首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expanded CAG repeat that causes striatal cell vulnerability in Huntington's disease (HD) encodes a polyglutamine tract in full-length huntingtin that is correlated with cellular [ATP] and [ATP/ADP]. Since striatal neurons are vulnerable to energy deficit, we have investigated, in Hdh CAG knock-in mice and striatal cells, the hypothesis that decreased energetics may affect neuronal (N)-cadherin, a candidate energy-sensitive adhesion protein that may contribute to HD striatal cell sensitivity. In vivo, N-cadherin was sensitive to ischemia and to the effects of full-length mutant huntingtin, progressively decreasing in Hdh(Q111) striatum with age. In cultured striatal cells, N-cadherin was decreased by ATP depletion and STHdh(Q111) striatal cells exhibited dramatically decreased N-cadherin, due to decreased Cdh2 mRNA and enhanced N-cadherin turnover, which was partially normalized by adenine supplementation to increase [ATP] and [ATP/ADP]. Consistent with decreased N-cadherin function, STHdh(Q111) striatal cells displayed profound deficits in calcium-dependent N-cadherin-mediated cell clustering and cell-substratum adhesion, and primary Hdh(Q111) striatal neuronal cells exhibited decreased N-cadherin and an abundance of immature neurites, featuring diffuse, rather than clustered, staining for N-cadherin and synaptic vesicle markers, which was partially rescued by adenine treatment. Thus, mutant full-length huntingtin, via energetic deficit, contributes to decreased N-cadherin levels in striatal neurons, with detrimental effects on neurite maturation, strongly suggesting that N-cadherin-mediated signaling merits investigation early in the HD pathogenic disease process.  相似文献   

2.
Somatic instability of expanded HD CAG repeats that encode the polyglutamine tract in mutant huntingtin has been implicated in the striatal selectivity of Huntington's disease (HD) pathology. Here in Hdh(Q111) mice, we have tested whether a genetic background deficient in Msh2, expected to eliminate the unstable behavior of the 109 CAG array inserted into the murine HD gene, would alter the timing or striatal specificity of a dominant disease phenotype that predicts late-onset neurodegeneration. Our analyses of Hdh(Q111/+):Msh2(+/+) and Hdh(Q111/+): Msh2(-/-) progeny revealed that, while inherited instability involved Msh2-dependent and -independent mechanisms, lack of Msh2 was sufficient to abrogate progressive HD CAG repeat expansion in striatum. The absence of Msh2 also eliminated striatal mutant huntingtin with somatically expanded glutamine tracts and caused an approximately 5 month delay in nuclear mutant protein accumulation, but did not alter the striatal specificity of this early phenotype. Thus, somatic HD CAG instability appears to be a consequence of a striatal-selective disease process that accelerates the timing of an early disease phenotype, via expansion of the glutamine tract in mutant huntingtin. Therefore Msh2, as a striking modifier of early disease onset in a precise genetic HD mouse model, provides a novel target for the development of pharmacological agents that aim to slow pathogenesis in man.  相似文献   

3.
Huntington's disease (HD) is caused by a mutation causing expanded polyglutamine tracts in the N-terminal fragment of huntingtin. A pathological hallmark of HD is the formation of aggregates in the striatal neurons. Here we report that ageing human huntingtin knock-in mice expressing mutant human huntingtin contained neuronal huntingtin aggregates, as revealed by immunohistochemical analysis. In heterozygous knock-in mice with 77 CAG repeats, aggregates of N-terminal fragments of huntingtin were specifically formed in nuclei and neuropils in the striatal projection neurons, and in neuropils in their projection regions. This aggregate formation progressed depending on age, became interacted with proteolytic or chaperone proteins, and occurred most prominently in the nucleus accumbens. These mutant mice demonstrated abnormal aggressive behavior. In homozygous knock-in mice, heavy deposits of intranuclear and neuropil aggregates were detected, which extended to other regions; and characteristic large perikaryal aggregates were also found in the affected neurons. However, cell death was not observed among the striatal and affected neurons of these mutant mice. Our results indicate that the polyglutamine aggregates do not necessarily correlate with neuronal death. These human huntingtin knock-in mice should be useful to provide an effective therapeutic approach against HD.  相似文献   

4.
An unstable CAG triplet repeat expansion encoding a polyglutamine stretch within the ubiquitously expressed protein huntingtin is responsible for causing Huntington's disease (HD). By quantifying the repeat sizes of individual mutant alleles in tissues derived from an accurate genetic mouse model of HD we show that the mutation becomes very unstable in striatal tissue. The expansion-biased changes increase with age, such that some striatal cells from old HD mice contain mutations that have tripled in size. If this pattern of repeat instability is recapitulated in human striatal tissue, the concomitant increased polyglutamine load may contribute to the patterns of selective neuronal cell death in HD. Our findings also suggest that trinucleotide repeat instability can occur by mechanisms that are not replication-based.  相似文献   

5.
Huntington's disease (HD), is a genetic neurodegenerative disease characterized by a DNA CAG triplet repeat expansion in the first exon of the disease gene, HD. CAG DNA expansion results in a polyglutamine tract expansion in mutant huntingtin protein. Wild-type and mutant full-length huntingtin have been detected in the nucleus, but elevated levels of mutant huntingtin and huntingtin amino-terminal proteolytic fragments are seen to accumulate in the nuclei of HD-affected neurons. The presence of huntingtin in both the nucleus and the cytoplasm suggested that huntingtin may be dynamic between these compartments. By live cell time-lapse video microscopy, we have been able to visualize polyglutamine-mediated aggregation and the transient nuclear localization of huntingtin over time in a striatal cell line. A classical nuclear localization signal could not be detected in huntingtin, but we have discovered a nuclear export signal (NES) in the carboxy-terminus of huntingtin. Leptomycin B treatment of clonal striatal cells enhanced the nuclear localization of huntingtin, and a mutant NES huntingtin displayed increased nuclear localization, indicating that huntingtin can shuttle to and from the nucleus. The huntingtin NES is strictly conserved among all huntingtin proteins from diverse species. This export signal may be important in Huntington's disease because this fragment of huntingtin is proteolytically cleaved away during HD. The huntingtin NES therefore defines a potential role for huntingtin as a member of a nucleocytoplasmic dynamic protein complex.  相似文献   

6.
Huntington's disease (HD) is caused by an expanded CAG repeat in exon 1 of the gene coding for the huntingtin protein. The cellular pathway by which this mutation induces HD remains unknown, although alterations in protein degradation are involved. To study intrinsic cellular mechanisms linked to the mutation, we examined dissociated postnatally derived cultures of striatal neurons from transgenic mice expressing exon 1 of the human HD gene carrying a CAG repeat expansion. While there was no difference in cell death between wild-type and mutant littermate-derived cultures, the mutant striatal neurons exhibited elevated cell death following a single exposure to a neurotoxic concentration of dopamine. The mutant neurons exposed to dopamine also exhibited lysosome-associated responses including induction of autophagic granules and electron-dense lysosomes. The autophagic/lysosomal compartments co-localized with high levels of oxygen radicals in living neurons, and ubiquitin. The results suggest that the combination of mutant huntingtin and a source of oxyradical stress (provided in this case by dopamine) induces autophagy and may underlie the selective cell death characteristic of HD.  相似文献   

7.
Huntington's disease (HD) is caused by an expansion of exonic CAG triplet repeats in the gene encoding huntingtin protein (Htt), but the mechanisms by which this mutant protein causes neurodegeneration remain unknown. Here we show that lymphoblast mitochondria from patients with HD have a lower membrane potential and depolarize at lower calcium loads than do mitochondria from controls. We found a similar defect in brain mitochondria from transgenic mice expressing full-length mutant huntingtin, and this defect preceded the onset of pathological or behavioral abnormalities by months. By electron microscopy, we identified N-terminal mutant huntingtin on neuronal mitochondrial membranes, and by incubating normal mitochondria with a fusion protein containing an abnormally long polyglutamine repeat, we reproduced the mitochondrial calcium defect seen in human patients and transgenic animals. Thus, mitochondrial calcium abnormalities occur early in HD pathogenesis and may be a direct effect of mutant huntingtin on the organelle.  相似文献   

8.
Huntington disease (HD) is an adult-onset neurodegenerative disease caused by a toxic gain of function in the huntingtin (htt) protein. The contribution of wild-type htt function to the pathogenesis of HD is currently uncertain. To assess the role of wild-type htt in HD, we generated YAC128 mice that do not express wild-type htt (YAC128-/-) but express the same amount of mutant htt as normal YAC128 mice (YAC128+/+). YAC128-/- mice perform worse than YAC128+/+ mice in the rotarod test of motor coordination (P = 0.001) and are hypoactive compared with YAC128+/+ mice at 2 months (P = 0.003). Striatal neuropathology was not clearly worse in YAC128-/- mice compared with YAC128+/+ mice. There was no significant effect of decreased wild-type htt on striatal volume, neuronal counts or DARPP-32 expression but a modest worsening of striatal neuronal atrophy was evident (6%, P = 0.03). The testis of YAC128+/+ mice showed atrophy and degeneration, which was markedly worsened in the absence of wild-type htt (P = 0.001). YAC128+/+ mice also showed a male specific deficit in survival compared with WT mice which was exacerbated by the loss of wild-type htt (12-month-male survival, P < 0.001). Overall, we demonstrate that the loss of wild-type htt influences motor dysfunction, hyperkinesia, testicular degeneration and impaired lifespan in YAC128 mice. The mild effect of wild-type htt on striatal phenotypes in YAC128 mice suggests that the characteristic striatal neuropathology in HD is caused primarily by the toxicity of mutant htt and that replacement of wild-type htt will not be an adequate treatment for HD.  相似文献   

9.
Many lines of evidence support a role for neuronal damage arising as a result of excessive activation of glutamate receptors by excitatory amino acids in the pathogenesis of Huntington disease. The N-methyl-d-aspartate subclass of ionotropic glutamate receptors (NMDARs) is more selective and effective than the other subclasses in mediating this damage. As well, neurons expressing high levels of NMDARs are lost early from the striatum of individuals affected with Huntington's disease (HD), and injection of NMDAR agonists into the striatum of rodents or non-human primates recapitulates the pattern of neuronal damage observed in HD. Altered NMDAR function has been reported in corticostriatal synapses in one mouse model of HD, and NMDAR-mediated current and/or toxicity have been found to be potentiated in striatal neurons from several HD mouse models as well as heterologous cells expressing the mutant huntingtin protein. Changes in NMDAR activity have been correlated with altered calcium homeostasis, mitochondrial membrane depolarization and caspase activation. NMDAR stimulation is also closely linked to mitochondrial activity, as treatment with mitochondrial toxins has been demonstrated to produce striatal damage that can be reversed by the addition of NMDAR antagonists. Recent efforts have focused on the elucidation of molecular pathways linking huntingtin to NMDARs, as well as the mechanisms which underlie the enhancement of NMDAR activity by mutant huntingtin. Here, we review the literature to date and recent findings concerning the role of NMDARs in HD pathogenesis.  相似文献   

10.
In Huntington's disease (HD), CAG repeats extend a glutamine tract in huntingtin to initiate the dominant loss of striatal neurons and chorea. Neuropathological changes include the formation of insoluble mutant N-terminal fragment, as nuclear/neuropil inclusions and filter-trap amyloid, which may either participate in the disease process or be a degradative by-product. In young Hdh knock-in mice, CAGs that expand the glutamine tract in mouse huntingtin to childhood-onset HD lengths lead to nuclear accumulation of full-length mutant huntingtin and later accumulation of insoluble fragment. Here we report late-onset neurodegeneration and gait deficits in older Hdh(Q111) knock-in mice, demonstrating that the nuclear phenotypes comprise early stages in a disease process that conforms to genetic and pathologic criteria determined in HD patients. Furthermore, using the early nuclear-accumulation phenotypes as surrogate markers, we show in genetic experiments that the disease process, initiated by full-length mutant protein, is hastened by co-expression of mutant fragment; therefore, accrual of insoluble-product in already compromised neurons may exacerbate pathogenesis. In contrast, timing of early disease events was not altered by normal huntingtin or by mutant caspase-1, two proteins shown to reduce inclusions and glutamine toxicity in other HD models. Thus, potential HD therapies in man might be directed at different levels: preventing the disease-initiating mechanism or slowing the subsequent progression of pathogenesis.  相似文献   

11.
Lengthening a glutamine tract in huntingtin confers a dominant attribute that initiates degeneration of striatal neurons in Huntington's disease (HD). To identify pathways that are candidates for the mutant protein's abnormal function, we compared striatal cell lines established from wild-type and Hdh(Q111) knock-in embryos. Alternate versions of full-length huntingtin, distinguished by epitope accessibility, were localized to different sets of nuclear and perinuclear organelles involved in RNA biogenesis and membrane trafficking. However, mutant STHdh(Q111) cells also exhibited additional forms of the full-length mutant protein and displayed dominant phenotypes that did not mirror phenotypes caused by either huntingtin deficiency or excess. These phenotypes indicate a disruption of striatal cell homeostasis by the mutant protein, via a mechanism that is separate from its normal activity. They also support specific stress pathways, including elevated p53, endoplasmic reticulum stress response and hypoxia, as potential players in HD.  相似文献   

12.
Many lines of evidence support a role for neuronal damage arising as a result of excessive activation of glutamate receptors by excitatory amino acids in the pathogenesis of Huntington disease. The N-methyl-d-aspartate subclass of ionotropic glutamate receptors (NMDARs) is more selective and effective than the other subclasses in mediating this damage. As well, neurons expressing high levels of NMDARs are lost early from the striatum of individuals affected with Huntington's disease (HD), and injection of NMDAR agonists into the striatum of rodents or non-human primates recapitulates the pattern of neuronal damage observed in HD. Altered NMDAR function has been reported in corticostriatal synapses in one mouse model of HD, and NMDAR-mediated current and/or toxicity have been found to be potentiated in striatal neurons from several HD mouse models as well as heterologous cells expressing the mutant huntingtin protein. Changes in NMDAR activity have been correlated with altered calcium homeostasis, mitochondrial membrane depolarization and caspase activation. NMDAR stimulation is also closely linked to mitochondrial activity, as treatment with mitochondrial toxins has been demonstrated to produce striatal damage that can be reversed by the addition of NMDAR antagonists. Recent efforts have focused on the elucidation of molecular pathways linking huntingtin to NMDARs, as well as the mechanisms which underlie the enhancement of NMDAR activity by mutant huntingtin. Here, we review the literature to date and recent findings concerning the role of NMDARs in HD pathogenesis.  相似文献   

13.
The 'expanded' HD CAG repeat that causes Huntington's disease (HD) encodes a polyglutamine tract in huntingtin, which first targets the death of medium-sized spiny striatal neurons. Mitochondrial energetics, related to N-methyl-d-aspartate (NMDA) Ca2+-signaling, has long been implicated in this neuronal specificity, implying an integral role for huntingtin in mitochondrial energy metabolism. As a genetic test of this hypothesis, we have looked for a relationship between the length of the HD CAG repeat, expressed in endogenous huntingtin, and mitochondrial ATP production. In STHdhQ111 knock-in striatal cells, a juvenile onset HD CAG repeat was associated with low mitochondrial ATP and decreased mitochondrial ADP-uptake. This metabolic inhibition was associated with enhanced Ca2+-influx through NMDA receptors, which when blocked resulted in increased cellular [ATP/ADP]. We then evaluated [ATP/ADP] in 40 human lymphoblastoid cell lines, bearing non-HD CAG lengths (9-34 units) or HD-causing alleles (35-70 units). This analysis revealed an inverse association with the longer of the two allelic HD CAG repeats in both the non-HD and HD ranges. Thus, the polyglutamine tract in huntingtin appears to regulate mitochondrial ADP-phosphorylation in a Ca2+-dependent process that fulfills the genetic criteria for the HD trigger of pathogenesis, and it thereby determines a fundamental biological parameter--cellular energy status, which may contribute to the exquisite vulnerability of striatal neurons in HD. Moreover, the evidence that this polymorphism can determine energy status in the non-HD range suggests that it should be tested as a potential physiological modifier in both health and disease.  相似文献   

14.
15.
The molecular biology of Huntington's disease   总被引:1,自引:0,他引:1  
BACKGROUND: Huntington's disease (HD) is a fatal neurodegenerative disorder with an autosomal dominant mode of inheritance. It leads to progressive dementia, psychiatric symptoms and an incapacitating choreiform movement disorder, culminating in premature death. HD is caused by an increased CAG repeat number in a gene coding for a protein with unknown function, called huntingtin. The trinucleotide CAG codes for the amino acid glutamine and the expanded CAG repeats are translated into a series of uninterrupted glutamine residues (a polyglutamine tract). METHODS: This review describes the epidemiology, clinical symptomatology, neuropathological features and genetics of HD. The main aim is to examine important findings from animal and cellular models and evaluate how they have enriched our understanding of the pathogenesis of HD and other diseases caused by expanded polyglutamine tracts. RESULTS: Selective death of striatal and cortical neurons occurs. It is likely that the HD mutation confers a deleterious gain of function on the protein. Neuronal intranuclear inclusions containing huntingtin and ubiquitin develop in patients and transgenic mouse models of HD. Other proposed mechanisms contributing to neuropathology include excitotoxicity, oxidative stress, impaired energy metabolism, abnormal protein interactions and apoptosis. CONCLUSIONS: Although many interesting findings have accumulated from studies of HD and other polyglutamine diseases, there remain many unresolved issues pertaining to the exact roles of intranuclear inclusions and protein aggregates, the mechanisms of selective neuronal death and delayed onset of illness. Further knowledge in these areas will inspire the development of novel therapeutic strategies.  相似文献   

16.
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded CAG repeat in the gene encoding huntingtin, a protein of unknown function. Mutant huntingtin forms intracellular aggregates and is associated with neuronal death in select brain regions. The most studied mouse model (R6/2) of HD replicates many features of the disease, but has been reported to exhibit only very little neuronal death. We describe for the first time a dramatic atrophy and loss of orexin neurons in the lateral hypothalamus of R6/2 mice. Importantly, we also found a significant atrophy and loss of orexin neurons in Huntington patients. Like animal models and patients with impaired orexin function, the R6/2 mice were narcoleptic. Both the number of orexin neurons in the lateral hypothalamus and the levels of orexin in the cerebrospinal fluid were reduced by 72% in end-stage R6/2 mice compared with wild-type littermates, suggesting that orexin could be used as a biomarker reflecting neurodegeneration. Our results show that the loss of orexin is a novel and potentially very important pathology in HD.  相似文献   

17.
Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Although the mutant protein is widely expressed, the earliest and most striking neuropathological changes are observed in the striatum. Here we show dramatic mutation length increases (gains of up to 1000 CAG repeats) in human striatal cells early in the disease course, most likely before the onset of pathological cell loss. Studies of knock-in HD mouse models indicate that the size of the initial CAG repeat mutation may influence both onset and tissue-specific patterns of age-dependent, expansion-biased mutation length variability. Given that CAG repeat length strongly correlates with clinical severity, we suggest that somatic increases of mutation length may play a major role in the progressive nature and cell-selective aspects of both adult-onset and juvenile-onset HD pathogenesis and we discuss the implications of this interpretation of the data presented.  相似文献   

18.
Huntington's disease (HD) is initiated by an abnormally expanded polyglutamine stretch in the huntingtin protein, conferring a novel property on the protein that leads to the loss of striatal neurons. Defects in mitochondrial function have been implicated in the pathogenesis of HD. Here, we have examined the hypothesis that the mutant huntingtin protein may directly interact with the mitochondrion and affect its function. In human neuroblastoma cells and clonal striatal cells established from HdhQ7 (wild-type) and HdhQ111 (mutant) homozygote mouse knock-in embryos, huntingtin was present in a purified mitochondrial fraction. Subfractionation of the mitochondria and limited trypsin digestion of the organelle demonstrated that huntingtin was associated with the outer mitochondrial membrane. We further demonstrated that a recombinant truncated mutant huntingtin protein, but not a wild-type, directly induced mitochondrial permeability transition (MPT) pore opening in isolated mouse liver mitochondria, an effect that was prevented completely by cyclosporin A (CSA) and ATP. Importantly, the mutant huntingtin protein significantly decreased the Ca2+ threshold necessary to trigger MPT pore opening. We found a similar increased susceptibility to the calcium-induced MPT in liver mitochondria isolated from a knock-in HD mouse model. The mutant huntingtin protein-induced MPT pore opening was accompanied by a significant release of cytochrome c, an effect completely inhibited by CSA. These findings suggest that the development of specific MPT inhibitors may be an interesting therapeutic avenue to delay the onset of HD.  相似文献   

19.
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat encoding a tract of consecutive glutamines near the amino terminus of huntingtin, a large protein of unknown function. It has been proposed that the expanded polyglutamine stretch confers a new property on huntingtin and thereby causes cell and region-specific neurodegeneration. Genotype-phenotype correlations predict that this novel property appears above a threshold length (approximately 38 glutamines), becomes progressively more evident with increasing polyglutamine length, is completely dominant over normal huntingtin and is not appreciably worsened by a double genetic dose in HD homozygotes. Recently, an amino terminal fragment of mutant huntingtin has been found to form self-initiated fibrillar aggregates in vitro. We have tested the capacity for aggregation to assess whether this property matches the criteria expected for a fundamental role in HD pathogenesis. We find that that in vitro aggregation displays a threshold and progressivity for polyglutamine length remarkably similar to the HD disease process. Moreover, the mutant huntingtin amino terminus is capable of recruiting into aggregates normal glutamine tract proteins, such as the amino terminal segments of both normal huntingtin and of TATA-binding protein (TBP). Our examination of in vivo aggregates from HD post-mortem brains indicates that they contain an amino terminal segment of huntingtin of between 179 and 595 residues. They also contain non-huntingtin protein, as evidenced by immunostaining for TBP. Interestingly, like the in vitro aggregates, aggregates from HD brain display Congo red staining with green birefringence characteristic of amyloid. Our data support the view that the expanded polyglutamine segment confers on huntingtin a new property that plays a determining role in HD pathogenesis and could be a target for treatment. Moreover, the new property might have its toxic consequences by interaction with one or more normal polyglutamine-containing proteins essential for the survival of target neurons.  相似文献   

20.
Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号