants, including both analyzed polyalanine expansions. Collectively, these results expand the ZIC3 mutational spectrum, support a higher than expected prevalence in sporadic cases, and suggest alternative functions for terminal mutations, highlighting a need for further study of these domains.  相似文献   

3.
内脏异位是由于左右非对称性发育异常所致,常与胸腹腔器官的异常偏侧化有关。心脏经常受累,且心脏受累的严重程度通常决定其预后效果。内脏异位患者有特征性的心血管畸形、内脏器官的异常排列以及中线结构发育畸形。在内脏异位患者中第一个被发现有突变的基因是编码锌指转录因子的ZIC3。很多研究证实,ZIC3突变可导致X连锁内脏异位,而且在孤立性先心病中也发现了ZIC3的突变。至今,在内脏异位患者中发现有13个ZIC3突变,其中包括无义突变、错义突变、沉默突变、移码突变以及易位突变等。然而,ZIC3基因在内脏异位,特别是伴复杂先心病中的致病机理仍不是很清楚。本文就ZIC3结构、作用、突变以及其在内脏异位伴先心病中的研究现状及存在的问题做一综述。  相似文献   

4.
5.
6.
7.
Sato H  Masuda M  Miura R  Yoneda M  Kai C 《Virology》2006,352(1):121-130
Morbilliviruses, which belong to the Mononegavirales, replicate its RNA genome in the cytoplasm of the host cell. However, they also form characteristic intranuclear inclusion bodies, consisting of nucleoprotein (N), in infected cells. To analyze the mechanisms of nucleocytoplasmic transport of N protein, we characterized the nuclear localization (NLS) and nuclear export (NES) signals of canine distemper virus (CDV) N protein by deletion mutation and alanine substitution of the protein. The NLS has a novel leucine/isoleucine-rich motif (TGILISIL) at positions 70-77, whereas the NES is composed of a leucine-rich motif (LLRSLTLF) at positions 4-11. The NLS and NES of the N proteins of other morbilliviruses, that is, measles virus (MV) and rinderpest virus (RPV), were also analyzed. The NLS of CDV-N protein is conserved at the same position in MV-N protein, whereas the NES of MV-N protein is located in the C-terminal region. The NES of RPV-N protein is also located at the same position as CDV-N protein, whereas the NLS motif is present not only at the same locus as CDV-N protein but also at other sites. Interestingly, the nuclear export of all these N proteins appears to proceed via a CRM1-independent pathway.  相似文献   

8.
Herpes simplex virus type 1 (HSV-1) UL3 protein is a nuclear protein. In this study, the molecular mechanism of the subcellular localization of UL3 was characterized by fluorescence microscopy in living cells. A nuclear localization signal (NLS) and a nuclear export signal (NES) were also identified. UL3 was demonstrated to target to the cytoplasm through the NES via chromosomal region maintenance 1 (CRM-1) dependent pathway, and to the nucleus through RanGTP-dependent mechanism. Heterokaryon assays confirmed that UL3 was capable of shuttling between the nucleus and the cytoplasm. These results demonstrate that the UL3 protein is a novel HSV-1 encoded nucleocytoplasmic shuttling protein.  相似文献   

9.
10.
11.
OBJECTIVES: Human immunodeficiency virus type 1 (HIV-1) Rev is a nucleocytoplasmic shuttling protein with dominant localization in the cell nucleus/nucleolus. To clarify the mechanism(s) that enables such a biased subcellular localization under the co-presence of nuclear/nucleolar targeting (NOS) and nuclear export signals (NES), the properties of another functional domain, a nuclear diffusion inhibitory signal (NIS), was investigated. STUDY DESIGN: The NIS was previously shown to interfere with passive nuclear entry of small proteins. Intracellular distribution and degradation profiles of Rev mutants that harbor mutations in the NIS were analyzed biochemically and cellbiologically. RESULTS: A NIS-deficient Rev mutant, which was no longer functional as Rev, displayed a significantly more rapid degradation profile as a consequence of its dramatic leakage into the cytoplasm. Additionally, disabling the NOS/nuclear localization signal (NLS), as well as the NIS, resulted in further rapid degradation, which also supports the hypothetical role of the nucleolus as a Rev storage site. CONCLUSIONS: It was uncovered that the NIS is playing a key role in HIV-1 Rev function by maintaining the nuclear-dominant localization and the intracellular stability of Rev.  相似文献   

12.
Bovine herpesvirus-1 (BHV-1) VP8 is found in the nucleus immediately after infection. Transient expression of VP8 fused to yellow fluorescent protein (YFP) in COS-7 cells confirmed the nuclear localization of VP8 in the absence of other viral proteins. VP8 has four putative nuclear localization signals (NLS). Deletion of pat4 ((51)RRPR(54)) or pat7 ((48)PRVRRPR(54)) NLS2 abrogated nuclear accumulation, whereas deletion of (48)PRV(50) did not, so pat4 NLS2 is critical for nuclear localization of VP8. Furthermore, NLS1 ((11)RRPRR(15)), pat4 NLS2, and pat7 NLS2 were all capable of transporting the majority of YFP to the nucleus. Finally, a 12-amino-acid peptide with the sequence RRPRRPRVRRPR directed all of YFP into the nucleus, suggesting that reiteration of the RRPR motif makes the nuclear localization more efficient. Heterokaryon assays demonstrated that VP8 is also capable of shuttling between the nucleus and cytoplasm of the cell. Deletion mutant analysis revealed that this property is attributed to a leucine-rich nuclear export sequence (NES) consisting of amino acids (485)LSAYLTLFVAL(495). This leucine-rich NES caused transport of YFP to the cytoplasm. These results demonstrate that VP8 shuttles between the nucleus and cytoplasm.  相似文献   

13.
14.
BACKGROUND: Although phospholipase C (PLC)delta1 containing a functional nuclear export signal (NES) is normally localized at the plasma membrane and in the cytoplasm, it shuttles between the nucleus and the cytoplasm. Since nucleocytoplasmic shuttling of a molecule is generally regulated by a balance between its NES and the nuclear localization signal (NLS), we examined whether PLCdelta1 contains an NLS sequence. RESULTS: A region corresponding to the C terminus of the X domain and the XY-linker, which contains clusters of basic amino acid residues, was essential for the nuclear import of PLCdelta1 in Madin-Darby canine kidney cells. A series of point mutations on lysine residues in this region revealed that K432 and K434 in combination were important for the nuclear import. A short synthetic peptide corresponding to residues 429-442, however, was not able to function as an NLS sequence when they were injected into the cytoplasm in a carrier-conjugated form. Neither a longer peptide equivalent to PLCdelta1 412-498 fused to a protein tag consisting of glutathione S-transferase and green fluorescent protein was imported to the nucleus after microinjection into the cytoplasm. CONCLUSION: The nuclear import of PLCdelta1 requires the C-terminus of the X domain, particularly the amino acid residues K432 and K434, and the XY-linker. The region alone, however, cannot serve as a functional NLS. The machinery for nuclear transport may require additional structural component(s) of the enzyme.  相似文献   

15.
16.
17.
18.
19.
In order to better understand the role of nuclear localization of polyglutamine in the human CAG repeat disorders, gene targeting was used to add either nuclear localization (NLS) or nuclear export (NES) signals to versions of the mouse Hprt protein containing expanded polyglutamine (HprtQ150). The NLS increased levels of nuclear HprtQ150 protein in the mouse brain and hastened both the presentation of neuronal intranuclear inclusions (NIIs) and the onset of behavioral abnormalities. The NES reduced levels of nuclear HprtQ150 protein in mouse brain and delayed both the presentation of NIIs and the onset of behavioral abnormalities. Together these results indicate the nucleus is the primary site of toxicity in HprtQ150 mice. Furthermore, the signals did not alter the relative regional distribution of NIIs, suggesting that factors other than nuclear access dictate the regional specificity of NII formation in this mouse model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号