首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV protease inhibitor (PI)-associated cardiovascular risk, especially atherosclerosis, has become a major concern in the clinic. Macrophages are key players in the inflammatory response and atherosclerosis formation. We have previously shown that HIV PIs induce endoplasmic reticulum (ER) stress, activate the unfolded protein response (UPR), and increase the synthesis of the inflammatory cytokines, TNF-α and IL-6, by regulating the intracellular translocation of RNA binding protein HuR in macrophages. However, the underlying signaling mechanisms remain unclear. We show here that the HIV PI lopinavir significantly activated the extracellular-signal regulated protein kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 MAPK. Lopinavir-induced cytosolic translocation of HuR and TNF-α and IL-6 synthesis was attenuated by specific chemical inhibitor of MEK (PD98058) or over-expression of dominant negative mutant of MEK1. In addition, we demonstrated that lopinavir-induced ERK activation and TNF-α and IL-6 expression were completely inhibited in macrophages from CHOP null mice. Taken together, these results indicate activation of the UPR plays an essential role in HIV PI-induced inflammatory cytokine synthesis and release by activating ERK, which increases the cytosolic translocation of HuR and subsequent binding to the 3′UTR of TNF-α and IL-6 mRNAs in macrophages.  相似文献   

2.
3.
4.
Combined antiretroviral therapy has proven efficacy in decreasing vertical HIV transmission. However, endoplasmic reticulum stress is a known side effect of HIV protease inhibitors. We investigated endoplasmic reticulum stress in placentas of HIV-infected and uninfected mothers by PCR-based splicing analysis of the specific endoplasmic reticulum stress marker XBP1 in post-delivery placental samples of uninfected mothers and in HIV-infected mothers taking antiretroviral therapy. No elevated XBP1 splicing could be detected in placentas of uninfected mothers and most of the mothers receiving combined anti-retroviral therapy. However, markedly elevated XBP1 splicing was found in the placentas of three individuals on combined antiviral therapy, all receiving lopinavir or atazanavir. In vitro experiments confirmed induction of endoplasmic reticulum stress by lopinavir and atazanavir in trophoblast-derived cell lines. Since endoplasmic reticulum stress occurred in selective patients only, individual differences in susceptibility of HIV-infected mothers to protease inhibitor induced endoplasmic reticulum stress can be postulated.  相似文献   

5.
6.
7.
8.
9.
10.
During screening for inhibitors of lipid droplet accumulation in mouse peritoneal macrophages, two coumarins identified as decursin and decursinol angelate were isolated from the roots of Angelicae gigantis. The cellular molecular target of these inhibitors in macrophages was studied. Decursin and decursinol angelate inhibited cholesteryl ester (CE) synthesis with IC50 values of 9.7 and 10.1 microM, respectively, whereas they enhanced triacylglycerol (TG) synthesis. Lysosomal metabolism of cholesterol to CE was inhibited by the compounds, indicating that the site of inhibition is one of the steps between the exiting of cholesterol from the lysosomes and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the microsomal fractions prepared from mouse macrophages was studied, and the results showed inhibition of this activity by decursin and decursinol angelate with IC50 values of 43 and 22 microM, respectively. Thus, it was concluded that the compounds inhibit macrophage ACAT activity to decrease CE synthesis, leading to a reduction of lipid droplets in macrophages.  相似文献   

11.
12.
This study evaluated the influence of HIV protease inhibitors lopinavir/ritonavir (LPV/RTV) and atazanavir (ATV) on macrophage functions during their first interaction with Leishmania. Macrophages from BALB/c mice treated for 10 days with LPV/RTV and ATV, infected or not in vitro with L. (L.) amazonensis, were used to investigate the effects of these drugs on infection index, leishmanicidal capacity, cytokine production and PPAR-γ and RelB expression. LPV/RTV and ATV treatments significantly increased the infection index and the percentage of Leishmania-infected macrophages compared to untreated infected macrophages. There was no correlated increase in the production of NO and H2O2 leishmanicidal molecules. Promastigotes derived from Leishmania-infected macrophages from LPV/RTV and ATV-treated BALB/c mice had an in vitro growth 45.1% and 56.4% higher in groups treated with LPV/RTV and ATV than with PBS in culture. ATV treatment reduced IL-12p70 and IL-10 secretion in Leishmania-infected macrophages, but had no effect on IL-23 and TNF production. LPV reduced IL-10 and had no effect on IL-12p70, TNF and IL-23 secretion. ATV treatment decreased PPAR-γ expression in Leishmania-infected macrophages compared to untreated infected macrophages. In addition, LPV/RTV, but not ATV, reduced RelB cytoplasm-to-nucleus translocation in Leishmania-infected macrophages. Results showed that LPV/RTV and ATV HIV protease inhibitors were able to modulate innate defense mechanisms against Leishmania via different intracellular pathways. Although HIV protease inhibitors are highly efficient to control the Human Immunodeficiency Virus, these drugs might also influence the course of leishmaniasis in HIV-Leishmania-co-infected individuals.  相似文献   

13.
Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 A resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.  相似文献   

14.
Over the past 10 years, protease inhibitors have been a key component in antiretroviral therapies for HIV/AIDS. While the vast majority of HIV/AIDS cases in the world are due to HIV-1, HIV-2 infection must also be addressed. HIV-2 is endemic to Western Africa, and has also appeared in European countries such as Portugal, Spain, and Estonia. Current protease inhibitors have not been optimized for treatment of HIV-2 infection; therefore, it is important to assess the effectiveness of currently FDA-approved protease inhibitors against the HIV-2 protease, which shares only 50% sequence identity with the HIV-1 protease. Kinetic inhibition assays were performed to measure the inhibition constants (K(i)) of the HIV-1 protease inhibitors indinavir, nelfinavir, saquinavir, ritonavir, amprenavir, lopinavir, atazanavir, tipranavir, and darunavir against the HIV-2 protease. Lopinavir, saquinavir, tipranavir, and darunavir exhibit the highest potency with K(i) values of 0.7, 0.6, 0.45, and 0.17 nm, respectively. These K(i) values are 84, 2, 24, and 17 times weaker than the corresponding values against the HIV-1 protease. In general, inhibitors show K(i) ratios ranging between 2 and 80 for the HIV-2 and HIV-1 proteases. The relative drop in potency is proportional to the affinity of the inhibitor against the HIV-1 protease and is related to specific structural characteristics of the inhibitors. In particular, the potency drop is high when the maximum cap size of the inhibitors consists of very few atoms. Caps are groups located at the periphery of the molecule that are added to core structures to increase the specificity of the inhibitor to its target. The caps positioned on the HIV-1 protease inhibitors affect selectivity through interactions with distinct regions of the binding pocket. The flexibility and adaptability imparted by the higher number of rotatable bonds in large caps enables an inhibitor to accommodate changes in binding pocket geometry between HIV-1 and HIV-2 protease.  相似文献   

15.
16.
The persistence of latent reservoirs of HIV-1 represents a major barrier to virus eradication in patients treated with antiretrovirals. Prostratin is a non-tumor promoting 12-deoxyphorbol monoester capable of up-regulating viral expression from latent provirus and therefore is potentially useful for HIV adjuvant therapy and similar properties might be elicited by related non-tumor promoting phorboids. We have therefore investigated a series of phorbol 13-monoesters for their capacity to reactivate HIV latency. Using a Jurkat T cell line containing latent HIV proviruses, we found that prostratin and phorbol-13-stearate effectively activate HIV-1 gene expression in these latently infected cells, with phorbol-13-stearate being at least 10-fold more potent than prostratin, and its activity rapidly decreasing with a shortening of the acyl side chain. We further demonstrated that phorbol-13-stearate and prostratin stimulate IKK-dependent phosphorylation and degradation of IkappaBalpha, leading to activation of NF-kappaB. Moreover, prostratin, phorbol-13-hexanoate and phorbol-13-stearate also activate the JNK and ERK pathways. Studies with isoform-specific PKC inhibitors suggest that the classical PKCs play a prominent role in the responses elicited by phorbol-13-stearate. Nevertheless, this compound induces a translocation pattern of the PKC isotypes alpha and delta to cellular compartments distinctly different from that elicited by prostratin and PMA.  相似文献   

17.
HIV protease is a key enzyme to play a key role in the HIV-1 replication cycle and control the maturation from HIV viruses to an infectious virion. HIV-1 protease has become an important target for anti-HIV-1 drug development. Here, we used molecular dynamics simulation to study the binding mode between mannitol derivatives and HIV-1 protease. The results suggest that the most active compound (M35) has more stable hydrogen bonds and stable native contacts than the less active one (M17). These mannitol derivatives might have similar interaction mode with HIV-1 protease. Then, 3D-QSAR was used to construct quantitative structure-activity models. The cross-validated q(2) values are found as 0.728 and 0.611 for CoMFA and CoMSIA, respectively. And the non-cross-validated r(2) values are 0.973 and 0.950. Nine test set compounds validate the model. The results show that this model possesses better prediction ability than the previous work. This model can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 protease inhibitors before resorting to in vitro and in vivo experiment.  相似文献   

18.
19.
Dyslipidemia, characterized by elevated serum levels of triglycerides and reduced levels of total cholesterol, low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol, has been recognized in patients with human immunodeficiency virus (HIV) infection. It is thought that elevated levels of circulating cytokines, such as tumor necrosis factor-α and interferon-α, may alter lipid metabolism in patients with HIV infection. Protease inhibitors, such as saquinavir, indinavir and ritonavir, have been found to decrease mortality and improve quality of life in patients with HIV infection. However, these drugs have been associated with a syndrome of fat redistribution, insulin resistance, and hyperlipidemia. Elevations in serum total cholesterol and triglyceride levels, along with dyslipidemia that typically occurs in patients with HIV infection, may predispose patients to complications such as premature atherosclerosis and pancreatitis. It has been estimated that hypercholesterolemia and hypertriglyceridemia occur in greater than 50% of protease inhibitor recipients after 2 years of therapy, and that the risk of developing hyperlipidemia increases with the duration of treatment with protease inhibitors. In general, treatment of hyperlipidemia should follow National Cholesterol Education Program guidelines; efforts should be made to modify/control coronary heart disease risk factors (i. e. smoking; hypertension; diabetes mellitus) and maximize lifestyle modifications, primarily dietary intervention and exercise, in these patients. Where indicated, treatment usually consists of either pravastatin or atorvastatin for patients with elevated serum levels of LDL-C and/or total cholesterol. Atorvastatin is more potent in lowering serum total cholesterol and triglycerides compared with other hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, but it is also associated with more drug interactions compared with pravastatin. Simvastatin and lovastatin are significantly metabolized by cytochrome P450 enzymes (CYP3A4) and are therefore not recommended for coadministration with protease inhibitors. Afibric acid derivative (gemfibrozil or fenofibrate) should be used in patients with primary hypertriglyceridemia. However, it must be kept in mind that protease inhibitors, such as nelfinavir and ritonavir, induce enzymes involved in the metabolism of the fibric acid derivatives and may, therefore, reduce the lipid-lowering activity of coadministered gemfibrozil or fenofibrate. In certain patients HMG-CoA reductase inhibitors may be used in combination with fibric acid derivatives but patients should be carefully monitored for liver and skeletal muscle toxicity. Select patients may experience improvements in serum lipid levels when their offending protease inhibitor(s) is/are exchanged for efavirenz, nevirapine, or abacavir; however each patient’s virologic and immunologic status must be taken closely into consideration.  相似文献   

20.
Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-1, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 microM. Their activities against HIV-1 protease (K(i) 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC(50) 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC(50) 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 A (1) and 1.85 A (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号