首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent paper analyzed the sensitivity to various simulation parameters of the Monte Carlo simulations of nine beams from three major manufacturers of commercial medical linear accelerators, ranging in energy from 4-25 MV. In this work the nine models are used: to calculate photon energy spectra and average energy distributions and compare them to those published by Mohan et al. [Med. Phys. 12, 592-597 (1985)]; to separate the spectra into primary and scatter components from the primary collimator, the flattening filter and the adjustable collimators; and to calculate the contaminant-electron fluence spectra and the electron contribution to the depth-dose curves. Notwithstanding the better precision of the calculated spectra, they are similar to those calculated by Mohan et al. The three photon spectra at 6 MV from the machines of three different manufacturers show differences in their shapes as well as in the efficiency of bremsstrahlung production in the corresponding target and filter combinations. The contribution of direct photons to the photon energy fluence in a 10 x 10 field varies between 92% and 97%, where the primary collimator contributes between 0.6% and 3.4% and the flattening filter contributes between 0.6% and 4.5% to the head-scatter energy fluence. The fluence of the contaminant electrons at 100 cm varies between 5 x 10(-9) and 2.4 x 10(-7) cm(-2) per incident electron on target, and the corresponding spectrum for each beam is relatively invariant inside a 10 x 10 cm2 field. On the surface the dose from electron contamination varies between 5.7% and 11% of maximum dose and, at the depth of maximum dose, between 0.16% and 2.5% of maximum dose. The photon component of the percentage depth-dose at 10 cm depth is compared with the general formula provided by AAPM's task group 51 and confirms the claimed accuracy of 2%.  相似文献   

2.
Ding GX 《Medical physics》2002,29(11):2459-2463
This study investigates a possible cause of reported significant dose discrepancies between Monte Carlo calculations and measurements in the buildup region for high-energy photon beams in large fields. A proposed hypothesis was that the discrepancy was caused by a source of electrons in the accelerator head that was not fully accounted for in the treatment head simulation. In this investigation, a lead foil is added just below the accelerator head in order to study this hypothesis. The lead foil effectively removes charged particles generated inside the accelerator head. The charged particles generated by the lead foil can be accounted for fully because the simple geometry can be simulated accurately. An 18 MV photon beam from a Varian Clinac-2100EX is measured using a WELLHOFER WP700 beam scanner with an IC-10 ionization chamber (cavity radius=3 mm). The BEAM Monte Carlo code is used in the incident beam simulations. Both EGS4/DOSXYZ and EGSnrc/DOSRZnrc are used in the dose calculations in a water phantom. The Monte Carlo calculated depth-dose curve is scaled so that it has the same values at 10 cm depth as the measured curve. It is found that the discrepancies between Monte Carlo calculations and measurements remain significant in the buildup region even after applying necessary corrections to the measured data. The discrepancies have only been modestly decreased with the lead foil in place compared to the 40 x 40 cm2 open field. At a depth of 1 cm, discrepancies of about 5% are still observed in the buildup region for the field with the lead foil. Therefore a new explanation for the unresolved discrepancy remains to be found.  相似文献   

3.
Chibani O  Ma CM 《Medical physics》2003,30(8):1990-2000
The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively.  相似文献   

4.
The purpose of this investigation is to study the feasibility of using an alternative method to commission stereotactic radiosurgery beams shaped by micro multi-leaf collimators by using Monte Carlo simulations to obtain beam characteristics of small photon beams, such as incident beam particle fluence and energy distributions, scatter ratios, depth-dose curves and dose profiles where measurements are impossible or difficult. Ionization chambers and diode detectors with different sensitive volumes were used in the measurements in a water phantom and the Monte Carlo codes BEAMnrc/DOSXYZnrc were used in the simulation. The Monte Carlo calculated data were benchmarked against measured data for photon beams with energies of 6 MV and 10 MV produced from a Varian Trilogy accelerator. The measured scatter ratios and cross-beam dose profiles for very small fields are shown to be not only dependent on the size of the sensitive volume of the detector used but also on the type of detectors. It is known that the response of some detectors changes at small field sizes. Excellent agreement was seen between scatter ratios measured with a small ion chamber and those calculated from Monte Carlo simulations. The values of scatter ratios, for field sizes from 6 x 6 mm2 to 98 x 98 mm2, range from 0.67 to 1.0 and from 0.59 to 1.0 for 6 and 10 MV, respectively. The Monte Carlo calculations predicted that the incident beam particle fluence is strongly affected by the X-Y-jaw openings, especially for small fields due to the finite size of the radiation source. Our measurement confirmed this prediction. This study demonstrates that Monte Carlo calculations not only provide accurate dose distributions for small fields where measurements are difficult but also provide additional beam characteristics that cannot be obtained from experimental methods. Detailed beam characteristics such as incident photon fluence distribution, energy spectra, including composition of primary and scattered photons, can be independently used in dose calculation models and to improve the accuracy of measurements with detectors with an energy-dependent response. Furthermore, when there are discrepancies between results measured with different detectors, the Monte Carlo calculated values can indicate the most correct result. The data set presented in this study can be used as a reference in commissioning stereotactic radiosurgery beams shaped by a BrainLAB m3 on a Varian 2100EX or 600C accelerator.  相似文献   

5.
The introduction into the BEAMnrc code of a new variance reduction technique, called directional bremsstrahlung splitting (DBS), is described. DBS uses a combination of interaction splitting for bremsstrahlung, annihilation, Compton scattering, pair production and photoabsorption, and Russian Roulette to achieve a much better efficiency of photon beam treatment head simulations compared to the splitting techniques already available in BEAMnrc (selective bremsstrahlung splitting, SBS, and uniform bremsstrahlung splitting, UBS). In a simulated 6 MV photon beam (10 x 10 cm2 field) photon fluence efficiency in the beam using DBS is over 8 times higher than with optimized SBS and over 20 times higher than with UBS, with a similar improvement in electron fluence efficiency in the beam. Total dose efficiency in a central-axis depth-dose curve improves by a factor of 6.4 over SBS at all depths in the phantom. The performance of DBS depends on the details of the accelerator being simulated. At higher energies, the relative improvement in efficiency due to DBS decreases somewhat, but is still a factor of 3.5 improvement over SBS for total dose efficiency using DBS in a simulated 18 MV photon beam. Increasing the field size of the simulated 6 MV beam to 40 x 40 cm2 (broad beam) causes the relative efficiency improvement of DBS to decrease by a factor of approximately 1.7 but is still up to 7 times more efficient than with SBS.  相似文献   

6.
The effect of beam obliquity on the surface relative dose profiles for the tangential photon beams was studied. The 6 and 15 MV photon beams with 4 x 4 and 10 x 10 cm2 field sizes produced by a Varian 21 EX linear accelerator were used. Phase-space models of the photon beams were created using Monte Carlo simulations based on the EGSnrc code, and were verified using film measurements. The relative dose profiles in the phantom skin, at 2 mm depth from the surface of the half-phantom geometry, or HPG, were calculated for increasing gantry angles from 270 to 280 deg clockwise. Relative dose profiles of a full phantom enclosing the whole tangential beam (full phantom geometry, or FPG) were also calculated using Monte Carlo simulation as a control for comparison. The results showed that, although the relative dose profiles in the phantom skin did not change significantly with an oblique beam using a FPG, the surface relative depth dose was increased for the HPG. In the HPG, with 6 MV photon beams and field size = 10 x 10 cm2, when the beam angle, starting from 270 deg, was increased from 1 to 3 deg, the relative depth doses in the phantom skin were increased from 68% to 79% at 10 cm depth. This increase in dose was slightly larger than the dose from 15 MV photon beams with the same field size and beam angles, where the relative depth doses in phantom skin were increased from 81% to 87% at 10 cm depth. A parameter called the percent depth dose (PDD) ratio, defined as the relative depth dose from the HPG to the relative depth dose from the FPG at a given depth along the phantom skin, was used to evaluate the effect of the phantom-air interface. It is found that the PDD ratio increased significantly when the beam angle was changed from zero to 1-3 degrees. Moreover, the PDD ratio, for a given field size, experienced a greater increase for 6 MV than for 15 MV. For the same photon beam energy, the PDD ratio increased more with a 4 x 4 cm2 field compared to 10 x 10 cm2. The results in this study will be useful for physicists and dosimetrists to predict the surface relative dose variations when using clinical tangential-like photon beams in radiation therapy.  相似文献   

7.
In some linear accelerators, the charge collected by the monitor ion chamber is partly caused by backscattered particles from accelerator components downstream from the chamber. This influences the output of the accelerator and also has to be taken into account when output factors are derived from Monte Carlo simulations. In this work, the contribution of backscattered particles to the monitor ion chamber response of a Varian 2100C linac was determined for photon beams (6, 10 MV) and for electron beams (6, 12, 20 MeV). The experimental procedure consisted of charge integration from the target in a photon beam or from the monitor ion chamber in electron beams. The Monte Carlo code EGS4/BEAM was used to study the contribution of backscattered particles to the dose deposited in the monitor ion chamber. Both measurements and simulations showed a linear increase in backscatter fraction with decreasing field size for photon and electron beams. For 6 MV and 10 MV photon beams, a 2-3% increase in backscatter was obtained for a 0.5 x 0.5 cm2 field compared to a 40 x 40 cm2 field. The results for the 6 MV beam were slightly higher than for the 10 MV beam. For electron beams (6, 12, 20 MeV), an increase of similar magnitude was obtained from measurements and simulations for 6 MeV electrons. For higher energy electron beams a smaller increase in backscatter fraction was found. The problem is of less importance for electron beams since large variations of field size for a single electron energy usually do not occur.  相似文献   

8.
A Monte Carlo study on internal wedges using BEAM   总被引:1,自引:0,他引:1  
  相似文献   

9.
Photon beams of 4, 6 and 15 MV from Varian Clinac 2100C and 2300C/D accelerators were simulated using the EGS4/BEAM code system. The accelerators were modelled as a combination of component modules (CMs) consisting of a target, primary collimator, exit window, flattening filter, monitor chamber, secondary collimator, ring collimator, photon jaws and protection window. A full phase space file was scored directly above the upper photon jaws and analysed using beam data processing software, BEAMDP, to derive the beam characteristics, such as planar fluence, angular distribution, energy spectrum and the fractional contributions of each individual CM. A multiple-source model has been further developed to reconstruct the original phase space. Separate sources were created with accurate source intensity, energy, fluence and angular distributions for the target, primary collimator and flattening filter. Good agreement (within 2%) between the Monte Carlo calculations with the source model and those with the original phase space was achieved in the dose distributions for field sizes of 4 cm x 4 cm to 40 cm x 40 cm at source surface distances (SSDs) of 80-120 cm. The dose distributions in lung and bone heterogeneous phantoms have also been found to be in good agreement (within 2%) for 4, 6 and 15 MV photon beams for various field sizes between the Monte Carlo calculations with the source model and those with the original phase space.  相似文献   

10.
P A Jursinic 《Medical physics》1999,26(10):2092-2098
When a block and tray are placed in a x-ray beam the dose to a point in a phantom is changed by the following factors: (1) attenuation of photon and electron fluence from the head of the accelerator by the tray and the block, (2) decrease in the scatter in the phantom by a reduction in the phantom volume that receives radiation, and (3) generation of scatter off the tray and block. This third factor is generally ignored in dosimetry calculation but has been measured in this work. Measurements of incident photon fluence for 6 and 18 MV x rays were made with a columnar miniphantom of 10 cm depth. The tray factor for a 9 mm thick Lexan tray is found to be variable and to increase by 1.8% due to scatter off the tray when the field size is increased from a 3cm x 3 cm to 40cm x 40 cm field. Also, it was found that scatter off a block could increase the incident photon fluence by as much as 2%. The magnitude of this block scatter depends on the length of the inner edge of the opening in the block and on amount of block that is being irradiated, the overlap of the block by the radiation field. The total block-tray factor can be as much as 3% larger than the single-value tray factor measured with a 10cm x 10cm field that is traditionally used. An analytical equation is developed that accurately models the block-tray factor.  相似文献   

11.
Monte Carlo (code GEANT) produced 6 and 15 MV phase space (PS) data were used to define several simple photon beam models. For creating the PS data the energy of starting electrons hitting the target was tuned to get correct depth dose data compared to measurements. The modeling process used the full PS information within the geometrical boundaries of the beam including all scattered radiation of the accelerator head. Scattered radiation outside the boundaries was neglected. Photons and electrons were assumed to be radiated from point sources. Four different models were investigated which involved different ways to determine the energies and locations of beam particles in the output plane. Depth dose curves, profiles, and relative output factors were calculated with these models for six field sizes from 5x5 to 40x40cm2 and compared to measurements. Model 1 uses a photon energy spectrum independent of location in the PS plane and a constant photon fluence in this plane. Model 2 takes into account the spatial particle fluence distribution in the PS plane. A constant fluence is used again in model 3, but the photon energy spectrum depends upon the off axis position. Model 4, finally uses the spatial particle fluence distribution and off axis dependent photon energy spectra in the PS plane. Depth dose curves and profiles for field sizes up to 10x10cm2 were not model sensitive. Good agreement between measured and calculated depth dose curves and profiles for all field sizes was reached for model 4. However, increasing deviations were found for increasing field sizes for models 1-3. Large deviations resulted for the profiles of models 2 and 3. This is due to the fact that these models overestimate and underestimate the energy fluence at large off axis distances. Relative output factors consistent with measurements resulted only for model 4.  相似文献   

12.
Film dosimetry provides a convenient tool to determine dose distributions, especially for verification of IMRT plans. However, the film response to radiation shows a significant dependence on depth, energy and field size that compromise the accuracy of measurements. Kodak's XV2 film has a low saturation dose (approximately 100 cGy) and, consequently, a relatively short region of linear dose-response. The recently introduced Kodak extended range EDR2 film was reported to have a linear dose-response region extending to 500 cGy. This increased dose range may be particularly useful in the verification of IMRT plans. In this work, the dependence of Kodak EDR2 film's response on the depth, field size and energy was evaluated and compared with Kodak XV2 film. Co-60, 6 MV, 10 MV and 18 MV beams were used. Field sizes were 2 x 2, 6 x 6, 10 x 10, 14 x 14, 18 x 18 and 24 x 24 cm2. Doses for XV2 and EDR2 films were 80 cGy and 300 cGy, respectively. Optical density was converted to dose using depth-corrected sensitometric (Hurter and Driffield, or H&D) curves. For each field size, XV2 and EDR2 depth-dose curves were compared with ion chamber depth-dose curves. Both films demonstrated similar (within 1%) field size dependence. The deviation from the ion chamber for both films was small forthe fields ranging from 2 x 2 to 10 x 10 cm2: < or =2% for 6, 10 and 18 MV beams. No deviation was observed for the Co-60 beam. As the field size increased to 24 x 24 cm2, the deviation became significant for both films: approximately 7.5% for Co-60, approximately 5% for 6 MV and 10 MV, and approximately 6% for 18 MV. During the verification of IMRT plans, EDR2 film showed a better agreement with the calculated dose distributions than the XV2 film.  相似文献   

13.
Total and primary polyenergetic dose spread arrays (PDSA) have been generated for a high energy 10 MV radiotherapy photon beam using the electron gamma shower (EGS) Monte Carlo code. By considering the attenuation of fluence per energy interval, PDSA have been produced at radiological depths of 0 cm (the surface PDSA) and 40 cm (the beam hardened PDSA). By comparing primary PDSA produced at these different depths, the effect of beam hardening on the PDSA has been quantified. Calculations show that the mean electron range due to the surface primary PDSA is 6.67 mm and the mean electron range of the beam hardened primary PDSA is 8.24 mm. In comparison, a 3 MeV primary monoenergetic dose spread array (MDSA) has a much smaller mean electron range of 4.81 mm. A radiotherapy x-ray beam computation method is introduced which involves a single superposition of the surface generated PDSA or beam hardened PDSA with a polyenergetic TERMA. The mean percentage difference between depth-dose curves obtained using super-position of surface and beam hardened PDSA is only 0.1%. The mean percentage difference from experimental data for these superposition curves is 2.8% down to 40 cm in a homogeneous phantom. The superposition process is shown to be forgiving to spectral differences when calculating the PDSA, but sensitive to the incident photon energy spectrum used to calculate the TERMA.  相似文献   

14.
A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.  相似文献   

15.
The accuracy of a pencil beam algorithm to predict scattered photon fluence into portal imaging systems was studied. A data base of pencil beam kernels describing scattered photon fluence behind homogeneous water slabs (1-50 cm thick) at various air gap distances (0-100 cm) was generated using the EGS Monte Carlo code. Scatter kernels were partitioned according to particle history: singly-scattered, multiply-scattered, and bremsstrahlung and positron annihilation photons. Mean energy and mean angle with respect to the incident photon pencil beam were also scored. This data allows fluence, mean energy, and mean angular data for each history type to be predicted using the pencil beam algorithm. Pencil beam algorithm predictions for 6 and 24 MV incident photon beams were compared against full Monte Carlo simulations for several inhomogeneous phantoms, including approximations to a lateral neck, and a mediastinum treatment. The accuracy of predicted scattered photon fluence, mean energy, and mean angle was investigated as a function of air gap, field size, photon history, incident beam resolution, and phantom geometry. Maximum errors in mean energies were 0.65 and 0.25 MeV for the higher and lower energy spectra, respectively, and 15 degrees for mean angles. The ability of the pencil beam algorithm to predict scatter fluence decreases with decreasing air gap, with the largest error for each phantom occurring at the exit surface. The maximum predictive error was found to be 6.9% with respect to the total fluence on the central axis. By maintaining even a small air gap (approximately 10 cm), the error in predicted scatter fluence may be kept under 3% for the phantoms and beam energies studied here. It is concluded that this pencil beam algorithm is sufficiently accurate (using International Commission on Radiation Units and Measurements Report No. 24 guidelines for absorbed dose) over the majority of clinically relevant air gaps, for further investigation in a portal dose prediction algorithm.  相似文献   

16.
Chow JC  Grigorov GN 《Medical physics》2006,33(12):4614-4621
The relative doses and hot/cold spot positions around a non-radioactive gold seed, irradiated by a 6 or 18 MV photon beam in water, were calculated using Monte Carlo simulation. Phase space files of 6 and 18 MV photon beams with a field size of 1 x 1 cm2 were generated by a Varian 21 EX linear accelerator using the EGSnrc and BEAMnrc code. The seed (1.2 x 1.2 x 3.2 mm3) was positioned at the isocenter in a water phantom (20 x 20 x 20 cm2) with source-to-axis distance = 100 cm. For the single beam geometry, the relative doses (normalized to the dose at 5 mm distance above the isocenter) at the upstream seed surface were calculated to be 1.64 and 1.56 for the 6 and 18 MV beams respectively when the central beam axis (CAX) is parallel to the width of the seed. These doses were slightly higher than those (1.58 and 1.52 for 6 and 18 MV beams respectively) calculated when the CAX is perpendicular to the width of the seed. Compared to the relative dose profiles with the same beam geometry without the seed in the water phantom, the presence of the seed affects the dose distribution at about 3 mm distance beyond both the upstream and downstream seed surface. For a pair of opposing beams with equal and unequal beam weight, the hot and cold spots of both opposing beams were mixed. For a 360 degree photon arc around the longitudinal axis of the seed, the relative dose profile along the width of the seed was similar to that of the opposing beam pair, except the former geometry has a larger dose gradient near the seed surface. In this study, selected results from our simulation were compared to previous measurements using film dosimetry.  相似文献   

17.
Mobit PN  Sandison GA 《Medical physics》1999,26(11):2503-2507
A detailed Monte Carlo study of the PTW-diamond solid state detector response in megavoltage photon beams (60Co gamma rays to 25 MV x rays) has been performed with the EGS4 Monte Carlo Code. The sensitive volume of the diamond detector is a disk of diameter 4.4 mm and thickness 0.40 mm. The phantom material was water and the irradiation depth was usually 3 cm but additional simulations were performed at six other depths for the 10 and 25 MV x rays. Results show that the PTW-diamond detector response per unit of absorbed dose is constant within 1% for photon beam energies ranging from 60Co gamma rays to 25 MV x rays. Accurate depth dose curves for 10 and 25 MV x-ray beams may be measured with the diamond detector since the response per unit of absorbed dose at different depths in a water phantom is also constant to within 1% for depths ranging from 3 to 25 cm and field sizes ranging from 2.5 cm by 2.5 cm to 10 cm by 10 cm. An examination of the difference between the PTW-diamond detector and the wall-less form of the detector (e.g., TLDs) revealed that there is no significant difference in their response in megavoltage photon beams. This implies that the encapsulation of the diamond dosimeter causes less than a 1.3% change in its response for these megavoltage photon beams. Analysis of the total dose deposited in the sensitive volume of the detector shows that the PTW-diamond detector behaves as an intermediate-sized cavity, not a simple Bragg-Gray cavity, since the dose contribution from photon interactions within the cavity (alpha(c)) to the total cavity dose is 8% for 25 MV x rays and increases to 42% for 60Co gamma rays.  相似文献   

18.
Our aim in the present study was to investigate the effects of initial electron beam characteristics on Monte Carlo calculated absorbed dose distribution for a linac 6 MV photon beam. Moreover, the range of values of these parameters was derived, so that the resulted differences between measured and calculated doses were less than 1%. Mean energy, radial intensity distribution and energy spread of the initial electron beam, were studied. The method is based on absorbed dose comparisons of measured and calculated depth-dose and dose-profile curves. All comparisons were performed at 10.0 cm depth, in the umbral region for dose-profile and for depths past maximum for depth-dose curves. Depth-dose and dose-profile curves were considerably affected by the mean energy of electron beam, with dose profiles to be more sensitive on that parameter. The depth-dose curves were unaffected by the radial intensity of electron beam. In contrast, dose-profile curves were affected by the radial intensity of initial electron beam for a large field size. No influence was observed in dose-profile or depth-dose curves with respect to energy spread variations of electron beam. Conclusively, simulating the radiation source of a photon beam, two of the examined parameters (mean energy and radial intensity) of the electron beam should be tuned accurately, so that the resulting absorbed doses are within acceptable precision. The suggested method of evaluating these crucial but often poorly specified parameters may be of value in the Monte Carlo simulation of linear accelerator photon beams.  相似文献   

19.
This study presents measured neutron dose using a neutron dosimeter in a water phantom and investigates a hypothesis that neutrons in a high-energy photon beam may be responsible for the reported significant dose discrepancies between Monte Carlo calculations and measurements at the build-up region in large fields. Borated polyethylene slabs were inserted between the accelerator head and the phantom in order to remove neutrons generated in the accelerator head. The thickness of the slab ranged from 2.5 cm to 10 cm. A lead slab of 3 mm thickness was also used in the study. The superheated drop neutron dosimeter was used to measure the depth-dose curve of neutrons in a high-energy photon beam and to verify the effectiveness of the slab to remove these neutrons. Total dose measurements were performed in water using a WELLHOFER WP700 beam scanner with an IC-10 ionization chamber. The Monte Carlo code BEAM was used to simulate an 18 MV photon beam from a Varian Clinac-2100EX accelerator. Both EGS4/DOSXYZ and EGSnrc/DOSRZnrc were used in the dose calculations. Measured neutron dose equivalents as a function of depth per unit total dose in water were presented for 10 x 10 and 40 x 40 cm2 fields. The measured results have shown that a 5-10 cm thick borated polyethylene slab can reduce the neutron dose by a factor of 2 when inserted between the accelerator head and the detector. In all cases the measured neutron dose equivalent was less than 0.5% of the photon dose. In order to study if the ion chamber was highly sensitive to the neutron dose, we have investigated the disagreement between the Monte Carlo calculated and measured central-axis depth-dose curves in the build-up region when different shielding materials were used. The result indicated that the IC-10 chamber was not highly sensitive to the neutron dose. Therefore, neutrons present in a high-energy photon beam were unlikely to be responsible for the reported discrepancies in the build-up region for large fields.  相似文献   

20.
Measured beam profiles and central-axis depth-dose data for 6- and 25-MV photon beams are used to generate a dose matrix which represents the full beam. A corresponding dose matrix is also calculated using the modified CBEAM model. The calculational model uses the usual set of three parameters to define the intensity at beam edges and the parameter that accounts for collimator transmission. An additional set of three parameters is used for the primary profile factor, expressed as a function of distance from the central axis. An optimization program has been adapted to automatically adjust these parameters to minimize the chi 2 between the measured and calculated data. The average values of the parameters for small (6 X 6 cm2), medium (10 X 10 cm2), and large (20 X 20 cm2) field sizes are found to represent the beam adequately for all field sizes. The calculated and the measured doses at any point agree to within 2% for any field size in the range 4 X 4 to 40 X 40 cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号