首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffuse axonal injury is the predominant mechanism of injuries in patients with traumatic brain injury. Neither conventional brain computed tomography nor magnetic resonance imaging has shown sufficient sensitivity in the diagnosis of diffuse axonal injury. In the current study, we attempted to demonstrate the usefulness of diffusion tensor imaging in the detection of lesion sites of diffuse axonal injury in a patient with head trauma who had been misdiagnosed as having a stroke. A 44-year-old man fell from a height of about 2 m. Brain magnetic resonance imaging (32 months after onset) showed leukomalactic lesions in the isthmus of the corpus callosum and the left temporal lobe. He presented with mild quadriparesis, intentional tremor of both hands, and trunkal ataxia. From diffusion tensor imaging results of 33 months after traumatic brain injury onset, we found diffuse axonal injury in the right corticospinal tract (centrum semiovale, pons), both fornices (columns and crus), and both inferior cerebellar peduncles (cerebellar portions). We think that diffusion tensor imaging could be a useful tool in the detection of lesion sites of diffuse axonal injury in patients with head trauma.  相似文献   

2.
Infants and children less than 4 years old suffer chronic cognitive deficits following mild, moderate or severe diffuse traumatic brain injury (TBI). It has been suggested that the underlying neuropathologic basis for behavioral deficits following severe TBI is acute brain swelling, subarachnoid hemorrhage and axonal injury. To better understand mechanisms of cognitive dysfunction in mild-moderate TBI, a closed head injury model of midline TBI in the immature rat was developed. Following an impact over the midline suture of the intact skull, 17-day-old rats exhibited short apnea times (3–15 s), did not require ventilatory support and suffered no mortality, suggestive of mild TBI. Compared to un-injured rats, brain-injured rats exhibited significant learning deficits over the first week post-injury (p < 0.0005), and, significant learning (p < 0.005) and memory deficits (p < 0.05) in the third post-injury week. Between 6 and 72 h, blood–brain barrier breakdown, extensive traumatic axonal injury in the subcortical white matter and thalamus, and focal areas of neurodegeneration in the cortex and hippocampus were observed in both hemispheres of the injured brain. At 8 to 18 days post-injury, reactive astrocytosis in the cortex, axonal degeneration in the subcortical white matter tracts, and degeneration of neuronal cell bodies and processes in the thalamus of both hemispheres were observed; however, cortical volumes were not different between un-injured and injured rat brains. These data suggest that diffuse TBI in the immature rat can lead to ongoing degeneration of both cell soma and axonal compartments of neurons, which may contribute, in part, to the observed sustained cognitive deficits.  相似文献   

3.
Cyclosporin A has emerged as a promising therapeutic agent in traumatic brain injury (TBI), although its precise neuroprotective mechanism is unclear. Cyclosporin A, given as a single-dose intrathecal bolus, has previously been shown to attenuate mitochondrial damage and reduce axonal injury in experimental TBI. We assessed the effect of a range of intravenous cyclosporin A doses upon axonal injury attenuation to determine the ideal dose. Rats were subjected to experimental TBI and given one of five intravenous doses of cyclosporin A. At 3 h post-injury, brains were processed for brain tissue cyclosporin A concentration. In a second set of animals, at 24 h postinjury, brains were processed for amyloid precursor protein immunoreactivity, a widely used marker of axonal injury. Intravenous administration produced therapeutic levels of cyclosporin A in brain parenchyma. Higher concentrations were achieved with equivalent doses given intrathecally; this is consistent with the reported poor blood-brain barrier permeability of cyclosporin A. Cyclosporin A 10 mg/kg i.v. produced the greatest degree of neuroprotection against diffuse axonal injury; cyclosporin A 50 mg/kg i.v. was toxic. Intravenous cyclosporin A administration achieves therapeutic levels in brain parenchyma and 10 mg/kg is the most effective dose in attenuating axonal damage after traumatic brain injury.  相似文献   

4.
Many of the clinical and behavioral manifestations of traumatic brain injury (TBI) are thought to arise from disruption to the structural network of the brain due to diffuse axonal injury (DAI). However, a principled way of summarizing diffuse connectivity alterations to quantify injury burden is lacking. In this study, we developed a connectome injury score, Disruption Index of the Structural Connectome (DISC), which summarizes the cumulative effects of TBI‐induced connectivity abnormalities across the entire brain. Forty patients with moderate‐to‐severe TBI examined at 3 months postinjury and 35 uninjured healthy controls underwent magnetic resonance imaging with diffusion tensor imaging, and completed behavioral assessment including global clinical outcome measures and neuropsychological tests. TBI patients were selected to maximize the likelihood of DAI in the absence of large focal brain lesions. We found that hub‐like regions, with high betweenness centrality, were most likely to be impaired as a result of diffuse TBI. Clustering of participants revealed a subgroup of TBI patients with similar connectivity abnormality profiles who exhibited relatively poor cognitive performance. Among TBI patients, DISC was significantly correlated with post‐traumatic amnesia, verbal learning, executive function, and processing speed. Our experiments jointly demonstrated that assessing structural connectivity alterations may be useful in development of patient‐oriented diagnostic and prognostic tools. Hum Brain Mapp 38:2913–2922, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
The immature brain in the first several years of childhood is very vulnerable to trauma. Traumatic brain injury (TBI) during this critical period often leads to neuropathological and cognitive impairment. Previous experimental studies in rodent models of infant TBI were mostly concentrated on neuronal degeneration, while axonal injury and its relationship to cell death have attracted much less attention. To address this, we developed a closed controlled head injury model in infant (P7) mice and characterized the temporospatial pattern of axonal degeneration and neuronal cell death in the brain following mild injury. Using amyloid precursor protein (APP) as marker of axonal injury we found that mild head trauma causes robust axonal degeneration in the cingulum/external capsule as early as 30 min post-impact. These levels of axonal injury persisted throughout a 24 h period, but significantly declined by 48 h. During the first 24 h injured axons underwent significant and rapid pathomorphological changes. Initial small axonal swellings evolved into larger spheroids and club-like swellings indicating the early disconnection of axons. Ultrastructural analysis revealed compaction of organelles, axolemmal and cytoskeletal defects. Axonal degeneration was followed by profound apoptotic cell death in the posterior cingulate and retrosplenial cortex and anterior thalamus which peaked between 16 and 24 h post-injury. At early stages post-injury no evidence of excitotoxic neuronal death at the impact site was found. At 48 h apoptotic cell death was reduced and paralleled with the reduction in the number of APP-labeled axonal profiles. Our data suggest that early degenerative response to injury in axons of the cingulum and external capsule may cause disconnection between cortical and thalamic neurons, and lead to their delayed apoptotic death.  相似文献   

6.
Evidence for diffuse traumatic axonal injury (TAI) in clinical cases and animal models of traumatic brain injury (TBI) indicate that pathophysiological mechanisms extend to regions remote from the injury epicenter. The potential for indirect cerebellar trauma contributing to TBI pathophysiology is of significance since impairment of motor function and coordination is a common consequence of TBI but is also a domain associated with cerebellar function. The relationship between cerebellar white matter structure and function following traumatic head injury has not been examined. Using the fluid percussion injury (FPI) device applied unilaterally in the forebrain, evoked compound action potential (CAP) recordings from cerebellar white matter of Sprague-Dawley rats indicated a spatial and temporal pattern of electrophysiological deficits throughout the cerebellar vermis. The posterior and middle lobules of the cerebellum exhibited significant declines in evoked CAP amplitude compared to sham controls (p=0.004, p=0.005, respectively). Duration of the CAP decay also increased, suggesting that functional white matter deficits were a combination of axonal loss and compromised axonal integrity. Functional white matter deficits persisted at 14 days post-injury in the posterior and middle regions of the cerebellum. Evidence of heavy chain neurofilament (NF200) degradation was observed at 1 day post-injury by Western blot. Immunohistochemistry labeling for NF200 indicated the presence of highly immunoreactive NF200 axonal swellings consistent with morphological features of TAI. alpha-Spectrin degradation was also observed between 1 and 14 days post-injury. This study demonstrates the electrophysiological consequences of cerebellar white matter injury and a temporal profile of NF200 and spectrin degradation following forebrain FPI.  相似文献   

7.
N-acetyl-aspartate (NAA) measured by proton nuclear magnetic resonance spectroscopy (1H-NMR) has been used as a marker of neuronal injury in many cerebral pathologies. Therefore, we evaluate the roles of microdialysis vs. 1H-NMR as techniques to assess NAA (NAAd; NAA/Creatine ratio) in the living brain, and compare the results with whole brain NAA (NAAw), analyzed by HPLC after diffuse traumatic brain injury (TBI). Acute (4 h post-injury survival) and late (48 h survival) changes were studied in a sham-operated group (Sham, n = 4), and two injured groups (TBI/4 h, n = 8; TBI/48 h, n = 7). Baseline NAAd was 8.17 +/- 1 microM, and there was no significant difference between groups. There was only a small (twice of control), but transient increase in NAAd in the TBI/4 h group after trauma. Baseline NAA/Cr ratio was 1.35 +/- 0.2, which did not change significantly between baseline, 1, 2, 3, 4 and 48 h or between groups after TBI. Whole brain NAAw (baseline 8.5 +/- 0.5 mmol kg-1 wet weight) did not differ significantly between groups before and after TBI. Diffuse TBI did not produce long-term changes in NAA, assessed by three different methods. These results may indicate that NAA is not a sensitive marker of the severity of diffuse axonal damage. However, further studies are needed to evaluate whether confounding factors such as microdialysis probe, voxel position and non-regional tissue homogenization might have influenced our data.  相似文献   

8.
The purpose of experimental models of traumatic brain injury (TBI) is to reproduce selected aspects of human head injury such as brain edema, contusion or concussion, and functional deficits, among others. As the immature brain may be particularly vulnerable to injury during critical periods of development, and pediatric TBI may cause neurobehavioral deficits, our aim was to develop and characterize as a function of developmental age a model of diffuse TBI (DTBI) with quantifiable functional deficits. We modified a DTBI rat model initially developed by us in adult animals to study the graded response to injury as a function of developmental age - 7-, 14- and 21-day-old rats compared to young adult (3-month-old) animals. Our model caused motor deficits that persisted even after the pups reached adulthood, as well as reduced cognitive performance 2 weeks after injury. Moreover, our model induced prominent edema often seen in pediatric TBI, particularly evident in 7- and 14-day-old animals, as measured by both the wet weight/dry weight method and diffusion-weighted MRI. Blood-brain barrier permeability, as measured by the Evans blue dye technique, peaked at 20 min after trauma in all age groups, with a second peak found only in adult animals at 24 h after injury. Phosphorus MR spectroscopy showed no significant changes in the brain energy metabolism of immature rats with moderate DTBI, in contrast to significant decreases previously identified in adult animals.  相似文献   

9.
A characteristic feature of severe diffuse axonal injury in man is radiological evidence of the “shearing injury triad” represented by lesions, sometimes haemorrhagic, in the corpus callosum, deep white matter and the rostral brain stem. With the exception of studies carried out on the non-human primate, such lesions have not been replicated to date in the multiple and diverse rodent laboratory models of traumatic brain injury. The present report describes tissue tears in the white matter, particularly in the fimbria of Sprague-Dawley rats killed 12, 24, and 48 h and 7 days after lateral fluid percussion brain injury of moderate severity (2.1–2.4 atm). The lesions were most easily seen at 24 h when they appeared as foci of tissue rarefaction in which there were a few polymorphonuclear leucocytes. At the margins of these lesions, large amounts of accumulated amyloid precursor protein (APP) were found in axonal swellings and bulbs. By 1 week post-injury, there was macrophage infiltration with marked astrocytosis and early scar formation. This lesion is considered to be due to severe deformation of white matter and this is the first time that it has been identified reproducibly in a rodent model of head injury under controlled conditions. Received: 25 February 1999 / Revised: 7 June 1999 / Accepted: 22 June 1999  相似文献   

10.
Traumatic brain injury (TBI) is a major public health issue, with recently increased awareness of the potential long‐term sequelae of repetitive injury. Although TBI is common, objective diagnostic tools with sound neurobiological predictors of outcome are lacking. Indeed, such tools could help to identify those at risk for more severe outcomes after repetitive injury and improve understanding of biological underpinnings to provide important mechanistic insights. We tested the hypothesis that acute and subacute pathological injury, including the microgliosis that results from repeated mild closed head injury (rmCHI), is reflected in susceptibility‐weighted magnetic resonance imaging and diffusion‐tensor imaging microstructural abnormalities. Using a combination of high‐resolution magnetic resonance imaging, stereology, and quantitative PCR, we studied the pathophysiology of male mice that sustained seven consecutive mild traumatic brain injuries over 9 days in acute (24 hr) and subacute (1 week) time periods. rmCHI induced focal cortical microhemorrhages and impaired axial diffusivity at 1 week postinjury. These microstructural abnormalities were associated with a significant increase in microglia. Notably, microgliosis was accompanied by a change in inflammatory microenvironment defined by robust spatiotemporal alterations in tumor necrosis factor‐α receptor mRNA. Together these data contribute novel insight into the fundamental biological processes associated with repeated mild brain injury concomitant with subacute imaging abnormalities in a clinically relevant animal model of repeated mild TBI. These findings suggest new diagnostic techniques that can be used as biomarkers to guide the use of future protective or reparative interventions. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
目的 探讨磁共振特殊技术,液体衰减反转恢复序列(Fluid Attenuated Inversion Recovery, FLAIR)和氢质子MR波谱(1H-MR spectroscopy,1HMRS)在非典型弥漫性轴索损伤(diffuse axonal injury,DAI)临床诊断上的价值。 方法 搜集我科2002年10月至2008年1月收治的58例符合本研究纳入标准的颅脑外伤病例,根据诊断标准将全部病例分为DAI组和非典型DAI组,进行FLAIR和1HMRS检查,再随机选择20名健康成年人作为对照组。观察FLAIR对DAI组及非典型DAI组病例的诊断能力;利用1HMRS比较DAI组和非典型DAI组胼胝体膝部、压部和基底节N-乙酰天门冬氨酸/肌酸和磷酸肌酸(NAA/Cr)、胆碱复合物/肌酸和磷酸肌酸(Cho/Cr)、肌醇/肌酸和磷酸肌酸(mINs/Cr)以及谷氨酸和谷氨酰胺/肌酸和磷酸肌酸(Glx/Cr)等指标的差异。 结果 较之常规MRI,FLAIR对轴索病灶的发现能力明显提高,非典型DAI组的病灶分布及形态和DAI组类似,两者不同在于非典型DAI组分布于间脑以下水平的病灶明显少于DAI组。DAI组、非典型DAI组和对照组的NAA/Cr与Cho/Cr在胼胝体膝部、压部和基底节部位均具有显著差异,mINs/Cr和 Glx/Cr在胼胝体膝部和压部有显著差异;和对照组及非典型DAI组相比,DAI组于胼胝体膝部、压部和基底节有NAA/Cr降低和Cho/Cr升高,于胼胝体膝部和压部有mINs/Cr和 Glx/Cr升高;和对照组相比,非典型DAI组于胼胝体膝部和压部有NAA/Cr降低和Cho/Cr升高,于胼胝体膝部有mINs/Cr升高,但变化程度均比DAI组低。结论 非典型DAI组不仅有和DAI组类似的病灶分布和形态,还在胼胝体部位有与DAI组类似的伤后生化代谢改变,区别在于损伤波及范围和严重程度的不同。笔者认为,DAI不仅是重型脑伤的一种,它也存在于轻中型脑伤中,磁共振特殊技术在非典型DAI诊断上有很大价值。  相似文献   

12.
Human recombinant activated factor-VII (rFVIIa) has been used successfully in the treatment of spontaneous intracerebral hemorrhage. In addition, there is increasing interest in its use to treat uncontrolled bleeding of other origins, including trauma. The aim of this study was to evaluate the safety and potential effectiveness of rFVIIa to mitigate bleeding using a clinically relevant model of traumatic brain injury (TBI) in the pig. A double injury model was chosen consisting of (1) an expanding cerebral contusion induced by the application of negative pressure to the exposed cortical surface and (2) a rapid rotational acceleration of the head to induce diffuse axonal injury (DAI). Injuries were performed on 10 anesthetized pigs. Five minutes after injury, 720 microg/kg rFVIIa (n=5) or vehicle control (n=5) was administered intravenously. Magnetic resonance imaging (MRI) studies were performed within 30 min and at 3 days post-TBI to determine the temporal expansion of the cerebral contusion. Euthanasia and histopathologic analysis were performed at day 3. This included observations for hippocampal neuronal degeneration, axonal pathology and microclot formation. The expansion of contusion volume over the 3 days post-injury period was reduced significantly in animals treated with rFVIIa compared to vehicle controls. Surprisingly, immunohistochemical analysis demonstrated that the number of dead/dying hippocampal neurons and axonal pathology was reduced substantially by rFVIIa treatment compared to vehicle. In addition, there was no difference in the extent of microthrombi between groups. rFVIIa treatment after TBI in the pig reduced expansion of hemorrhagic cerebral contusion volume without exacerbating the severity of microclot formation. Finally, rFVIIa treatment provided a surprising neuroprotective effect by reducing hippocampal neuron degeneration as well as the extent of DAI.  相似文献   

13.
Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as ‘frontal-temporal’ in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis‐related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.  相似文献   

14.
Although increased neurogenesis has been described in rodent models of focal traumatic brain injury (TBI), the neurogenic response occurring after diffuse TBI uncomplicated by focal injury has not been examined to date, despite the pervasiveness of this distinct type of brain injury in the TBI patient population. Here we characterize multiple stages of neurogenesis following a traumatic axonal injury (TAI) model of diffuse TBI as well as the proliferative response of glial cells. TAI was induced in adult rats using an impact-acceleration model, and 5-bromo-2'-deoxyuridine (BrdU) was administered on days 1-4 posttrauma or sham operation to label mitotic cells. Using immunohistochemistry for BrdU combined with phenotype-specific markers, we found that proliferation was increased following TAI in the subventricular zone of the lateral ventricles and in the hippocampal subgranular zone, although the ultimate production of new dentate granule neurons at 8 weeks was not significantly enhanced. Also, abundant proliferating and reactive astrocytes, microglia, and polydendrocytes were detected throughout the brain following TAI, indicating that a robust glial response occurs in this model, although very few new cells in the nonneurogenic brain regions became mature neurons. We conclude that diffuse brain injury stimulates early stages of a neurogenic response similar to that described for models of focal TBI.  相似文献   

15.
Severe traumatic brain injury (TBI) often leads to a bad outcome with considerable neurological deficits. Secondary brain injuries due to a rise of intracranial pressure (ICP) and global hypoxia-ischemia are critical and may be reduced in extent by mild hypothermia. A porcine animal model was used to study the effect of severe TBI, induced by fluid percussion (FP; 3.5+/-0.3 atm) in combination with a secondary insult, i.e., temporary blood loss with hypovolemic hypotension. Six-week-old juvenile pigs were subjected to this kind of severe TBI; one group was then submitted to moderate hypothermia at 32 degrees C for 6 h, starting 1 h after brain injury. Animals were killed after 24 h. TBI and hypothermia-associated alterations in the brains were investigated by immunohistochemistry with antibodies against microtubule-associated protein 2 (MAP-2) and beta-amyloid precursor protein (betaAPP). In addition, DNA fragmentation was investigated by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) method. Seven of the 13 normothermic TBI animals developed a secondary increase in ICP (TBI-NT-ICP) after an interval of several hours. None of the animals in the hypothermic trauma (TBI-HT) group exhibited a secondary ICP increase, indicating a protective effect of the treatment. TBI-HT animals showed significantly higher levels of MAP-2 immunoreactivity, lower levels of betaAPP immunoreactivity and less DNA fragmentation than the TBI-NT-ICP animals. Differences between the TBI-HT group and normothermic animals without an ICP increase (TBI-NT) were less marked. A considerable decrease in MAP-2 outside the site of TBI-FP administration was seen only in the TBI-NT-ICP animals. MAP-2 immunohistochemistry was thus a reliable marker of diffuse brain damage. Axonal injury was present in all TBI groups, indicating its special significance in neurotrauma. Thus, severe TBI caused by FP, combined with temporary blood loss, consistently produced traumatic axonal injury and focal brain damage. Mild hypothermia was able to prevent a secondary increase in ICP and its sequelae of diffuse hypoxic-ischemic brain injury. However, hypothermia did not afford protection from traumatic axonal injury.  相似文献   

16.
We report the case of a 17-month-old infant who developed an isolated cystic lesion of the callosal genu as a unique lesion of traumatic axonal injury (TAI). Although one of the most common sites of TAI is the corpus callosum, there have been no reports describing the lesion seen in our patient. Brain computed tomography findings were normal on the day of the traffic accident. After 3 months, brain magnetic resonance imaging showed an isolated cystic lesion of the callosal genu that had the appearance of a cystic cavity. This lesion decreased in size 16 months later. The neuroimaging findings of this patient suggest that an isolated cystic lesion of the callosal genu could appear as a unique form of TAI in infants after traumatic brain injury (TBI), but it is nevertheless important to attend to such lesions in children with TBI.  相似文献   

17.
The current study was designed to address the effects of traumatic brain injury (TBI) on plasticity and reorganization in the juvenile brain. Given that two of the major pathological sequelae of TBI involve a generalized neuroexcitation insult and diffuse axonal injury, we have employed models of these pathologies, delivered either independently or in combination, to examine their effects on injury-induced synaptic reorganization of the dentate gyrus in the developing rat. Postnatal day 28 rats received either sham, central fluid percussion traumatic brain injury (TBI), unilateral entorhinal cortical lesion (UEC), or TBI+UEC (TUEC) injury. Cognitive performance was assessed in the Morris water maze (MWM) between 11 and 15 days post-injury and the brains were processed for synaptophysin immunohistochemistry and routine electron microscopy. The MWM results revealed that TBI or UEC lesions delivered independently do not produce significant morbidity in P28 rats. However, when these injuries are combined, they reveal significant deficits in the MWM, accompanied by measurable changes in the distribution of presynaptic synaptophysin immunoreactivity over the deafferented dentate molecular layer. These observations are further supported by qualitative ultrastructural alterations in synaptic architecture in the same subregions of the dentate neuropil. The present findings show that the resilience of the immature brain following TBI is reduced when neuroexcitatory insult is combined with deafferentation. Moreover, when deafferented tissue is assessed morphologically, evidence exists for aberrant plasticity and abnormal synaptic reorganization in the juvenile brain.  相似文献   

18.
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and contributes significantly to neurological deficits. However, it is difficult to diagnose or characterize non-invasively with conventional imaging. Our study provides significant validation of a visual and statistical diffusion tensor imaging (DTI) technique as compared with pathological and electron microscopic study in a rat DAI model at multiple predilection sites and time points following trauma. Two DTI parameters, fractional anisotropy (FA) and axial diffusivity (AD), were significantly reduced from 12 h to 5 days post-trauma, corresponding to pathological axonal injury. At 7 days post-trauma, FA remained decreased, whereas AD pseudo-normalized and radial diffusivity increased. The temporal alterations in DTI parameters were observed in multiple predilection sites, and the extent of the changes in these parameters correlated significantly with the severity of histologically visualized axonal injury, as assessed by integrated optical density of immunochemically stained injured axons with quantitative stereology. Although anatomical T2-weighted magnetic resonance images showed no abnormal signals in microscopic lesions, we detected and characterized axonal injury directly by DTI at each time point. These results demonstrate that DTI has significant potential as a non-invasive tool with which to quantitatively diagnose and evaluate microstructural injury in the experimental and clinical assessment of DAI. This method can assist in accurate evaluation of the extent of axonal injury, detection of severe predilection foci, determination of approximate time of injury, and monitoring of the pathogenic condition at the early post-injury stage.  相似文献   

19.
Traumatic axonal injury (TAI) is thought to be a major contributor to cognitive dysfunction following traumatic brain injury (TBI), however TAI is difficult to diagnose or characterize non-invasively. Diffusion tensor imaging (DTI) has shown promise in detecting TAI, but direct comparison to histologically-confirmed axonal injury has not been performed. In the current study, mice were imaged with DTI, subjected to a moderate cortical controlled impact injury, and re-imaged 4-6 h and 24 h post-injury. Axonal injury was detected by amyloid beta precursor protein (APP) and neurofilament immunohistochemistry in pericontusional white matter tracts. The severity of axonal injury was quantified using stereological methods from APP stained histological sections. Two DTI parameters - axial diffusivity and relative anisotropy - were significantly reduced in the injured, pericontusional corpus callosum and external capsule, while no significant changes were seen with conventional MRI in these regions. The contusion was easily detectable on all MRI sequences. Significant correlations were found between changes in relative anisotropy and the density of APP stained axons across mice and across subregions spanning the spatial gradient of injury. The predictive value of DTI was tested using a region with DTI changes (hippocampal commissure) and a region without DTI changes (anterior commissure). Consistent with DTI predictions, there was histological detection of axonal injury in the hippocampal commissure and none in the anterior commissure. These results demonstrate that DTI is able to detect axonal injury, and support the hypothesis that DTI may be more sensitive than conventional imaging methods for this purpose.  相似文献   

20.
Traumatic brain injury (TBI) is characterized by a progressive cell loss and a lack of axonal regeneration. In the central nervous system (CNS), the Rho signaling pathway regulates the neuronal response to growth inhibitory proteins and regeneration of damaged axons, and Rho activation is also correlated with an increased susceptibility to apoptosis. To evaluate whether traumatic brain injury (TBI) results in changes in Rho activation in vulnerable regions of the brain, GTP-RhoA pull down assays were performed on rat cortical and hippocampal tissue homogenates obtained from 24 h to 3 days following lateral fluid percussion brain injury (FPI). Following FPI, a significantly increased RhoA activation was observed from 24 h to 3 days post-injury in the cortex and by 3 days in the hippocampus ipsilateral to the injury. We also detected activated RhoA in the cortex and hippocampus contralateral to the injury, without concomitant changes in total RhoA levels. To determine if immediate post-traumatic events such as seizures may activate Rho, we examined RhoA activation in the brains of rats with kainic acid-induced seizures. Severe seizures resulted in bilateral RhoA activation in the cortex and hippocampus. Together, these results indicate that RhoA is activated in vulnerable brain regions following traumatic and epileptic insults to the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号