首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
耳鸣(Tinnitus)是指在外界无声源刺激或电刺激时耳内出现声音感觉的症状。耳鸣不是一种独立的疾病,许多全身和局部的疾病都可引起耳鸣,所以耳鸣的发生率较高。据调查显示,耳鸣的发病率可达13%~18%,严重影响身心和生活,其中2.4%的人寻求治疗。目前,西医学对本病的发病机理认识尚不明确,多认为与微循环病变、自身免疫性疾病、膜迷路结构改变、病毒感染及心理因素等有关,治疗上有掩蔽、习服、药物、手术等疗法,但疗效不甚理想。  相似文献   

2.
1引言耳鸣指在无外界声源时,耳内或颅内感知有一种或多种声音,分为客观性耳鸣和主观性耳鸣。主观性耳鸣无法检查到,由听觉系统中的异常活动引起,是一种很复杂的疾病,具有多因素起源。耳鸣无明确原因,大多数情况下没有根治方法,缺乏行之有效的标准化评估、治疗和转诊途径,在欧洲造成巨大的心理、社会和经济负担,故有必要制定统一的评估、治疗主观性耳鸣的欧洲准则。  相似文献   

3.
耳鸣的研究现状及展望   总被引:3,自引:0,他引:3  
1耳鸣的定义 耳鸣是一个耳神经学症状,是指在无任何外界相应的声源或电刺激时,耳内或头部所产生的声音的感觉,即患者自觉耳内或颅内有声响.  相似文献   

4.
耳鸣是在没有任何外界相应的声源或电刺激时耳内所产生的声音感觉。它不包括声音幻觉和错觉,是一种常见的临床症状。由于对其客观评定方法不多,定位诊断困难,治疗方法不足,因而成为临床的一个难题。同时,耳鸣常为许多疾病的伴发症状,有时是一些严重疾病的的首发症状,故临床上应给于足够的重视。在临床工作中我们发现近年来儿童耳鸣有增多趋势,由于引起耳鸣的疾病与因素极多,儿童的表述能力又较差,所以诊断与治疗起来更  相似文献   

5.
耳鸣研究进展   总被引:12,自引:0,他引:12  
耳鸣是指在外界无声源刺激或电刺激时耳内出现声音感觉的症状。许多全身和局部的疾病都可引起耳鸣,所以耳鸣的发生率比较高,在成年人中约为2%-7%[1],而在年龄大于55岁的人群中则高达20%-30%[2]。耳鸣通常引起烦躁、焦虑甚至抑郁,严重者可影响工作和生活。1耳鸣的形成机制耳鸣的  相似文献   

6.
<正>耳鸣(tinnitus)是指无任何外界声源刺激时,耳内或头部产生声音的主观感觉。耳鸣声表现多种多样,如嗡嗡声、嘶嘶声、电流声、蝉鸣声、电铃声等。可为单侧耳鸣、双侧耳鸣或颅鸣。耳鸣可持续性、间歇性或搏动性。声音强度从阈上轻微强度到高强度。按照是否有听力损失,可分为听力正常的耳鸣和伴有听力损失的耳鸣。按照是否有声源,可分为主观性耳鸣和客观性耳鸣。客观性耳鸣是内部生物源性的真实声音,通过人体自身组织传导到耳内。来源包括血管搏动、脉搏声、中耳肌肉痉挛、咽鼓管  相似文献   

7.
耳鸣是一个耳神经学症状,患者自觉耳内或(和)颅内有响声,但环境中没有相应的声源。耳鸣可分为主观性耳鸣和客观性耳鸣,前者又称非振动性耳鸣或自觉性耳鸣,仅患者能听到耳鸣声音,他人不能听到,约占耳鸣总数的95%以上。后者又称振动性耳鸣或他觉性耳鸣,不但患者能听到声  相似文献   

8.
耳鸣是指在周围环境中没有声源存在的情况下.患者自觉耳内或颅内有声音的一种主观症状,常伴有心烦、焦虑、失眠、抑郁等不良心理反应,严重影响患者的生活质量。耳鸣按照声音的特点,可分为搏动性耳鸣(pulsatiletinnitus,PT)和非搏动性耳鸣。搏动性耳鸣是一种有节律的耳鸣,是由患者头颈部的血管或肌肉产生,并通过骨骼、血管和血流传导至耳蜗而被感知的。  相似文献   

9.
耳鸣是在无外界相应声源或刺激的情况下耳内有声音的一种主观感觉,尽管其临床表现千差万别,但大量的临床资料揭示了耳鸣与耳蜗损伤的密切关系:耳鸣常发生于老年性聋、噪声性聋、突发性聋、梅尼埃病或其它内耳疾病患者;耳鸣有鲜明的心理声学特征,如侧向、音调,耳鸣的音调在很大程度上与患者听力损失的频率重叠,  相似文献   

10.
目的:了解中耳炎患者的耳鸣发生率及与中耳炎相关的耳鸣特征。方法收集广州市番禺区中医院2010年~2012年诊断为化脓性中耳炎或分泌性中耳炎的病例400例,首先调查患者有无耳鸣;有耳鸣者进一步调查耳鸣是否与中耳炎有关;对于与中耳炎相关的耳鸣,调查其耳鸣严重程度,并分析其心理声学特征。结果400例中耳炎患者中,出现耳内或头颅有声音感觉者253例(63.25%),其中与中耳炎可能有关的耳鸣仅79例,占19.75%,其中化脓性中耳炎37例,分泌性中耳炎42例;这79例患者耳鸣的特征为:耳鸣均为单一音调,高、中、低音均可能出现,耳鸣部位在患耳侧或颅内靠近患耳侧,匹配响度多在5 dB S L以内,耳鸣掩蔽曲线以间距型和汇聚型最多见,多数耳鸣的残余抑制试验呈阳性,耳鸣的严重程度多在Ⅱ级以内,且以上特点两种中耳炎之间差异均无统计学意义(均 P>0.05)。结论本组患者中与中耳炎相关的耳鸣发生率为19.75%;耳鸣并非中耳炎的常见症状,与中耳炎相关的耳鸣其严重程度较轻,详细问诊有助于减少耳鸣的假阳性率。  相似文献   

11.
12.
The measurement of sound involves the analysis of frequency, intensity, and temporal dimensions of acoustic signals. Each dimension of sound can be related directly to clinically observed phenomena. Frequency information, measured in Hz, can be extracted from pure-tone and complex stimuli. Intensity represents the physical energy of a signal and is described by using the decibel scale--a logarithmic scale of ratios. Temporal characteristics of sound include duration, phase, and repetition rate. In the analysis of human hearing sensitivity, the middle ear system and its impedance characteristics also must be considered. In this article, we have reviewed some major principles of sound and have presented a series of practical clinical applications. Such principles as these help to predict and explain frequency of laryngeal tones, middle ear mechanics, ear canal resonance, real-ear measurements of hearing aids, the Articulation Index, hearing loss, understanding of speech in quiet and in noise, and the relation between hearing and speech.  相似文献   

13.
AimTo evaluate azimuthal sound-source localization performance under different conditions, with a view to optimizing a routine sound localization protocol.Material and methodTwo groups of healthy, normal-hearing subjects were tested identically, except that one had to keep their head still while the other was allowed to turn it. Sound localization was tested without and then with a right ear plug (acute auditory asymmetry) for each of the following sound stimuli: pulsed narrow-band centered on 250 Hz, continuous narrowband centered on 2000 Hz, 4000 Hz and 8000 Hz, continuous 4000 Hz warble, pulsed white noise, and word (“lac” (lake)). Root mean square error was used to calculate sound-source localization accuracy.ResultsWith fixed head, localization was significantly disturbed by the earplug for all stimuli (P < 0.05). The most discriminating stimulus was continuous 4000 Hz narrow-band: area under the ROC curve (AUC), 0.99 [95% CI, 0.95–1.01] for screening and 0.85 [0.82–0.89] for diagnosis. With mobile head, localization was significantly better than with fixed head for 4000 and 8000 Hz stimuli (P < 0.05). The most discriminating stimulus was continuous 2000 Hz narrow-band: AUC, 0.90 [0.83–0.97] for screening and 0.75 [0.71–0.79] for diagnosis. In both conditions, pulsed noise (250 Hz narrow-band, white noise or word) was less difficult to localize than continuous noise.ConclusionThe test was more sensitive with the head immobile. Continuous narrow-band stimulation centered on 4000 Hz most effectively explored interaural level difference. Pulsed narrow-band stimulation centered on 250 Hz most effectively explored interaural time difference. Testing with mobile head, closer to real-life conditions, was most effective with continuous narrow-band stimulation centered on 2000 Hz.  相似文献   

14.
15.
16.
17.
18.
声音让我们的世界充满了生机,声音中包含的信息构成了我们学习的主要内容。那么声音是如何产生?如何传播?又如何引起我们注意的呢?  相似文献   

19.
Getzmann S 《Hearing research》2004,191(1-2):14-20
The effect of a preceding (adapter) sound on the spatial discrimination of two subsequent, successively presented (target) sounds was tested in the horizontal plane. The adapter and the first target were located in front of the subject or 30 degrees to the right of the midline; both sounds were presented either at the same location or at different locations. The second target was located to the right or the left of the first. Sound spectra of the 3-s adapter and the 100-ms targets were either high (4.5-18 kHz) or low (1-4 kHz) in frequency. Fifteen subjects judged the position of the second target relative to the first in a two-alternative forced-choice paradigm. In comparison with a no-adapter control condition, in which no sound preceded, discrimination performance was increased when adapter and first target were presented at the same location and when both sounds consisted of the same frequency spectrum. No improvement occurred when adapter and targets differed in location or frequency. The results are consistent with previous results on post-adaptation discrimination of interaural time differences. Possibly, spatial adaptation of the underlying mechanisms of auditory localization may explain the discrimination aftereffect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号