首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotransmitter plasma membrane transporters do have much more to perform than simply terminating synaptic transmission and replenishing neurotransmitter pools. Findings in the past decade have evidenced their function in maintaining physiological synaptic excitability, and their actions in critical or pathological conditions, also. Conclusively these findings indicated a previously unrecognized role for neurotransmitter plasma membrane transporters in both, synaptic and nonsynaptic signaling. Major inhibitory and excitatory neurotransmitters within the brain, GABA and Glu, have long been considered to operate through independent systems (GABAergic or Gluergic), each of them characterized by its own localization, function and dedicated GABAergic or Gluergic cell phenotypes. Recent advances, however, have challenged this long-standing paradigm. Localization of GABA in Gluergic terminals and Glu in GABAergic cells were reported. Specific plasma membrane transporters for GABA and Glu are also co-localized in different brain areas. Although, their role in regulating each other's signal is still far from being understood, emerging lines of evidence on interplaying GABAergic and Gluergic processes through plasma membrane transporters opens up a new avenue in the field of more specific therapeutic intervention.  相似文献   

2.
谷氨酸转运体与神经退行性疾病   总被引:5,自引:0,他引:5  
谷氨酸是哺乳动物脑内最主要的兴奋性神经递质,其主要灭活方式是依赖谷氨酸转运体的摄取进入细胞,当谷氨酸转运体失表达,停止转运或反向释放谷氨酸时,引起突触间隙或胞外谷氨酸大量蓄积从而导致神经毒性反应,研究表明,谷氨酸转运体的摄取功能障碍与肌萎缩性侧索硬化症(amyo-trophic lateral sclerosis,ALS)、阿尔茨海默病(Alzhei-mer's disease,AD)、帕金森病(Parkinson's disease,PD)等许多神经退行性病变有关,这一发现对于神经退行性病变的病因学和治疗学研究均具有重要意义。  相似文献   

3.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from glutamatergic nerve terminals, glial and neuronal glutamate transporters remove glutamate from the synaptic cleft to terminate synaptic transmission and to prevent neuronal damage by excessive glutamate receptor activation. In this issue of Molecular Pharmacology, Fontana et al. (p. 1228) report on the action of a venom compound, Parawixin1, on excitatory amino acid transporters (EAATs). They demonstrate that this agent selectively affects a glial glutamate transporter, EAAT2, by specifically increasing one particular step of the glutamate uptake cycle. Disturbed glutamate homeostasis seems to be a pathogenetic factor in several neurodegenerative disorders. Because EAAT2 is a key player in determining the extracellular glutamate concentration in the mammalian brain, drugs targeting this protein could prevent glutamate excitotoxicity without blocking glutamatergic transmission. Its specificity and selectivity makes Parawixin1 a perfect starting point to design small molecules for the treatment of pathological conditions caused by alterations of glutamate homeostasis.  相似文献   

4.
L-Glutamate is a major excitatory neurotransmitter in the mammalian central nervous system (CNS). It contributes not only to fast synaptic neurotransmission but also to complex physiological processes like plasticity, learning, and memory. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by a proton gradient-dependent uptake system (VGLUTs). Following its exocytotic release, glutamate activates different kinds of glutamate receptors and mediates excitatory neurotransmission. To terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels, glutamate is quickly removed by Na(+)-dependent glutamate transporters (EAATs). Recently, three vesicular glutamate transporters (VGLUT1-3) and five Na(+)-dependent glutamate transporters (EAAT1-5) were identified. VGLUTs and EAATs are thought to play important roles in neuronal disorders, such as amyotrophic lateral sclerosis, Alzheimer's disease, cerebral ischemia, and Huntington's disease. In this review, the development of new compounds to regulate the function of VGLUTs and EAATs will be described.  相似文献   

5.
Glutamate is the primary excitatory neurotransmitter in the central nervous system. During synaptic activity, glutamate is released into the synaptic cleft and binds to glutamate receptors on the pre- and postsynaptic membrane as well as on neighboring astrocytes in order to start a number of intracellular signaling cascades. To allow for an efficient signaling to occur, glutamate levels in the synaptic cleft have to be maintained at very low levels. This process is regulated by glutamate transporters, which remove excess extracellular glutamate via a sodium-potassium coupled uptake mechanism. When extracellular glutamate levels rise to about normal, glutamate overactivates glutamate receptors, triggering a multitude of intracellular events in the postsynaptic neuron, which ultimately results in neuronal cell death. This phenomenon is known as excitotoxicity and is the underlying mechanisms of a number of neurodegenerative diseases. A dysfunction of the glutamate transporter is thought to contribute to cell death during excitotoxicity. Therefore, efforts have been made to understand the regulation of glutamate transporter function. Transporter activity can be regulated in different ways, including through gene expression, transporter protein targeting and trafficking and through posttranslational modifications of the transporter protein. The identification of these mechanisms has helped to understand the role of glutamate transporters during pathology and will aid in the development of therapeutic strategies with the transporter as a desirable target.  相似文献   

6.
兴奋性氨基酸转运体研究进展   总被引:12,自引:2,他引:10  
兴奋性氨基酸转运体 (EAAT)位于突触前膜、突触囊泡和神经胶质细胞膜上。它们对于兴奋性氨基酸的再循环 ,兴奋性信号的终止以及保护神经细胞免受兴奋性毒性损害具有特别重要的意义。本文介绍EAAT研究进展  相似文献   

7.
The expression of vesicular glutamate transporters (VGLUTs) 1 and 2 accounts for the ability of most traditionally accepted excitatory neurons to release glutamate by exocytosis. However, several cell populations (serotonin and dopamine neurons) have been demonstrated to release glutamate in vitro and do not obviously express these transporters. Rather, these neurons express a novel, third isoform that in fact appears confined to neurons generally associated with a transmitter other than glutamate. They include serotonin and possibly dopamine neurons, cholinergic interneurons in the striatum, and GABAergic interneurons of the hippocampus and cortex. Although the physiological role of VGLUT3 remains largely conjectural, several observations in vivo suggest that the glutamate release mediated by VGLUT3 has an important role in synaptic transmission, plasticity, and development.  相似文献   

8.
Glutamate transporters in brain ischemia: to modulate or not?   总被引:6,自引:0,他引:6  
In this review, we briefly describe glutamate (Glu) metabolism and its specific transports and receptors in the central nervous system (CNS). Thereafter, we focus on excitatory amino acid transporters, cystine/glutamate antiporters (system xc-) and vesicular glutamate transporters, specifically addressing their location and roles in CNS and the molecular mechanisms underlying the regulation of Glu transporters. We provide evidence from in vitro or in vivo studies concerning alterations in Glu transporter expression in response to hypoxia or ischemia, including limited human data that supports the role of Glu transporters in stroke patients. Moreover, the potential to induce brain tolerance to ischemia through modulation of the expression and/or activities of Glu transporters is also discussed. Finally we present strategies involving the application of ischemic preconditioning and pharmacological agents, eg β-lactam antibiotics, amitriptyline, riluzole and N-acetylcysteine, which result in the significant protection of nervous tissues against ischemia.  相似文献   

9.
Neuronal and glial glutamate transporters limit the action of excitatory amino acids after their release during synaptic transmission. Recent structural and functional investigations have revealed much about the transport and conducting mechanisms of members of the sodium-coupled symporter family responsible for glutamate clearance in the nervous system. In this review we summarize emerging views on the general structure, binding sites for substrates and coupled ions, and transport mechanisms of mammalian glutamate transporters, integrating results from a large body of work on carrier structure-function relationships with several crystal structures obtained for the archaeal ortholog, GltPh.  相似文献   

10.
1. Glutamate is the predominant excitatory neurotransmitter in the brain, but it is also a potent neurotoxin. Following release of glutamate from presynaptic vesicles into the synapse and activation of a variety of ionotropic and metabotropic glutamate receptors, glutamate is removed from the synapse. This is achieved through active uptake of glutamate by transporters located pre- and also post-synaptically or, alternatively, glutamate can diffuse out of the synapse and be taken up by transporters located on the cell surface of glial cells. 2. Complementary DNA encoding a number of glutamate transporters have recently been cloned and form a family of structurally related membrane proteins with a high degree of amino acid sequence conservation. Expression of the cloned glutamate transporters in various cell types has aided in the characterization of the functional properties of the different transporter subtypes. 3. Glutamate transport is coupled to sodium, potassium and pH gradients across the cell membrane creating an electrogenic process. This allows transport to be measured using electrophysiological techniques, which has greatly aided in understanding some of the basic mechanisms of the transport process and has also allowed a detailed understanding of the molecular pharmacology of the different transporter subtypes. 4. In the present review I shall discuss some of the recent advances in understanding the molecular basis for glutamate transporter function and then highlight some of the unanswered questions concerning the physiological roles of these proteins and suggest possible strategies for pharmacological manipulation of transporters for the treatment of neurological disorders.  相似文献   

11.
The vesicular glutamate transporter (VGLUT) is responsible for the uptake of the excitatory amino acid, L-glutamate, into synaptic vesicles. VGLUT activity is coupled to an electrochemical gradient driven by a vacuolar ATPase and stimulated by low Cl-. VGLUT has relatively low affinity (K(m) = 1-3 mM) for glutamate and is pharmacologically and structurally distinct from the Na+-dependent, excitatory amino acid transporters (EAATs) found on the plasma membrane. Because glutamatergic neurotransmission begins with vesicular release, compounds that block the uptake of glutamate into the vesicle may reduce excitotoxic events. Several classes of competitive VGLUT inhibitors have emerged including amino acids and amino acid analogs, fatty acids, azo dyes, quinolines and alkaloids. The potency with which these agents inhibit VGLUT varies from millimolar (amino acids) to nanomolar (azo dyes) concentrations. These inhibitors represent highly diverse structures and have collectively begun to reveal key pharmacophore elements that may elucidate the key interactions important to binding VGLUT. Using known inhibitor structures and preliminary molecular modeling, a VGLUT pharmacophore is presented that will aid in the design of new, highly potent and selective agents.  相似文献   

12.
A major neurotransmitter, L-Glutamate must be stored, transported and received, and these processes are mediated by proteins that bind this simple yet essential amino acid. Detailed evidence continues to emerge on the structure of Glu binding proteins, which includes both receptors and transporters. It appears that receptors and transporters bind to Glu in different conformations, which may present a pharmacological opportunity. This review will compare and contrast information available on Glu Receptors (AMPA, NMDA, KA and mGlu), excitatory amino acid transporters (EAATs), the system Xc- transporter (XCT) and the vesicular Glutamate transporter (GVT). The cross-reactivity of ligands which have been previously used to characterize the glutamate binding proteins with system Xc- raises some fundamental interpretational issues regarding the mechanisms through which these analogues produce CNS damage. Although at one time it was thought that unraveling selectivity among glutamate binding proteins was an intractable problem, recently the NMDA antagonist (memantine) has been approved for general medical practice for treatment of Alzheimer's disease. Two other agents are in advanced clinical trials: an Ampakine for potential improvement of cognitive disorders, and a selective mGlu agonist for treatment of anxiety. The prospects for unraveling cross-reactivity will be weighed in light of a critical comparison of the glutamate binding protein targets.  相似文献   

13.
L-glutamate (Glu) has been thought to be an excitatory amino acid neurotransmitter in the mammalian central nervous system (CNS). The hypothesis is supported by successful cloning of a number of genes encoding different signaling molecules, such as Glu receptors for signal input, Glu transporters for signal termination, and vesicular Glu transporters for signal output through exocytotic release. Limited information is available in the literature with regard to an extracellular transmitter role of Glu in peripheral neuronal and non-neuronal tissues, whereas recent molecular biological analyses including ours give rise to a novel function for Glu as an autocrine and/or paracrine factor in bone comprised of osteoblasts, osteoclasts, and osteocytes, in addition to other peripheral tissues including pancreas, adrenal, and pituitary glands. Emerging evidence suggests that Glu could play a dual role in mechanisms underlying maintenance of cellular homeostasis as an excitatory neurotransmitter in the CNS and as an extracellular signal mediator in peripheral autocrine and/or paracrine tissues. In this review, therefore, we summarized the possible signaling by Glu as an extracellular signal mediator in mechanisms underlying maintenance of cellular homeostasis with a focus on bone tissues.  相似文献   

14.
Glutamate transporters rapidly take up synaptically released glutamate and maintain the glutamate concentration in the synaptic cleft at a low level. (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA) is a novel glutamate transporter blocker that potently suppresses the activity of glial transporters. TFB-TBOA inhibited synaptically activated transporter currents (STCs) in astrocytes in the stratum radiatum in rat hippocampal slices in a dose-dependent manner with an IC50 of 13 nM, and reduced them to approximately 10% of the control at 100 nM. We investigated the effects of TFB-TBOA on glutamatergic synaptic transmission and cell excitability in CA1 pyramidal cells. TFB-TBOA (100 nM) prolonged the decay of N-methyl-D-aspartic acid receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs), whereas it prolonged that of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated EPSCs only when the desensitization of AMPARs was reduced by cyclothiazide (CTZ). Furthermore, long-term application of TFB-TBOA induced spontaneous epileptiform discharges with a continuous depolarization shift of membrane potential. These epileptiform activities were mainly attributed to NMDAR activation. Even after pharmacological block of NMDARs, however, TFB-TBOA induced similar changes by activating AMPARs in the presence of CTZ. Thus, the continuous uptake of synaptically released glutamate by glial transporters is indispensable for protecting hippocampal neurons from glutamate receptor-mediated hyperexcitabilities.  相似文献   

15.
The regulation of glutamate and glycine concentrations within excitatory synapses plays an important role in maintaining a dynamic signalling process between neurones, but the failure to regulate the concentrations of these neurotransmitters has been implicated in the pathogenesis of various neurological disorders. In this review we shall discuss how glutamate and glycine transporters regulate synaptic concentrations of these neurotransmitters and how endogenous allosteric modulators influence transporter function. Whilst glutamate transport inhibitors are unlikely to be of therapeutic value because their potential to cause excitoxicity and cell death, a greater understanding of how endogenous compounds allosterically modulate glutamate transporters may provide alternate drug targets. On the other hand, there are some promising drugs that inhibit glycine transporters, which are being trialled as an alternate treatment for schizophrenia. We shall discuss how the activity of one such compound may be expected to influence excitatory neurotransmission.  相似文献   

16.
Neurotransmitter transporters located at the presynaptic or glial cell membrane are responsible for the stringent and rapid clearance of the transmitter from the synapse, and hence they terminate signaling and control the duration of synaptic inputs in the brain. Two distinct families of neurotransmitter transporters have been identified based on sequence homology: (1) the neurotransmitter sodium symporter family (NSS), which includes the Na+/C1(-)-dependent transporters for dopamine, norepinephrine, and serotonin; and (2) the dicarboxylate/amino acid cation symporter family (DAACS), which includes the Na(+)-dependent glutamate transporters (excitatory amino acid transporters; EAAT). In this chapter, we describe how the identification of endogenous Zn2(+)-binding sites, as well as engineering of artificial Zn2(+)-binding sites both in the Na+/Cl(-)-dependent transporters and in the EAATs, have proved to be an important tool for studying the molecular function of these proteins. We also interpret the current available data on Zn2(+)-binding sites in the context of the recently published crystal structures. Moreover, we review how the identification of endogenous Zn2(+)-binding sites has indirectly suggested the possibility that several of the transporters are modulated by Zn2+ in vivo, and thus that Zn2+ can play a role as a neuromodulator by affecting the function of neurotransmitter transporters.  相似文献   

17.

Background and purpose:

Glutamate is the main excitatory neurotransmitter in the vertebrate CNS. Removal of the transmitter from the synaptic cleft by glial and neuronal glutamate transporters (GLTs) has an important function in terminating glutamatergic neurotransmission and neurological disorders. Five distinct excitatory amino-acid transporters have been characterized, among which the glial transporters excitatory amino-acid transporter 1 (EAAT1) (glutamate aspartate transporter) and EAAT2 (GLT1) are most important for the removal of extracellular glutamate. The purpose of this study was to describe the effect of the commonly used anaesthetic etomidate on glutamate uptake in cultures of glial cells.

Experimental approach:

The activity of the transporters was determined electrophysiologically using the whole cell configuration of the patch-clamp recording technique.

Key results:

Glutamate uptake was suppressed by etomidate (3–100 μM) in a time- and concentration-dependent manner with a half-maximum effect occurring at 2.4±0.6 μM. Maximum inhibition was approximately 50% with respect to the control. Etomidate led to a significant decrease of Vmax whereas the Km of the transporter was unaffected. In all cases, suppression of glutamate uptake was reversible within a few minutes upon washout. Furthermore, both GF 109203X, a nonselective inhibitor of PKs, and H89, a selective blocker of PKA, completely abolished the inhibitory effect of etomidate.

Conclusion and implications:

Inhibition of glutamate uptake by etomidate at clinically relevant concentrations may affect glutamatergic neurotransmission by increasing the glutamate concentration in the synaptic cleft and may compromise patients suffering from acute or chronic neurological disorders such as CNS trauma or epilepsy.  相似文献   

18.
The view that L-glutamate (Glu) is an excitatory amino acid neurotransmitter in the mammalian central nervous system is prevailing on the basis of successful cloning of a number of genes encoding different signaling molecules, such as Glu receptors for the signal input, Glu transporters for the signal termination and vesicular Glu transporters for the signal output through exocytotic release. Little attention has been paid to an extracellular transmitter role of Glu in peripheral neuronal and non-neuronal tissues, by contrast, whereas recent molecular biological and pharmacological analyses including ours give rise to a novel function for Glu as an autocrine and/or paracrine signal mediator in bone comprised of osteoblasts, osteoclasts and osteocytes, in addition to other peripheral tissues including pancreas, adrenal and pituitary glands. Emerging evidence suggests that Glu could play a dual role in mechanisms underlying the maintenance of cellular homeostasis as an excitatory neurotransmitter in the central nervous system and as an extracellular signal mediator in peripheral autocrine and/or paracrine tissues. In this review, therefore, we would outline the possible signaling system for Glu to play a role as an extracellular signal mediator in mechanisms underlying maintenance of the cellular homeostasis in bone.  相似文献   

19.
Glutamate is ubiquitous in nature and is present in all living organisms. It is the principal excitatory neurotransmitter in central nervous system. Glutamate is being used as food additive for enhancing flavour for over last 1200 years imparting a unique taste known as "umami" in Japanese. It is being marketed for about last 100 years. The taste of umami is now recognized as the fifth basic taste. Many of the foods used in cooking for enhancing flavour contain high amount of glutamate. Breast milk has the highest concentration of glutamate amongst all amino acids. Glutamate in high doses as gavage or parenteral injection have been reported to produce neurodegeneration in infant rodents. The neurodegeneration was not produced when gluamate was given with food. The Joint FAO/WHO Expert Committee on Food Additives, based on enumerable scientific evidence, has declared that, "glutamate as an additive in food" is not an health hazard to human being. Glutamate is used as signaling molecule not only in neuronal but also in non-neuronal tissues. Excessive accumulation of glutamate in the synaptic cleft has been associated with excitotoxicty and glutamate is implicated in number of neurological disorders. Excessive accumulation could be attributed to increase release, failure of transport system for uptake mechanism, neuronal injury due to hypoxia-ischemia, trauma and associated metabolic failures. The role blood brain barrier, vesicular glutamate and sodium dependent excitatory amino acid transporters in glutamate homeostasis are emphasized in the review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号