首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
We present an evaluation of the precision and accuracy of image-based radiochromic film (RCF) dosimetry performed using a commercial RCF product (Gafchromic MD-55-2, Nuclear Associates, Inc.) and a commercial high-spatial resolution (100 microm pixel size) He-Ne scanning-laser film-digitizer (Personal Densitometer, Molecular Dynamics, Inc.) as an optical density (OD) imaging system. The precision and accuracy of this dosimetry system are evaluated by performing RCF imaging dosimetry in well characterized conformal external beam and brachytherapy high dose-rate (HDR) radiation fields. Benchmarking of image-based RCF dosimetry is necessary due to many potential errors inherent to RCF dosimetry including: a temperature-dependent time evolution of RCF dose response; nonuniform response of RCF; and optical-polarization artifacts. In addition, laser-densitometer imaging artifacts can produce systematic OD measurement errors as large as 35% in the presence of high OD gradients. We present a RCF exposure and readout protocol that was developed for the accurate dosimetry of high dose rate (HDR) radiation sources. This protocol follows and expands upon the guidelines set forth by the American Association of Physicists in Medicine (AAPM) Task Group 55 report. Particular attention is focused on the OD imaging system, a scanning-laser film digitizer, modified to eliminate OD artifacts that were not addressed in the AAPM Task Group 55 report. RCF precision using this technique was evaluated with films given uniform 6 MV x-ray doses between 1 and 200 Gy. RCF absolute dose accuracy using this technique was evaluated by comparing RCF measurements to small volume ionization chamber measurements for conformal external-beam sources and an experimentally validated Monte Carlo photon-transport simulation code for a 192Ir brachytherapy source. Pixel-to-pixel standard deviations of uniformly irradiated films were less than 1% for doses between 10 and 150 Gy; between 1% and 5% for lower doses down to 1 Gy and 1% and 1.5% for higher doses up to 200 Gy. Pixel averaging to form 200-800 microm pixels reduces these standard deviations by a factor of 2 to 5. Comparisons of absolute dose show agreement within 1.5%-4% of dose benchmarks, consistent with a highly accurate dosimeter limited by its observed precision and the precision of the dose standards to which it is compared. These results provide a comprehensive benchmarking of RCF, enabling its use in the commissioning of novel HDR therapy sources.  相似文献   

2.
Rink A  Vitkin IA  Jaffray DA 《Medical physics》2005,32(4):1140-1155
A system, consisting of a novel optical fiber-based readout configuration and model-based method, has been developed to test suitability of a certain radiochromic medium for real-time measurements of ionizing radiation dose. Using this system with the radiochromic film allowed dose measurements to be performed during, and immediately after, exposure. The rates of change in OD before, during, and after exposure differ, and the change in OD during exposure was found to be proportional to applied dose in the tested range of 0-4 Gy. Estimating applied dose within an average error of less than 5% did not require a waiting time of 24-48 h as generally recommended with this radiochromic film. The errors can be further reduced by performing a calibration for each individual dosimeter setup instead of relying on batch calibration. Measurements of change in OD were found to be independent of dose-rate in the 95-570 cGy/min range for applied dose of 1 Gy or less. Some error was introduced due to dose-rate variation for doses of 2 Gy and above. The major limiting factor in utilizing this radiation sensitive medium for real-time in vivo dosimetry is the strong dependence on temperature in the clinically relevant range of 20-38 degrees C.  相似文献   

3.
Le Y  Ali I  Dempsey JF  Williamson JF 《Medical physics》2006,33(12):4622-4634
Radiochromic film (RCF) has been shown to be a precise and accurate two-dimensional dosimeter for acute exposure radiation fields. However, "temporal history" mismatch between calibration and brachytherapy films due to RCF dose-rate effects could introduce potentially large uncertainties in low dose-rate (LDR) brachytherapy absolute dose measurement. This article presents a quantitative evaluation of the precision and accuracy of a laser scanner-based RCF-dosimetry system and the effect of the temporal history mismatch in LDR absolute dose measurement. MD-55-2 RCF was used to measure absolute dose for a low dose-rate 137Cs brachytherapy source using both single- and double-exposure techniques. Dose-measurement accuracy was evaluated by comparing RCF to Monte Carlo photon-transport simulation. The temporal history mismatch effect was investigated by examining dependence of RCF accuracy on irradiation-to-densitometry time interval. The predictions of the empirical cumulative dose superposition model (CDSM) were compared with measurements. For the double-exposure technique, the agreement between measurement and Monte Carlo simulation was better than 4% in the 3-60 Gy dose range with measurement precisions (coverage factor k = 1) of <2% and <6% for the doses greater or less than 3 Gy, respectively. The overall uncertainty (k = 1) of dose rate/air-kerma strength measurements achievable by this dosimetry system for a spatial resolution of 0.1 mm is less than 4% for doses greater than 5 Gy. The measured temporal history mismatch systematic error is about 1.8% for a 48 h postexposure time when using the double exposure technique and agrees with CDSM's prediction qualitatively. This work demonstrates that the model MD-55-2 RCF detector has the potential to support quantitative dose measurements about LDR brachytherapy sources with precision and accuracy better than that of previously described dosimeters. The impacts of this work on the future use of new type of RCF were also discussed.  相似文献   

4.
This note investigates the dose response of layered HS Gafchromic film compared to Kodak EDR-2 radiographic film. Using five layers of HS type Gafchromic film a dose response greater than EDR-2 film is achieved at the peak wavelength (0.55 OD/Gy versus 0.3 OD/Gy for EDR-2 film). Even over a broader waveband of 30 nm, which is similar to that found in ultra bright LED scanners, the response was found to be 0.38 OD/Gy as opposed to 0.29 OD/Gy. Measurements averaged over the entire visible spectrum produce a relative dose response of 0.165 OD/Gy for five layer HS and 0.29 OD/Gy for EDR-2 film. Due to this high dose response that is achievable, the five layer HS could be used in applications where small doses are delivered to certain areas and a low dependence of energy response is required for measurement.  相似文献   

5.
This paper compares experimentally measured and calculated dose-rate distributions for a novel 125I liquid-filled brachytherapy balloon applicator (the GliaSite RTS), designed for the treatment of malignant brain-tumor resection-cavity margins. This work is intended to comply with the American Association of Physicists in Medicine (AAPM) Radiation Therapy Committee's recommendations [Med. Phys. 25, 2269-2270 (1998)] for dosimetric characterization of low-energy photon interstitial brachytherapy sources. Absolute low dose-rate radiochromic film (RCF) dosimetry measurements were performed in coronal planes about the applicator. The applicator was placed in a solid water phantom, machined to conform to the inflated applicator's surface. The results were used to validate the accuracy of Monte Carlo photon transport (MCPT) simulations and a point-source dose-kernel algorithm in predicting dose to water. The absolute activity of the 125I solution was determined by intercomparing a National Institute of Standards and Technology (NIST) 125I standard with a known mass of radiotherapy solution (Iotrex) in an identical vial and geometry. For the two films not in contact with applicator, the average agreement between RCF and MCPT (specified as the mean absolute deviation in successive 4 mm rings) was found to be within +/-5% at distances 0.2-25 mm from the film centers. For the two films touching the catheter, the mean agreement was +/-14.5% and 7.5% near the balloon surface but improving to 7.5% and 6% by 3.5 mm from the surface. These errors, as large as 20% in isolated pixels, are likely due to trim damage, 125I contamination, and poor conformance with the balloon. At larger distances where the radiation doses were very low, the observed discrepancies were significantly larger than expected. We hypothesize that they are due to a dose-rate dependence of the RCF response. A 1%-10% average difference between a simple one-dimensional path-length semiempirical dose-kernel model and the MCPT calculations was observed over clinically relevant distances.  相似文献   

6.
Post-irradiation colouration of Gafchromic EBT radiochromic film   总被引:1,自引:0,他引:1  
Gafchromic EBT (International Specialty Products, NJ, USA), radiochromic film is one of the newest radiation-induced auto-developing x-ray analysis films available for therapeutic radiation dosimetry in radiotherapy applications. Part of any radiochromic film product which undergoes a polymerization reaction for automatic darkening is an associated post-irradiation colouration whereby the film continues to darken after irradiation has ceased. The Gafchromic EBT film has been shown to produce an approximate 6% to 9% increase in post-irradiation optical density within the first 12 h of irradiation within the 1 Gy to 5 Gy dose range. This is compared to approximately 13%, 15% and 19% for MD-55-2, XR type T and HS radiochromic film, respectively. It is also shown that the EBT film's post-irradiation growth stabilizes to within 1% within the first 6 h. Thus EBT provides a reduced post-irradiation growth effect. However, to increase the accuracy of the film analysis, it is recommended that films be left for a significant period (at least 6 h) before the analysis is performed to provide a high level of accuracy. Also, calibration films must be read out with the same post-irradiation time to further enhance the accuracy of dosimetry.  相似文献   

7.
Kodak EDR2 film is a widely used two-dimensional dosimeter for intensity modulated radiotherapy (IMRT) measurements. Our clinical use of EDR2 film for IMRT verifications revealed variations and uncertainties in dose response that were larger than expected, given that we perform film calibrations for every experimental measurement. We found that the length of time between film exposure and processing can affect the absolute dose response of EDR2 film by as much as 4%-6%. EDR2 films were exposed to 300 cGy using 6 and 18 MV 10 x 10 cm2 fields and then processed after time delays ranging from 2 min to 24 h. An ion chamber measured the relative dose for these film exposures. The ratio of optical density (OD) to dose stabilized after 3 h. Compared to its stable value, the film response was 4%-6% lower at 2 min and 1% lower at 1 h. The results of the 4 min and 1 h processing time delays were verified with a total of four different EDR2 film batches. The OD/dose response for XV2 films was consistent for time periods of 4 min and 1 h between exposure and processing. To investigate possible interactions of the processing time delay effect with dose, single EDR2 films were irradiated to eight different dose levels between 45 and 330 cGy using smaller 3 x 3 cm2 areas. These films were processed after time delays of 1, 3, and 6 h, using 6 and 18 MV photon qualities. The results at all dose levels were consistent, indicating that there is no change in the processing time delay effect for different doses. The difference in the time delay effect between the 6 and 18 MV measurements was negligible for all experiments. To rule out bias in selecting film regions for OD measurement, we compared the use of a specialized algorithm that systematically determines regions of interest inside the 10 x 10 cm2 exposure areas to manually selected regions of interest. There was a maximum difference of only 0.07% between the manually and automatically selected regions, indicating that the use of a systematic algorithm to determine regions of interest in large and fairly uniform areas is not necessary. Based on these results, we recommend a minimum time of 1 h between exposure and processing for all EDR2 film measurements.  相似文献   

8.
This article reports on the dosimetric properties of a new N-isopropylacrylamide, high %T, polymer gel formulation (19.5%T, 23%C), optimized for x-ray computed tomography (CT) polymer gel dosimetry (PGD). In addition, a new gel calibration technique is introduced together with an intensity-modulated radiation therapy (IMRT) treatment validation as an example of a clinical application of the new gel dosimeter. The dosimetric properties investigated include the temporal stability, spatial stability, batch reproducibility and dose rate dependence. The polymerization reaction is found to stabilize after 15 h post-irradiation. Spatial stability investigations reveal a small overshoot in response for gels imaged later than 36 h post-irradiation. Based on these findings, it is recommended that the new gel formulation be imaged between 15-36 h after irradiation. Intra- and inter-batch reproducibility are found to be excellent over the entire range of doses studied (0-28 Gy). A significant dose rate dependence is found for gels irradiated between 100-600 MU?min?1. Overall, the new gel is shown to have promising characteristics for CT PGD, however the implication of the observed dose rate dependence for some clinical applications remains to be determined. The new gel calibration method, based on pixel-by-pixel matching of dose and measured CT numbers, is found to be robust and to agree with the previously used region of interest technique. Pixel-by-pixel calibration is the new recommended standard for CT PGD. The dose resolution for the system was excellent, ranging from 0.2-0.5 Gy for doses between 0-20 Gy and 0.3-0.6 Gy for doses beyond 20 Gy. Comparison of the IMRT irradiation with planned doses yields excellent results: gamma pass rate (3%, 3 mm) of 99.3% at the isocentre slice and 93.4% over the entire treated volume.  相似文献   

9.
Rink A  Vitkin IA  Jaffray DA 《Medical physics》2005,32(8):2510-2516
A new radiochromic film, GafChromic EBT, was investigated for use in a real-time radiation dosimetry system. It was found to be approximately eight times more sensitive to ionizing radiation dose, exhibited less postexposure development and achieved stable readout faster than one of its predecessors, GafChromic MD-55. A clear distinction in change in optical density between exposure and postexposure was observed, but the measurements obtained during exposure were not linear with time or dose. This could not be explained by a shift in wavelength of maximum change in absorbance, as it was stable at approximately 636 nm during the entire exposure range (up to 9.52 Gy). Increasing the spectral window of interest over which calculations were performed did little to correct the nonlinearity. The radiochromic film exhibited small dose rate dependence in real-time measurements, with an increase in standard deviation of change in optical density measurements from 0.9% to 1.8% over a sixfold variation in dose rate. Overall, GafChromic EBT has increased sensitivity and decreased postexposure darkening, and this bodes well for its potential role as a radiation dosimeter, including real-time applications.  相似文献   

10.
With the clinical implementation of time-variable dose patterns and intensity modulated radiotherapy (IMRT) film dosimetry has regained popularity. Films are currently the most frequently used dosimetric means for patient specific quality assurance in IMRT. A common method is to verify a so-called hybrid IMRT plan, which is the patient specific treatment plan with unmodified fluence patterns recalculated in a dedicated phantom. For such applications the sensitometric curve, i.e., the relation between optical density (OD) and absorbed dose, should not depend critically on beam energy, field size and depth, or film orientation. In order to minimize the influence of all these variables a normalization of sensitometric curves is performed at various photon beam energies (6 MV, 10 MV, 25 MV). By doing so one unique sensitometric curve can be used for these three beam qualities. This holds for both film types investigated: Kodak X-Omat V films and EDR-2 films. Additionally, the influence of field size, depth and film orientation on a normalized sensitometric curve is determined for both film types. For doses smaller than 0.8 Gy for X-Omat V and doses smaller than 3 Gy for EDR-2 films the field size variation of normalized sensitometric curves is much smaller than 3% for fields up to 20 x 20 cm2. For X-Omat V films all differences between sensitometric curves determined at depths of 5, 10, and 15 cm are smaller than 3%. For EDR-2 films deviations larger than 3% are only observed at low net OD smaller than 0.25. The dependence of film orientation (parallel versus perpendicular) on a normalized sensitometric curve is found to be not critical. However, processing conditions have the largest influence and can result in differences up to 20% for sensitometric curves derived from films of the same batch but using different film processors. When normalizing sensitometric curves to the dose value necessary to obtain a net OD=1 for that respective geometry and energy the large energy dependence of sensitometric curves can be almost eliminated. This becomes especially important for the verification of hybrid IMRT plans with multiple energies. Additionally, such a normalization minimizes other influences such as field size, depth, and film orientation. This method is generally applicable to both Kodak X-Omat V and EDR-2 films. In order to achieve the highest accuracy level an upper dose limit of 0.8 Gy for X-Omat V films and 3 Gy for EDR-2 films should be taken into account. However, these dose limits may vary with film reading instrument and film processor.  相似文献   

11.
Zeidan OA  Li JG  Low DA  Dempsey JF 《Medical physics》2004,31(10):2730-2737
In this study, we compared the dosimetric properties of four of the most commonly used films for megavoltage photon-beam dosimetry when irradiated under identical conditions by small multileaf-collimator (MLC) defined beamlets. Two silver-halide films (SHFs), Kodak XV2 and EDR2, and two radiochromic films (RCFs), Gafchromic HS and MD55-2, were irradiated by MLC-defined 1 x 1 cm2 beamlets from a Varian 2100 C/D linac equipped with a 120-leaf MLC. The beamlets were delivered with the accelerator gantry set laterally (90 degrees rotation) upon a solid-water compression film phantom at 100 cm source-to-surface distance which was positioned with the films parallel to the beam axis. Beamlets were delivered at central axis, 5.0 cm, and 10.5 cm off-axis for both leaf-end and leaf-side defined beamlets. The film dosimetry was performed using a quantitative optical density (OD) imaging system that was validated in a previous study. No significant differences between SHF and RCF measurements were observed in percentage depth doses, horizontal depth profiles, or two-dimension spatial isodose distributions in both the central axis and off-axis measurements. We found that regardless of the type of film used, RCF or SHF, a consistent data set for small beam dose modeling was generated. Previous validation studies based on the use of RCF and OD imaging system would indicate that all film produce an accurate result for small beam characterization.  相似文献   

12.
Lee KY  Fung KK  Kwok CS 《Medical physics》2005,32(6):1485-1490
Radiochromic film (RCF) dosimetry is usually based on densitometric methods which use an analyzing light source of a fixed or a broad spectrum of wavelengths. These methods have not exploited the sensitivity of the dose response of the RCF otherwise attainable by using a light source with wavelengths peaked at the two absorption peaks in the absorption spectrum of the RCF. A new algorithm of dual-peak dose measurement for the RCF has been proposed in this paper to make use of these dual absorption peaks to achieve the maximum attainable sensitivity. This technique relies on the measurement of the transmittance of the RCF at the wavelength of the major and minor absorption peaks, respectively. The dual-peak dose measurement is accomplished with the aid of a novel spectral microdensitometer developed in our Institute. The microdensitometer utilizes a monochromator to provide a light source of which the wavelength can be matched precisely to the wavelength of the absorption peaks of the RCF. The doses obtained at these wavelengths are fed into a weighted objective function and an optimum dose is searched by minimizing the objective function to give the best estimate of the dose deposited on the film. An initial test shows that there is a good agreement between the estimated and actual dose deposited; and the maximum discrepancy was found to be less than 1%.  相似文献   

13.
Dependence of virtual wedge factor on dose calibration and monitor units   总被引:1,自引:0,他引:1  
One of the important features of the Siemens Virtual Wedge (VW) is that the VW factor (VWF) is approximately equal to unity for all beams with a total deviation for a given wedge no greater than 0.05, as specified by Siemens. In this note we report the observed dependence of VWF on dose calibration (cGy/MU), monitor units (MU), and beam tuning for a Primus, a linear accelerator with two dose-rate ranges available for VW operation. The VWF is defined as the ratio of doses measured on the beam central axis for the wedge field to the open field; the open field dose is always measured with the nominal high dose-rate beam. When VW operates in the high dose-rate range, the VWF is independent of calibration (cGy/MU). When VW works in the low dose-rate range, the VWF varies linearly with the calibration of the low dose-rate mode. For a linear accelerator that has only one dose-rate range for VW, there is no observable dependence of VWF on the calibration. We also studied the monitor unit dependence of VWF. A discontinuity in VWF was observed at the switching point between the high and low dose-rate ranges. Working with Siemens, we have investigated causes of this discontinuity. As a result of this investigation, the discontinuity in VWF as a function monitor unit is practically removed.  相似文献   

14.
The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.  相似文献   

15.
Sufficient skin dose needs to be delivered by a radiotherapy chest wall treatment regimen to ensure the probability of a near surface tumor recurrence is minimized. To simulate a chest wall treatment a hemicylindrical solid water phantom of 7.5 cm radius was irradiated with 6 MV x-rays using 20x20 cm2 and 10x20 cm2 fields at 100 cm source surface distance (SSD) to the base of the phantom. A surface dose profile was obtained from 0 to 180 degrees, in 10 degrees increments around the circumference of the phantom. Dosimetry results obtained from radiochromic film (effective depth of 0.17 mm) were used in the investigation, the superficial doses were found to be 28% (of Dmax) at the 0 degrees beam entry position and 58% at the 90 degrees oblique beam position. Superficial dose results were also obtained using extra thin thermoluminescent dosimeters (TLD) (effective depth 0.14 mm) of 30% at 0 degrees, 57% at 90 degrees, and a metal oxide semiconductor field effect transistor (MOSFET) detector (effective depth 0.5 mm) of 43% at 0 degrees, 62% at 90 degrees. Because the differences in measured superficial doses were significant and beyond those related to experimental error, these differences are assumed to be mostly attributable to the effective depth of measurement of each detector. We numerically simulated a bolus on/bolus off technique and found we could increase the coverage to the skin. Using an alternate "bolus on," "bolus off" regimen, the skin would receive 36.8 Gy at 0 degrees incidence and 46.4 Gy at 90 degrees incidence for a prescribed midpoint dose of 50 Gy. From this work it is evident that, as the circumference of the phantom is traversed the SSD increases and hence there is an inverse square fluence fall-off, this is more than offset by the increase in skin dose due to surface curvature to a plateau at about 90 degrees. Beyond this angle it is assumed that beam attenuation through the phantom and inverse square fall-off is causing the surface dose to reduce.  相似文献   

16.
The responses of a commercial diamond detector (type 60003, PTW-Freiburg) to several heavy ions were examined. The responses to heavy-ion beams reached stable levels with relatively small pre-irradiation doses compared to photon-beam irradiations. The responses also reached stable levels with a smaller pre-irradiation dose when the dose rate of the He beams was increased. A total accumulated dose of about 5 Gy was required for the pre-irradiation dose of heavy-ion beams. No angular dependence of the detector responses was observed within a deviation of 5%. The dose-rate dependence of the detector responses to heavy-ion beams was far smaller than that to gamma rays. The decrease in the response was within 0.9%, with a variation from 0.88 to 18.2 Gy min(-1) in the carbon beam. We examined the LET dependence of the diamond detector responses using various kinds of heavy-ion beams. The responses had particle dependence in addition to LET dependence. The responses decreased more with higher LET particles and decreased less with large-Z particles. We proposed a gradual-saturation model based on the track structure under several simple assumptions to explain the LET and particle dependences of the response.  相似文献   

17.
The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.  相似文献   

18.
Saur S  Frengen J 《Medical physics》2008,35(7):3094-3101
Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16 x 16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.  相似文献   

19.
Helical tomotherapy superficial dose measurements   总被引:1,自引:0,他引:1  
Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73 +/- 0.10 Gy (or 86.6 +/- 5.1% of the prescribed dose). The measured superficial dose decreases to 1.23 +/- 0.10 Gy (61.5 +/- 5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9 +/- 3.2%. The radiographic film dose for the 0 mm test case was 1.73 +/- 0.07 Gy, as compared to the calculated dose of 1.78 +/- 0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these clinical cases. For cases where the target volume is located 1 to 5 mm below the surface, the tumor volume coverage can be achieved with surface doses ranging from 56% to 93% of the prescribed dose.  相似文献   

20.
The energy dependence of the radiochromic film (RCF) response to beta-emitting sources was studied by dose theoretical calculations, employing the MCNP4C and EGSnrc/BEAMnrc Monte Carlo codes. Irradiations with virtual monochromatic electron sources, electron and photon clinical beams, a (32)P intravascular brachytherapy (IVB) source and other beta-emitting radioisotopes ((188)Re, (90)Y, (90)Sr/(90)Y,(32)P) were simulated. The MD-55-2 and HS radiochromic films (RCFs) were considered, in a planar or cylindrical irradiation geometry, with water or polystyrene as the surrounding medium. For virtual monochromatic sources, a monotonic decrease with energy of the dose absorbed to the film, with respect to that absorbed to the surrounding medium, was evidenced. Considering the IVB (32)P source and the MD-55-2 in a cylindrical geometry, the calibration with a 6 MeV electron beam would yield dose underestimations from 14 to 23%, increasing the source-to-film radial distance from 1 to 6 mm. For the planar beta-emitting sources in water, calibrations with photon or electron clinical beams would yield dose underestimations between 5 and 12%. Calibrating the RCF with (90)Sr/(90)Y, the MD-55-2 would yield dose underestimations between 3 and 5% for (32)P and discrepancies within +/-2% for (188)Re and (90)Y, whereas for the HS the dose underestimation would reach 4% with (188)Re and 6% with (32)P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号