首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overexpression of Alzheimer amyloid precursor protein (APP) produces dramatically different phenotypes in transgenic mice depending on the genetic background. For example, concentrations of APP that produce amyloid plaques in outbred transgenic lines are lethal for inbred FVB/N or C57BL/6J mice. Expression of SOD1 transgenes is protective, suggesting involvement of oxidative damage in premature death, but ablation of Apoe had no significant effect. In contrast, FGF2 transgene overexpression enhances the lethal effects of APP. Differential survival does not appear to reflect genetic differences in APP processing, but rather host responses to APP or its derivatives.   相似文献   

2.
3.
The neuropathology of Alzheimer's disease(AD) is characterized by the accumulation of amyloid peptide Abeta in the brain derived from proteolytic cleavage of the amyloid precursor protein (APP). Vaccination of mice with plasmid DNA coding for the human Abeta42 peptide together with low doses of preaggregated peptide induced antibodies with detectable titers after only 2 weeks. One serum was directed against the four aminoterminal amino acids DAEF and differs from previously described ones. Both immune sera and monoclonal antibodies solubilized preformed aggregates of Abeta42 in vitro and recognized amyloid plaques in brain sections of mice transgenic for human APP. Passive immunization of transgenic AD mice caused a significant and rapid reduction in brain amyloid plaques within 24 h. The combined DNA peptide vaccine may prove useful for active immunization with few inoculations and low peptide dose which may prevent the recently described inflammatory reactions inpatients. The monoclonal antibodies are applicable for passive immunization studies and may lead to a therapy of AD.  相似文献   

4.
The E693Q mutation in the amyloid beta precursor protein (APP) leads to cerebral amyloid angiopathy (CAA), with recurrent cerebral hemorrhagic strokes and dementia. In contrast to Alzheimer disease (AD), the brains of those affected by hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) show few parenchymal amyloid plaques. We found that neuronal overexpression of human E693Q APP in mice (APPDutch mice) caused extensive CAA, smooth muscle cell degeneration, hemorrhages and neuroinflammation. In contrast, overexpression of human wild-type APP (APPwt mice) resulted in predominantly parenchymal amyloidosis, similar to that seen in AD. In APPDutch mice and HCHWA-D human brain, the ratio of the amyloid-beta40 peptide (Abeta40) to Abeta42 was significantly higher than that seen in APPwt mice or AD human brain. Genetically shifting the ratio of AbetaDutch40/AbetaDutch42 toward AbetaDutch42 by crossing APPDutch mice with transgenic mice producing mutated presenilin-1 redistributed the amyloid pathology from the vasculature to the parenchyma. The understanding that different Abeta species can drive amyloid pathology in different cerebral compartments has implications for current anti-amyloid therapeutic strategies. This HCHWA-D mouse model is the first to develop robust CAA in the absence of parenchymal amyloid, highlighting the key role of neuronally produced Abeta to vascular amyloid pathology and emphasizing the differing roles of Abeta40 and Abeta42 in vascular and parenchymal amyloid pathology.  相似文献   

5.
Transgenic mice carrying human APPswe and PS1-A264E transgenes (A/P mice) have elevated levels of the highly fibrillogenic amyloid Abeta(1-42) (Abeta) and develop amyloid plaques around the age of 9 months. Our aim was to find whether the gradual accumulation of Abeta in these mice can be detected with long-term recording of auditory-evoked potentials. The A/P double-mutant mice had impaired auditory gating and a tendency toward increased latency of the cortical N35 response, but these changes were not age-dependent between 7 and 11 months of age. In a control experiment that included also APP and PS1 single-mutant mice, the A/P double-mutant mice had weaker auditory gating than either APP or PS1 mice. In contrast, increased N35 latency was found in both A/P and APP mice compared with nontransgenic or PS1 mice. The Abeta40 and Abeta42 levels were robustly increased in A/P mice and Abeta40 moderately increased also in APP mice. Plaques were deposited only in A/P mice. We conclude that the impaired auditory gating is associated with the overproduction Abeta42 but does not reflect its amount. In contrast, increased N35 latency is related to the APP genotype independent of Abeta42 production.  相似文献   

6.
Cortical amyloid-beta (Abeta) deposition is considered essential in Alzheimer's disease (AD) and is also detectable in nondemented individuals with pathologic aging (PA). The present work presents a detailed analysis of the Abeta composition in various plaque types from human AD and PA cases, compared with plaque Abeta isolated from PS2APP mice. To determine minute amounts of Abeta from 30 to 50 laser-dissected amyloid deposits, we used a highly sensitive mass spectrometry procedure after restriction protease lysyl endopeptidase (Lys-C) digestion. This approach allowed the analysis of the amino-terminus and, including a novel ionization modifier, for the first time the carboxy-terminus of Abeta at a detection limit of approximately 200 fmol. In addition, full length Abeta 40/42 and pyroglutamate 3-42 were analyzed using a highly sensitive urea-based Western blot procedure. Generally, Abeta fragments were less accessible in human deposits, indicative of more posttranslational modifications. Thioflavine S positive cored plaques in AD were found to contain predominantly Abeta 42, whereas thioflavine S positive compact plaques and vascular amyloid consist mostly of Abeta 40. Diffuse plaques from AD and PA, as well as from PS2APP mice are composed predominantly of Abeta 1-42. Despite biochemical similarities in human and PS2APP mice, immuno-electron microscopy revealed an extensive extracellular matrix associated with Abeta fibrils in AD, specifically in diffuse plaques. Amino-terminal truncations of Abeta, especially pyroglutamate 3-40/42, are more frequently found in human plaques. In cored plaques we measured an increase of N-terminal truncations of approximately 20% between Braak stages IV to VI. In contrast, diffuse plaques of AD and PA cases, show consistently only low levels of amino-terminal truncations. Our data support the concept that diffuse plaques represent initial Abeta deposits but indicate a structural difference for Abeta depositions in human AD compared with PS2APP mice already at the stage of diffuse plaque formation.  相似文献   

7.
Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex   总被引:17,自引:0,他引:17  
Studies in vitro have suggested that acetylcholinesterase (AChE) may interact with beta-amyloid to promote deposition of amyloid plaques in the brain of patients with Alzheimer's disease. To test that hypothesis in vivo, we crossed Tg2576 mice, which express human amyloid precursor protein and develop plaques at 9 months, with transgenic mice expressing human AChE. The resulting F1 hybrids (FVB/N x [C57B6 x SJL/J]) expressed both transgenes in brain. By 6 months of age, their cerebral cortex showed authentic plaques that stained both by thioflavin S and by beta-amyloid 1-40 and 1-42 immunohistochemistry. The plaques also stained positively for other components including Cd11b, GFAP, and AChE. Plaque onset in the hybrids occurred 30-50% sooner than in the parental lines. Plaque numbers increased with age and plaques remained more numerous in the doubly transgenic animals at 9 and 12 months. Quantitative immunoassay via ELISA also showed an increase of total amyloid content in brain at 9-12 months. These histological and biochemical results support the conclusion that AChE may play a role in pathogenesis of Alzheimer's disease  相似文献   

8.
Transgenic mice (Tg2576) overexpressing human beta-amyloid precursor protein with the Swedish mutation (APP695SWE) develop Alzheimer's disease-like amyloid beta protein (Abeta) deposits by 8 to 10 months of age. These mice show elevated levels of Abeta40 and Abeta42, as well as an age-related increase in diffuse and compact senile plaques in the brain. Senile plaque load was quantitated in the hippocampus and neocortex of 8- to 19-month-old male and female Tg2576 mice. In all mice, plaque burden increased markedly after the age of 12 months. At 15 and 19 months of age, senile plaque load was significantly greater in females than in males; in 91 mice studied at 15 months of age, the area occupied by plaques in female Tg2576 mice was nearly three times that of males. By enzyme-linked immunosorbent assay, female mice also had more Abeta40 and Abeta42 in the brain than did males, although this difference was less pronounced than the difference in histological plaque load. These data show that senescent female Tg2576 mice deposit more amyloid in the brain than do male mice, and may provide an animal model in which the influence of sex differences on cerebral amyloid pathology can be evaluated.  相似文献   

9.
Deposition of amyloid beta-peptide (Abeta) in cerebral vessel walls (cerebral amyloid angiopathy, CAA) is very frequent in Alzheimer's disease and occurs also as a sporadic disorder. Here, we describe significant CAA in addition to amyloid plaques, in aging APP/Ld transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP) exclusively in neurons. The number of amyloid-bearing vessels increased with age, from approximately 10 to >50 per coronal brain section in APP/Ld transgenic mice, aged 13 to 24 months. Vascular amyloid was preferentially deposited in arterioles and ranged from small focal to large circumferential depositions. Ultrastructural analysis allowed us to identify specific features contributing to weakening of the vessel wall and aneurysm formation, ie, disruption of the external elastic lamina, thinning of the internal elastic lamina, interruption of the smooth muscle layer, and loss of smooth muscle cells. Biochemically, the much lower Abeta42:Abeta40 ratio evident in vascular relative to plaque amyloid, demonstrated that in blood vessel walls Abeta40 was the more abundant amyloid peptide. The exclusive neuronal origin of transgenic APP, the high levels of Abeta in cerebrospinal fluid compared to plasma, and the specific neuroanatomical localization of vascular amyloid strongly suggest specific drainage pathways, rather than local production or blood uptake of Abeta as the primary mechanism underlying CAA. The demonstration in APP/Ld mice of rare vascular amyloid deposits that immunostained only for Abeta42, suggests that, similar to senile plaque formation, Abeta42 may be the first amyloid to be deposited in the vessel walls and that it entraps the more soluble Abeta40. Its ability to diffuse for larger distances along perivascular drainage pathways would also explain the abundance of Abeta40 in vascular amyloid. Consistent with this hypothesis, incorporation of mutant presenilin-1 in APP/Ld mice, which resulted in selectively higher levels of Abeta42, caused an increase in CAA and senile plaques. This mouse model will be useful in further elucidating the pathogenesis of CAA and Alzheimer's disease, and will allow testing of diagnostic and therapeutic strategies.  相似文献   

10.
Amyloid precursor protein (APP) processing and the generation of beta-amyloid peptide (Abeta) are important in the pathogenesis of Alzheimer's disease. Although this has been studied extensively at the molecular and cellular levels, much less is known about the mechanisms of amyloid accumulation in vivo. We transplanted transgenic APP23 and wild-type B6 embryonic neural cells into the neocortex and hippocampus of both B6 and APP23 mice. APP23 grafts into wild-type hosts did not develop amyloid deposits up to 20 months after grafting. In contrast, both transgenic and wild-type grafts into young transgenic hosts developed amyloid plaques as early as 3 months after grafting. Although largely diffuse in nature, some of the amyloid deposits in wild-type grafts were congophilic and were surrounded by neuritic changes and gliosis, similar to the amyloid-associated pathology previously described in APP23 mice. Our results indicate that diffusion of soluble Abeta in the extracellular space is involved in the spread of Abeta pathology, and that extracellular amyloid formation can lead to neurodegeneration.  相似文献   

11.
Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer's disease pathogenesis. However, how microglia affect amyloid-beta peptide (Abeta) deposition remains poorly understood. To address this question, we developed a novel bigenic mouse that overexpresses both amyloid precursor protein (APP) and monocyte chemotactic protein-1 (MCP-1; CCL2 in systematic nomenclature). CCL2 expression, driven by the glial fibrillary acidic protein promoter, induced mononuclear phagocyte (MP; monocyte-derived macrophage and microglial) accumulation in the brain. When APP/CCL2 transgenic mice were compared to APP mice, a fivefold increase in Abeta deposition was present despite increased MP accumulation around hippocampal and cortical amyloid plaques. Levels of full-length APP, its C-terminal fragment, and Abeta-degrading enzymes (insulin-degrading enzyme and neprilysin) in APP/CCL2 and APP mice were indistinguishable. Sodium dodecyl sulfate-insoluble Abeta (an indicator of fibrillar Abeta) was increased in APP/CCL2 mice at 5 months of age. Apolipoprotein E, which enhances Abeta deposition, was also increased (2.2-fold) in aged APP/CCL2 as compared to APP mice. We propose that although CCL2 stimulates MP accumulation, it increases Abeta deposition by reducing Abeta clearance through increased apolipoprotein E expression. Understanding the mechanisms underlying these events could be used to modulate microglial function in Alzheimer's disease and positively affect disease outcomes.  相似文献   

12.
Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer's disease.   总被引:3,自引:0,他引:3  
There is ample genetic, biochemical, cellular and molecular evidence to show that the amyloid beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP), plays an important, if not causative role in Alzheimer's disease (AD). An additional hallmark of AD is the neuroinflammatory response that is associated with the amyloid deposition. We discovered that the acute phase protein alpha1-antichymotrypsin (ACT) is overexpressed by reactive astrocytes, and is tightly associated with virtually all amyloid plaques in the AD brain. It has also been shown that Abeta and ACT bind in vitro. Recently, we have reported that astrocytic expression of ACT in APP transgenic mice leads to an increased plaque deposition in ACT/APP doubly transgenic mice compared to the APP mice alone, suggesting that ACT interferes with Abeta clearance. The main objective of this review is to summarize the role of astrocytosis and ACT in the pathogenesis of AD.  相似文献   

13.
Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.  相似文献   

14.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamma-secretases. beta-secretase activity cleaves APP to define the N-terminus of the Abeta1-x peptides and, therefore, has been a long- sought therapeutic target for treatment of AD. The gene encoding a beta-secretase for beta-site APP cleaving enzyme (BACE) was identified recently. However, it was not known whether BACE was the primary beta-secretase in mammalian brain nor whether inhibition of beta-secretase might have effects in mammals that would preclude its utility as a therapeutic target. In the work described herein, we generated two lines of BACE knockout mice and characterized them for pathology, beta-secretase activity and Abeta production. These mice appeared to develop normally and showed no consistent phenotypic differences from their wild-type littermates, including overall normal tissue morphology and brain histochemistry, normal blood and urine chemistries, normal blood-cell composition, and no overt behavioral and neuromuscular effects. Brain and primary cortical cultures from BACE knockout mice showed no detectable beta-secretase activity, and primary cortical cultures from BACE knockout mice produced much less Abeta from APP. The findings that BACE is the primary beta-secretase activity in brain and that loss of beta-secretase activity produces no profound phenotypic defects with a concomitant reduction in beta-amyloid peptide clearly indicate that BACE is an excellent therapeutic target for treatment of AD.  相似文献   

15.
Transgenic mice with brain amyloid-beta (Abeta) plaques immunized with aggregated Abeta1-42 have reduced cerebral amyloid burden. However, the use of Abeta1-42 in humans may not be appropriate because it crosses the blood brain barrier, forms toxic fibrils, and can seed fibril formation. We report that immunization in transgenic APP mice (Tg2576) for 7 months with a soluble nonamyloidogenic, nontoxic Abeta homologous peptide reduced cortical and hippocampal brain amyloid burden by 89% (P = 0.0002) and 81% (P = 0.0001), respectively. Concurrently, brain levels of soluble Abeta1-42 were reduced by 57% (P = 0.0019). Ramified microglia expressing interleukin-1beta associated with the Abeta plaques were absent in the immunized mice indicating reduced inflammation in these animals. These promising findings suggest that immunization with nonamyloidogenic Abeta derivatives represents a potentially safer therapeutic approach to reduce amyloid burden in Alzheimer's disease, instead of using toxic Abeta fibrils.  相似文献   

16.
Alzheimer's disease (AD) is a complex disorder for which various in vivo models exist. The TgCRND8 mouse, transgenic for the human amyloid precursor protein, is an aggressive early onset model of brain amyloid deposition. Preliminary studies revealed that when the transgene is expressed on an A/J genetic background, these mice not only survive longer but also deposit less parenchymal amyloid-beta (Abeta) peptides as compared to those on a C57BL/6 background. We performed a genome-wide study of an F2 intercross between TgCRND8 on an A/J background and C57BL/6 mice, to identify genetic modulators of amyloid accumulation and deposition. We identified four highly significant QTLs that together account for 55% of the phenotypic variance in the number of plaques (Thioflavin S). QTLs were found on the distal part of chromosome 4 with an LOD score of 8.1 at D4Mit251, on chromosome 11 with an LOD score of 5.5 at D11Mit242, on chromosome 9 with an LOD score of 5.0 at D9Mit336 and on the proximal part of chromosome 8 with an LOD score of 4.5 at D8Mit223. A/J alleles at these loci are protective and all decreased the amount of Abeta deposition. Interestingly, the QTL on chromosome 11 is also significantly linked to the levels of brain Abeta(42) and Abeta(40). Although these QTLs do not control the levels of plasmatic Abeta, other regions on chromosomes 1 and 6 show significant linkage. Further characterization of these QTL regions may lead to the identification of genes involved in the pathogenesis of AD.  相似文献   

17.
Diversity and intensity of intellectual and physical activities seem to have an inverse relationship with the extent of cognitive decline in Alzheimer's disease (AD). To study the interaction between an active lifestyle and AD pathology, female TgCRND8 mice carrying human APPswe+ind were transferred into enriched housing. Four months of continuous and diversified environmental stimulation resulted in a significant reduction of beta-amyloid (Abeta) plaques and in a lower extent of amyloid angiopathy. Neither human amyloid precursor protein (APP) mRNA/protein levels nor the level of carboxy-terminal fragments of APP nor soluble Abeta content differed between both groups, making alterations in APP expression or processing unlikely as a cause of reduced Abeta deposition. Moreover, DNA microarray analysis revealed simultaneous down-regulation of proinflammatory genes as well as up-regulation of molecules involved in anti-inflammatory processes, proteasomal degradation, and cholesterol binding, possibly explaining reduced Abeta burden by lower aggregation and enhanced clearance of Abeta. Additionally, immunoblotting against F4/80 antigen and morphometric analysis of microglia (Mac-3) revealed significantly elevated microgliosis in the enriched brains, which suggests increased amyloid phagocytosis. In summary, this study demonstrates that the environment interacts with AD pathology at dif-ferent levels.  相似文献   

18.
The generation of amyloid peptides (Abeta) from the amyloid precursor protein (APP) is initiated by beta-secretase (BACE), whereas subsequent gamma-secretase cleavage mediated by presenilin-1, produces Abeta peptides mainly of 40 or 42 amino acids long. In addition, alternative beta'-cleavage of APP at position 11 of the amyloid sequence results in N-truncated Abeta(11-40/42) peptides, but the functional significance or pathological impact is unknown. Here we demonstrate that in the brain of BACE x APP[V717I] double-transgenic mice, amyloidogenic processing at both Asp1 and Glu11 is increased resulting in more and different Abeta species and APP C-terminal fragments. Pathologically, BACE significantly increased the number of diffuse and senile amyloid plaques in old double-transgenic mice. Unexpectedly, vascular amyloid deposition was dramatically lower in the same BACE x APP[V717I] double-transgenic mice, relative to sex- and age-matched APP[V717I] single-transgenic mice in the same genetic background. The tight inverse relation of vascular amyloid to the levels of the less soluble N-terminally truncated Abeta peptides is consistent with the hypothesis that vascular amyloid deposition depends on drainage of excess tissue Abeta. This provides biochemical evidence in vivo for the preferential contribution of N-truncated Abeta to parenchymal amyloid deposition in contrast to vascular amyloid pathology.  相似文献   

19.
Loss of Locus coeruleus (LC) noradrenergic (NA) neurons occurs in several neurodegenerative conditions including Alzheimer's disease (AD). In vitro and in vivo studies have shown that NA influences several features of AD disease including inflammation, neurodegeneration, and cognitive function. In the current study we tested if LC loss influenced beta amyloid (Abeta) plaque deposition. LC neuronal degeneration was induced in transgenic mice expressing mutant V717F human amyloid precursor protein (APP) by treatment with the selective neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine DSP4 (5mg/kg every 2 weeks beginning at age 3 months). At 9 months of age, when control mice show low amyloid load, DSP4-treated mice showed an approximately 5-fold increase in the average number of Abeta plaques. This was accompanied by an increase in the levels of APP C-terminal cleavage fragments. DSP4-treatment increased both microglial and astroglial activation. In vivo, DSP4-treatment decreased expression and activity of the Abeta degrading enzyme neprilysin, while in vitro NA increased phagocytosis of Abeta1-42 by microglia. These findings suggest that noradrenergic innervation from LC are needed to maintain adequate Abeta clearance, and therefore that LC degeneration could contribute to AD pathogenesis.  相似文献   

20.
It is well established that the extracellular deposition of amyloid beta (Abeta) peptide plays a central role in the development of Alzheimer's disease (AD). Therefore, either preventing the accumulation of Abeta peptide in the brain or accelerating its clearance may slow the rate of AD onset. Neprilysin (NEP) is the dominant Abeta peptide-degrading enzyme in the brain; NEP becomes inactivated and down-regulated during both the early stages of AD and aging. In this study, we investigated the effect of human (h)NEP gene transfer to the brain in a mouse model of AD before the development of amyloid plaques, and assessed how this treatment modality affected the accumulation of Abeta peptide and associated pathogenetic changes (eg, inflammation, oxidative stress, and memory impairment). Overexpression of hNEP for 4 months in young APP/DeltaPS1 double-transgenic mice resulted in reduction in Abeta peptide levels, attenuation of amyloid load, oxidative stress, and inflammation, and improved spatial orientation. Moreover, the overall reduction in amyloidosis and associated pathogenetic changes in the brain resulted in decreased memory impairment by approximately 50%. These data suggest that restoring NEP levels in the brain at the early stages of AD is an effective strategy to prevent or attenuate disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号