首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Galanin has been shown to stimulate feeding or modulate neuroendocrine secretions when administered centrally. In the present work, using quantitative autoradiography, we documented the existence of [125I]galanin specific binding sites in several hypothalamic nuclei expected to mediate these effects. In standard binding conditions, [125I]galanin specific binding can be visualized in the hypothalamic ventromedial nucleus, stria terminalis, piriform cortex, central amygdaloid nucleus and medial amygdaloid nucleus, while it is almost undetectable in most neuroendocrine or autonomic hypothalamic areas. We hypothesized that high endogenous galanin levels in these regions might mask galanin receptors. We first showed that a high ionic strength/acid wash of brain slices is effective in removing more than 80% of specifically prebound [125I]galanin in all tested regions. After such treatments, specific binding sites could be revealed in the hypothalamus namely in the parvocellular paraventricular nucleus, periventricular nucleus, arcuate nucleus and median eminence. In contrast, regions already labeled in standard conditions exhibited a slight decrease in [125I]galanin binding. Thus, regions were ranked from low to high rate of occupancy of galanin receptors by endogenous galanin, the rate of occupancy of galanin receptors being maximal in median eminence (greater than 90%). We thus studied the regional effect of guanine nucleotides on [125I]galanin specific binding. A high concentration (100 microM) of guanyl 5'-yl imidodiphosphate, a nonhydrolyzable analog of GTP directly added to the incubation medium, inhibited [125I]galanin binding in all telencephalic regions. On the same sections and only in regions of high index of galanin receptor occupancy (arcuate nucleus, median eminence, dorsomedial nucleus, paraventricular nucleus, and periventricular hypothalamic nucleus), guanyl 5'-yl imidodiphosphate paradoxically enhanced [125I]galanin binding. The effects of acid preincubation and guanyl 5'-yl imidodiphosphate incubation on [125I]galanin binding were strongly correlated in these hypothalamic areas (r = 0.97). In all regions, guanyl 5'-yl imidodiphosphate increased the rate of dissociation of [125I]galanin. In competition studies, guanyl 5'-yl imidodiphosphate decreased the IC50 s of unlabeled galanin which were homogenized around 4 nM in most telencephalic and hypothalamic regions. Thus, the guanyl 5'-yl imidodiphosphate-induced stimulation of [125I]galanin specific binding measured in the neuroendocrine and autonomic hypothalamus is linked to an increase in receptor capacity and not to a rise in receptor affinity. Both inhibitory and stimulatory guanyl 5'-yl imidodiphosphate effects observed in [125I]galanin equilibrium binding studies were dose-dependent and guanine nucleotide-specific with guanyl 5'-yl imidodiphosphate more potent than GTP or GDP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The functional interactions of the neuropeptide galanin (GAL) occur through its binding to three G protein-coupled receptor subtypes: galanin receptor (GALR) 1, GALR2 and GALR3. Previously, we demonstrated that GALR1 mRNA expression was increased in the CA1 region of the hippocampus and discrete hypothalamic nuclei in galanin transgenic (GAL-tg) mice. This observation suggested a compensatory adjustment in cognate receptors in the face of chronic GAL exposure. To evaluate the molecular alterations to GALR2 and GALR3 in the forebrain of GAL overexpressing mice, we performed complementary quantitative, real-time PCR (qPCR), in situ hybridization, and immunohistochemistry in select forebrain regions of GAL-tg mice to characterize the neuronal distribution and magnitude of GAL mRNA and peptide expression and the consequences of genetically manipulating the neuropeptide GAL on the expression of GALR2 and GALR3 receptors. We found that GAL-tg mice displayed dramatic increases in GAL mRNA and peptide in the frontal cortex, posterior cortex, hippocampus, septal diagonal band complex, amygdala, piriform cortex, and olfactory bulb. Moreover, there was evidence for ectopic neuronal GAL expression in forebrain limbic regions that mediate cognitive and affective behaviors, including the piriform and entorhinal cortex and amygdala. Interestingly, regional qPCR analysis failed to reveal any changes in GALR2 or GALR3 expression in the GAL-tg mice, suggesting that, contrary to GALR1, these receptor genes are not under ligand-mediated regulatory control. The GAL-tg mouse model may provide a useful tool for the investigation of GAL ligand-receptor relationships and their role in normal cognitive and affective functions as well as in the onset of neurological disease.  相似文献   

3.
Increased galanin (GAL) may be associated with the cognitive deficits characteristic of Alzheimer’s disease (AD). However, both increased and decreased GAL receptor density has been reported in AD brain. Previous studies indicate pre-treatment with guanine nucleotides displaces endogenous GAL from GAL receptors (GALR), providing an indirect measurement of GALR occupancy. In addition, pre-treatment with guanine nucleotides may provide a more accurate measurement of GALR density since it would avoid the masking of GALRs by residual binding of endogenous GAL. Thus, in the present study, we examined the influence of pre-treatment with guanine nucleotides on 125I-GAL binding in multiple regions of normal and AD brain. Our results indicate that GTP pre-treatment enhances GAL binding in specific regions in normal and AD brain. In addition, our results suggest an increase in the number of GALRs occupied by endogenous GAL in the deep layers of the frontal cortex and the lateral hypothalamus of AD subjects compared to normal subjects. The regional differences in GALR density and receptor occupancy between normal and AD subjects may play a role in the cognitive disturbances associated with the disease.  相似文献   

4.
Galanin is a 29-amino acid peptide widely distributed in the mammalian central nervous system. Galanin receptors in the guinea pig brain were visualized using [125I]galanin by in vitro receptor quantitative autoradiography. Scatchard analysis of [125I]galanin binding to slide-mounted sections revealed saturable binding to a single class of high affinity receptors with a KD of approximately 1 nM. Specific [125I]galanin binding sites were detected in a large number of brain areas (concentration range: from non detectable to 99.32 fmol/mg of tissular proteins). The anatomical mapping revealed high densities essentially in the telencephalon (e.g. lateral septal nuclei, amygdala, hippocampal dentate gyrus) and the diencephalon (e.g. the anterodorsal and medial habenular thalamic nuclei, the paraventricular, dorsomedian and median mammillary hypothalamic nuclei, the posterior lobe of the pituitary). Addition of Mg2+ and GTP increased binding in some areas such as the zona incerta, the median eminence and the arcuate nucleus, and decreased it in other areas such as the amygdala, the hippocampus and the mammillary nuclei. This regional heterogeneity in the effect of Mg2+ and GTP can be interpreted as: (1) different rates of galanin receptor occupancy by endogenous peptide; (2) a differential coupling of GTP binding proteins to galanin receptors in the brain structures; and (3) a different nature of receptors. At any rate, this study provides evidence for a specific GTP-sensitive galanin receptor in guinea pig brain with an extensive distribution suggesting various physiological implications. Comparison with studies performed in several mammals shows that the overall distribution of galanin receptors is well preserved among species. These data suggest that galanin may posses similar functional properties in the different species tested so far. Nevertheless, very distinct differences were found in some areas like the cortex, the hippocampus and the pituitary.  相似文献   

5.
The ligand binding properties of galanin receptors were examined in crude synaptosomal fraction preparations of lumbar dorsal spinal cord, using chloramin-T mono-iodinated porcine Tyr26 galanin as ligand. The equilibrium binding of [125I]galanin showed the presence of a single population of high-affinity binding sites with KD = 0.6 +/- 0.2 nM in a concentration of 55 +/- 15 fmol mg-1 protein (Bmax). The N-terminal fragments galanin (1-16) and galanin (1-12) fully displaced specific [125I]galanin binding from membranes with IC50 values 6 nM and 4 microM, respectively. The C-terminal fragment galanin (17-29) did not displace [125I]galanin when applied in the concentration range 10(-11)-10(-4) M. GTP inhibited the specific binding of [125I] galanin in a concentration dependent manner, with 54% inhibition at 1 mM, suggesting that the galanin receptor found in lumbar dorsal spinal cord is G-protein coupled. Second messenger systems, through which the galanin receptor in lumbar dorsal spinal cord may exert its effect, were also studied. A galanin (10 microM) produced inhibition (58%) of the depolarization induced cGMP increase was found, whereas galanin (10 microM) did not inhibit the noradrenalin (100 microM) activated cAMP synthesis or phosphoinositide turnover in tissue slices of the spinal cord. Bilateral transection of the sciatic nerve at midthigh level 14 days prior to the binding experiment was performed, a treatment which is known to cause a dramatic increase of galanin-like immunoreactivity in the superficial layers of the dorsal spinal cord, dorsal root ganglion and in galanin mRNA levels, but no significant effect on Bmax or KD of the galanin receptor was found.  相似文献   

6.
Derivatives of the muscarinic antagonist 3-quinuclidinyl-4-iodobenzilate (QNB), particularly [123I]-(R,R)-I-QNB, are currently being assessed as in vivo ligands to monitor muscarinic receptors in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), relating changes to disease symptoms and to treatment response with cholinergic medication. To assist in the evaluation of in vivo binding, muscarinic receptor density in post-mortem human brain was measured by autoradiography with [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB and compared to M1 ([3H]pirenzepine) and M2 and M4 ([3H]AF-DX 384) receptor binding. Binding was calculated in tissue containing striatum, globus pallidus (GPe), claustrum, and cingulate and insula cortex, in cases of AD, DLB, Parkinson's disease (PD) and normal elderly controls. Pirenzepine, AF-DX 384 and (R,S)-I-QNB binding in the striatum correlated positively with increased Alzheimer-type pathology, and AF-DX 384 and (R,R)-I-QNB cortical binding correlated positively with increased Lewy body (LB) pathology; however, striatal pirenzepine binding correlated negatively with cortical LB pathology. M1 receptors were significantly reduced in striatum in DLB compared to AD, PD, and controls and there was a significant correlation between M1 and dopamine D2 receptor densities. [3H]AF-DX 384 binding was higher in the striatum and GPe in AD. Binding of [125I]-(R,R)-I-QNB, which may reflect increased muscarinic M4 receptors, was higher in cortex and claustrum in DLB and AD. [125I]-(R,S)-I-QNB binding was higher in the GPe in AD. Low M1 and D2 receptors in DLB imply altered regulation of the striatal projection neurons which express these receptors. Low density of striatal M1 receptors may relate to the extent of movement disorder in DLB, and to a reduced risk of parkinsonism with acetylcholinesterase inhibition.  相似文献   

7.
Y Arimatsu 《Neuroscience》1983,9(4):873-877
Short- and long-term influences of various neonatal hormonal manipulations were assessed in the mouse amygdala with respect to alpha-bungarotoxin binding capacity, a possible parameter for cholinergic receptor integrity and function. To estimate the short-term effects, [125I]alpha-bungarotoxin binding to the tissue homogenate obtained from the posterior corticomedial amygdala was determined by a filtration assay using mice killed at 14 days post partum. The amygdaloid tissue from the normal male had a greater binding capacity for [125I]alpha-bungarotoxin than that from the normal female. However, castration of the male on the day of birth decreased the binding down to the female's level. A treatment of the female with either 250 micrograms testosterone propionate or 10 micrograms estradiol benzoate on days 1, 3, 5 and 7 increased the binding up to the male's level, although similar neonatal administration of 250 micrograms 5 alpha-dihydrotestosterone was ineffective. The long-term effects of neonatal hormonal manipulations were examined with 77-day-old mice which had been gonadectomized for 49 days. A quantitative light-microscopic autoradiography for [125I]alpha-bungarotoxin binding showed that specific grain density over the nucleus amygdaloideus medialis posterior of the androgenized female exceeded that of the female without neonatal hormone treatment. These observations provide further evidence that neonatal sex steroids play a determinate role in the sexual differentiation of the brain by exerting an organizational influence on developing cholinergic binding sites in the amygdala.  相似文献   

8.
The ligand binding properties of galanin receptors were examined in crude synaptosomal fraction preparations of lumbar dorsal spinal cord, using chloramin-T mono-iodinated porcine Tyr26 galanin as ligand. The equilibrium binding of [125I]galanin showed the presence of a single population of high-affinity binding sites with KD= 0.6±0.2 nM in a concentration of 55±15 fmol mg-1 protein (Bmax. The N-terminal fragments galanin (1–16) and galanin (1–12) fully displaced specific [1251]galanin binding from membranes with IC50 values 6 nM and 4 μM, respectively. The C-terminal fragment galanin (17–29) did not displace [125I]galanin when applied in the concentration range 10-11–10-4 M. GTP inhibited the specific binding of [125I] galanin in a concentration dependent manner, with 54% inhibition at 1 mM, suggesting that the galanin receptor found in lumbar dorsal spinal cord is G-protein coupled. Second messenger systems, through which the galanin receptor in lumbar dorsal spinal cord may exert its effect, were also studied. A galanin (10,μm) produced inhibition (58%) of the depolarization induced cGMP increase was found, whereas galanin (10 μM) did not inhibit the noradrenalin (100 μM) activated CAMP synthesis or phosphoinositide turnover in tissue slices of the spinal cord. Bilateral transection of the sciatic nerve at midthigh level 14 days prior to the binding experiment was performed, a treatment which is known to cause a dramatic increase of galanin-like immunoreactivity in the superficial layers of the dorsal spinal cord, dorsal root ganglion and in galanin mRNA levels, but no significant effect on Bmax or KD of the galanin receptor was found.  相似文献   

9.
Somatostatin receptor subtypes were labeled with the somatostatin analogs [125I]CGP 23996 and [125I]MK 678 and the distribution of these receptors in rat brain was investigated using quantitative autoradiographic techniques. [125I]CGP 23996 and [125I]MK 678 specifically label different populations of somatostatin receptors in rat brain. In a number of brain regions striking differences in the distribution of the somatostatin receptor subtypes labeled by each peptide were observed. High levels of binding sites for both [125I]CGP 23996 and [125I]MK 678 were present in the cerebral cortex, CA1 region and subiculum of the hippocampus. In contrast, high levels of [125I]MK 678 binding were found in the dentate gyrus of the hippocampus while few [125I]CGP 23996 binding sites were observed in this brain region. [125I]CGP 23996 binding was detected in the central region of the interpeduncular nucleus whereas the dorsal and lateral subnuclei of this brain area expressed mainly somatostatin receptors with high affinity for MK 678. The locus coeruleus and regions of the superior colliculus and hypothalamus selectively express [125I]MK 678-sensitive somatostatin receptors. Furthermore, limbic structures such as the lateral septum, the nucleus accumbens and ventromedial striatum had much higher levels of [125I]MK 678 binding sites than [125I]CGP 23996 binding sites. Differences in the expression of the somatostatin receptor subtypes were also detected in the substantia nigra. [125I]CGP 23996 binding was present in the pars reticulata but not the pars compacta whereas the reverse distribution for [125I]MK 678 binding sites was observed. The differential distribution of [125I]CGP 23996 and [125I]MK 678 binding sites in rat brain supports the hypothesis that these peptides selectively label different somatostatin receptor subtypes in the central nervous system.  相似文献   

10.
Widespread production of knockout and transgenic mice has led to an increased use of mice as animal models for studies of normal- and patho-physiology. Hence, the precise mapping of central transmitter/peptide systems in the mouse has become essential for the interpretation of functional studies and for the correct correlation with findings obtained in the rat, primates and/or human. In this regard, the current study reports the autoradiographic localization of [(125)I]-galanin (GAL) binding sites in brain of the common C57BL/6J and 129OlaHsd mouse strains, as well as in GAL and galanin receptor-1 (GalR1) knockout (KO) mice. In C57BL/6J and 129OlaHsd mice, [(125)I]-GAL binding sites were detected throughout the brain, including moderate-high relative densities in the basal ganglia (caudate putamen, nucleus [n.] accumbens, olfactory tubercle, substantia nigra), limbic regions (septum, bed n. stria terminalis, ventral hippocampus, amygdala), cingulate, retrosplenial, entorhinal cortex, centro-lateral/medial thalamic n., preoptic/lateral hypothalamus, midbrain (superior colliculus, periaqueductal gray), pons/medulla oblongata (parabrachial, pontine reticular and solitary tract n.) and cerebellar cortex. [(125)I]-GAL binding levels were low or absent in main olfactory bulb, neocortex, ventrolateral/geniculate thalamic n., dorsal hippocampus, inferior colliculus and cranial motor n. In simultaneous determinations, relative [(125)I]-GAL binding site densities in brain were generally lower in C57BL/6J than in 129OlaHsd mice, while the density and distribution of central binding in the GAL-KO mouse was essentially identical to that in its background-129OlaHsd strain. In contrast, no specific [(125)I]-GAL binding was detected in any region of GalR1-KO mouse brain, revealing that under the experimental conditions used, the peptide ligand binding is predominantly (exclusively) to the GalR1 subtype. This evaluation of GAL receptor site distribution in mouse brain has revealed similarities and some differences with the equivalent system in rat and provides a valuable reference for future comparative studies of central GAL transmission.  相似文献   

11.
The binding characteristics of radiolabelled beta-nerve growth factor ([125I]NGF) have been determined on membrane preparations of basal forebrain from Alzheimer's disease (AD) brain and age-matched normal brains. [125I]NGF binds in a specific fashion indicative of a single receptor and is not displaced with microM concentrations of cytochrome c, insulin or epidermal growth factor (EGF). The mean dissociation constant (Kd) and the mean capacity (Bmax) of the NGF receptor were not significantly different between the 5 AD and 5 normal basal forebrain samples examined. Choline acetyltransferase (ChAT) activity was significantly reduced (P less than or equal to 0.001) in AD cerebral cortical samples compared with normal tissue.  相似文献   

12.
The topographical distribution of [alpha-125I]bungarotoxin [125I]BTX, [3H]nicotine ([3H]Nic), [3H]acetylcholine ([3H]ACh) (in the presence of atropine) binding in rat tel- and diencephalon was investigated using a quantitative receptor autoradiographical technique. With the [3H]ACh and [3H]Nic radioligands, a strong labelling was observed in various thalamic nuclei, including the medial habenula, a moderate labelling in different areas of the cortex cerebri, the nucleus caudatus putamen, the nucleus accumbens and tuberculum olfactorium and a uniform weak labelling in the hypothalamus. When the binding data for [3H]Nic were plotted against binding data for [3H]ACh in various brain nuclei, a significant correlation was obtained. Considering [125I]BTX, the strongest labelling was observed in the lateral mammillary nucleus and the hilus gyrus dentatus of the hippocampal formation. A weak labelling occurred in areas such as the nucleus causatus putamen, the thalamus and the cerebral cortex. No significant correlation was therefore obtained between the degree of [125I]BTX binding in various brain nuclei and the degree of binding observed with [3H]Nic or [3H]ACh. The present results underline the view that the high-affinity [3H]Nic and [3H]ACh binding sites label the same cholinergic nicotinic receptor binding site, while [125I]BTX labels another subpopulation of nicotinic cholinergic receptors, predominantly found in discrete areas of the hypothalamus and the limbic cortex.  相似文献   

13.
It is established that the gut peptide galanin reduces neuronal excitability via galanin receptor subtypes GALR1 and GALR3 and increases excitability via subtype GALR2. We have previously shown that galanin potently reduces mechanosensitivity in the majority of gastro-oesophageal vagal afferents, and potentiates sensitivity in a minority. These actions may have implications for therapeutic inhibition of gut afferent signalling. Here we investigated which galanin receptors are likely to mediate these effects. We performed quantitative RT-PCR on RNA from vagal (nodose) sensory ganglia, which indicated that all three GALR subtypes were expressed at similar levels. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of galanin receptor ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors which respond only to mucosal stroking. Galanin induced potent inhibition of mechanosensitivity in both types of afferents. This effect was totally lost in mice with targeted deletion of Galr1 . The GALR1/2 agonist AR-M961 caused inhibition of mechanosensitivity in Galr1 +/+ mice, but this was reversed to potentiation in Galr1 −/− mice, indicating a minor role for GALR2 in potentiation of vagal afferents. We observed no functional evidence of GALR3 involvement, despite its expression in nodose ganglia. The current study highlights the complex actions of galanin at different receptor subtypes exhibiting parallels with the function of galanin in other systems.  相似文献   

14.
A new, highly selective radio-iodinated oxytocin receptor antagonist [( 1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid, 2-O-methyltyrosine, 4-threonine, 8-ornithine, 9-tyrosylamide]-vasotocin) was used to identify and quantitate specific binding sites for the neurohypophyseal hormone oxytocin with in vitro incubation of rat brain sections and autoradiography. Exclusively oxytocin binding sites were detected in view of the high affinity of the [125I]-labelled oxytocin antagonist for oxytocin binding sites and the negligible affinity for the vasopressin liver (V1) and kidney (V2) receptor types. The putative oxytocin receptors were abundantly present in several brain regions, where previously discrimination between oxytocin and vasopressin binding was difficult, i.e. the olfactory nucleus, the islands of Calleja, the ventromedial nucleus of the hypothalamus, the central amygdaloid nucleus and the ventral subiculum of the hippocampus. In addition oxytocin receptors were demonstrated in other areas, such as the taenia tecta, dorsolateral caudate putamen, ventral pallidum, accumbens, lateral septum, bed nucleus of the stria terminalis, thalamic paraventricular nucleus, lateral, basolateral and medial amygdala, the dorsal subiculum, perirhinal cortex and the amygdaloid-hippocampal area. The high affinity and the low detection threshold of this [125I]-labelled oxytocin antagonist permitted identification of oxytocin receptors in new regions such as the ventral part of the lateral septum, medial septum, dorsal motor nucleus of the vagus nerve and the olive nuclei in the brain stem.  相似文献   

15.
The progressive appearance of [3H]kainic acid binding sites with age has been studied in membrane suspensions prepared from various regions of the rat limbic system, and by autoradiography. Binding sites with fast dissociation rate appeared earlier than binding sites with slow dissociation rate. Scatchard analysis demonstrated apparent receptor heterogeneity for both subclasses. High affinity components were detected in the hippocampus as early as 10 days after birth, but in the amygdala + piriform lobe were found only towards the end of the third week, when animals also respond to parenteral kainic acid, for the first time, with limbic seizures accompanied by metabolic activation of the amygdala. Slice autoradiography revealed distinct labelling of the hippocampal CA3 region by postnatal day 10. A comparison with the ontogenesis of the kainic acid-induced seizure-brain damage syndrome suggests a role of high affinity receptors as mediators of metabolic nerve cell activation by kainic acid. However, this receptor interaction per se does not result in neuronal damage to the vulnerable region of the Ammon's horn, which will only occur at an age when also the amygdala is activated by the neurotoxin.  相似文献   

16.
The cellular localization of binding sites for [125I]galanin was studied in explant cultures of rat neocortex, cerebellum, locus coeruleus and spinal cord by means of autoradiography. Binding sites for the peptide were observed on a great number of astrocytes in all CNS regions studied. In addition to astrocytes, many neurones were intensely labelled by [125I]galanin. Binding of [125I]galanin (10−8 M) to both astrocytes and neurones was markedly reduced or inhibited by the unlabelled peptide at high concentration (10−6 M), suggesting `specific' binding of the radioligand. Evidence for the colocalization of galanin and cholinergic receptors on astrocytes was provided by combined autoradiographic and immunohistochemical studies. Many astrocytes were labelled by [125I]galanin and immunostained with antibodies to either muscarinic or nicotinic receptors. Electrophysiological studies revealed that addition of galanin (10−9 to 10−7 M) to the bathing fluid caused a dose-dependent hyperpolarization of the majority of astrocytes studied. When galanin (10−8 M) and the cholinergic agonists muscarine and nicotine (10−6 M) were tested on the same astrocyte, all three compounds induced a hyperpolarization, suggesting a colocalization of functional galanin and cholinergic receptors on the glial membrane.  相似文献   

17.
The distribution of high affinity 125I-neurotensin (NT) binding sites were investigated in the amygdaloid complex of adult humans by means of dry film and emulsion autoradiography. Autoradiograms were analysed quantitatively using [125I] standards and an image analyser system, and data obtained were converted to nCi of ligand bound per mg tissue. High densities of 125I-NT binding sites were found in the following amygdaloid structures: the dorsal part of the accessory basal nucleus, the medial part of the cortical nucleus, the lateral subdivision of the central nucleus, the paralaminar nucleus, the amygdalohippocampal transition area and the rostral portions of the anterior amygdaloid area. The ventral part of the accessory basal nucleus, the intercalated cell groups and the remaining parts of the anterior amygdaloid area showed moderate density of NT binding sites, while the medial, basal and lateral amygdaloid nuclei, the lateral part of the cortical nucleus, the medial subdivision of the central nucleus, as well basal and lateral amygdaloid nuclei, the lateral part of the cortical nucleus, the medial subdivision of the central nucleus, as well as the corticoamygdaloid transition area exhibited low densities of 125I-NT binding sites. At microscopic level, silver grains appeared more or less evenly distributed over both neuronal perikarya and the surrounding neuropil. In comparison to NT-immunoreactivity, NT receptors showed mismatching distribution throughout most parts of the amygdala, with the exception of the lateral subdivision of the central nucleus, where NT-immunoreactive perikarya and nerve fibers as well as 125I-NT binding sites were found in high density.  相似文献   

18.
The binding of [125I]iodine-labelled corticotropin releasing factor (CRF) was studied using peripheral blood lymphocytes from normal donors and Alzheimer's disease (AD) patients. The high affinity binding of [125I]CRF was found in the membranes of various immunocytes. Monocytes and T cells displayed binding which was several times greater than the binding of brain (cortical) cells. The immunocyte CRF binding was significantly (P less than 0.001) lower in 14 out of 18 (78%) AD patients relative to non-AD controls, suggesting the association of CRF in the pathology of AD. Our data demonstrate that blood immunocytes can be used to analyze deficiency of neurohormone sites in neuropsychiatric diseases, e.g., AD.  相似文献   

19.
Patients with Alzheimer's disease (AD) often show emotional, motivational, and memory disturbances which may have morphological substrates that include the amygdaloid complex. Neuropathological studies in other limbic areas have recently been enhanced by immunocytochemical studies with Alz 50 antibody. Therefore, we examined the distribution of Alz 50 immunoreactive (Alz 50-IR) neuritic plaques (NP) and neurofibrillary tangles (NFT) in the amygdala in AD cases, in one aged patient with Down's syndrome, and in controls of similar ages. In all AD cases numerous NP and variable numbers of NFT were observed and a distinctive subregional anatomical distribution of NP and Alz 50-IR neuropil in the amygdala existed, whereas no similar selective topography for NFT or Alz 50-IR neurons was found. A high density of NP was demonstrated in the ventromedial aspects of the basolateral and corticomedial nuclear regions. There was no correlation with the pattern of cholinergic innervation. There was, however, a correspondence between intraamygdaloid- and amygdaloid-hippocampal connections and regions of high NP density. Our findings support the concept that the disease process may occur along anatomically defined pathways, and the amygdala may be a central participant in this process.  相似文献   

20.
Several recent studies have suggested that the neurohypophyseal peptide oxytocin may have a role within the brain to mediate various forms of affiliative behavior. As the regulation of oxytocin function may be largely determined by the number and distribution of its membrane bound receptor, we investigated oxytocin receptor distribution in two Peromyscus species selected for differences in affiliative behavior. Using in vitro receptor autoradiography with the selective oxytocin receptor ligand [125I]d(CH2)5[Tyr(Me)2,Tyr-NH9(2)]OVT ([125I]OTA), we compared Peromyscus maniculatus, a polygamous species, to Peromyscus californicus, a monogamous species. Marked species differences in the distribution of [125I]OTA were apparent in several brain areas, including olfactory pathways, bed nucleus of the stria terminalis, amygdala, dorsal lateral septum, and several cortical regions. In addition, gender differences in the binding pattern were evident in several regions, mostly due to sexually dimorphic patterns in the polygamous species, P. maniculatus. To further compare these species, the binding of a [3H]arginine-vasopressin antagonist was assessed in alternate sections from those used for [125I]OTA. Relative to oxytocin receptors, binding to arginine-vasopressin receptors showed fewer species differences, although the monogamous species appeared to have more arginine-vasopressin receptors in the neocortex and lateral septum. The striking differences in oxytocin receptor distribution are consistent with earlier studies in other rodents, suggesting that oxytocin may have an important role for mediating species-typical patterns of social affiliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号