首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the influence of calcium ions on the secretion of anterior pituitary hormones in response to stimulation by exogenous hypothalmic releasing factors in man, we measured serum concentrations of pituitary hormones serially during a continuous infusion of combined TRH (2 micrograms/min) and GnRH (1 microgram/min), with concomitant iv saline or calcium administration. Compared to saline, calcium administration was associated with a significant increase in GnRH-TRH-stimulated LH and FSH release and a corresponding rise in serum testosterone concentrations. The effect of calcium ions on gonadotropin secretion was specific, because releasing factor-stimulated secretion of TSH and PRL was suppressed by hypercalcemia. Serum concentrations of GH were not significantly altered under these conditions. In summary, the present results provide the first in vivo evidence that acute infusion of calcium ions augments GnRH-TRH-stimulated secretion of LH and FSH, with an accompanying increase in serum testosterone levels. In contrast, hypercalcemia did not alter serum GH concentrations, and it suppressed GnRH-TRH-stimulated release of PRL and TSH. We conclude that calcium ions can selectively influence releasing factor-stimulated secretion of certain anterior pituitary hormones in man.  相似文献   

2.
This study examines the role of dynorphin-A(1-13) and dynorphin-A(1-10)-amide in the neuroendocrine regulation of anterior pituitary hormones in nonrestrained, adult male rhesus monkeys. The effects of these opioids on plasma concentrations of prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and growth hormone (GH) were assessed. Intravenous administration of dynorphin-A(1-13), 1-120 micrograms/kg, significantly increased plasma PRL levels. Average maximal increases of 90-230% occurred within 5 min and levels remained significantly elevated for up to 120 min. PRL response reached a plateau following the 30 micrograms/kg dose. Dynorphin-A(1-13) had no observable effects on plasma concentrations of LH, FSH, TSH or GH at any dose level studied. Administration of dynorphin-A(1-10)-amide produced significant dose-dependent increases in plasma PRL concentrations. Dose levels of 1-120 micrograms/kg produced mean peak increases from 100 to 230%, 5-10 min postadministration. Dynorphin-A(1-10)-amide had no significant effect on plasma concentrations of LH, FSH, TSH or GH. The increases in plasma PRL concentrations induced by dynorphin-A were naloxone-reversible. These results indicate a selective effect of dynorphin-A on the regulatory mechanisms of PRL secretion over that of other anterior pituitary hormones.  相似文献   

3.
Anterior pituitary hormone control by interleukin 2.   总被引:11,自引:0,他引:11       下载免费PDF全文
Several monokines, proteins secreted by monocytes and macrophages, alter release of hormones from the anterior pituitary. We report here the ability of femtomolar concentrations of interleukin 2 (IL-2), a lymphokine released from T lymphocytes, to alter directly pituitary hormone release. The effects of concentrations of IL-2 ranging from 10(-17) to 10(-9) M on anterior pituitary hormone release were evaluated in vitro. Hemipituitaries were preincubated in 1 ml of Krebs-Ringer bicarbonate buffer (KRB) followed by incubation for 1 or 2 hr with KRB or KRB containing different concentrations of IL-2. This was followed by incubation for 30 min in 56 mM potassium medium to study the effect of pretreatment with IL-2 on subsequent depolarization-induced hormone release. Prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), corticotropin (ACTH), growth hormone (GH), and thyrotropic hormone (TSH) released into the incubation medium were measured by radioimmunoassay. IL-2 stimulated the basal release of PRL at 1 or 2 hr but suppressed the subsequent depolarization-induced PRL release, perhaps because the readily releasable pool of PRL was exhausted. The minimal effective dose (MED) was 10(-15) M. Conversely, IL-2 significantly suppressed the basal release of LH and FSH at 1 or 2 hr, with a MED of 10(-16) M, thus demonstrating a reciprocal action of the cytokine on lactotrophs and gonadotrophs. The subsequent depolarization-induced release of LH and FSH was suppressed, indicative of a persistent inhibitory action of IL-2. IL-2 stimulated ACTH and TSH release at 1 hr and the MEDs were 10(-12) and 10(-15) M, respectively. Conversely, IL-2 significantly lowered the basal release of GH at 1 hr, with a MED of 10(-15) M. The release of GH was not altered at 2 hr. The high potassium-induced release of ACTH, TSH, and GH was not affected. The results demonstrate that IL-2 at picomolar concentrations affects the release of anterior pituitary hormones. This cytokine may serve as an important messenger from lymphocytes exerting a direct paracrine action on the pituitary by its release from lymphocytes in the gland or concentrations in the blood that reach the gland may be sufficient to activate it.  相似文献   

4.
The pineal indole melatonin suppresses the neonatal rat luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responses to LH-releasing hormone (LHRH), as shown in previous studies from this laboratory. We show in this study that the melatonin inhibition is a selective effect and is not due to general inhibition of pituitary function. The effects of the indole on the responses to thyrotropin-releasing hormone (TRH) and somatostatin (SRIF) and on basal pituitary hormone secretion were examined with cells in culture. Neonatal rat anterior pituitary cells dissociated with collagenase and hyaluronidase were cultured overnight and distributed to 35-mm dishes at the time of use. For examination of melatonin effects on the response to releasing hormones, the cells were incubated for 3 h in control medium or medium containing LHRH (10-9-10-6 M), TRH (10-10-10-6 M), or SRIF (10-9-10-6 M), either alone or in the presence of melatonin (10-8 or 10-6 M). For examination of basal hormone secretion, the cells were incubated for 1.5, 3, 6, 15, or 24 h in either medium alone or medium containing melatonin (10-6 M). Medium and cell lysate concentrations of LH, FSH, thyroid-stimulating hormone (TSh), prolactin (PRL) and growth hormone (GH) were determined by double antibody RIA. As previously, melatonin (10-8 M) significantly suppressed LH and FSH release by all concentrations of LHRH. This concentration of the indole produced maximal suppression of both LH and FSH responses to LHRH. By contrast, melatonin at a 100-fold greater concentration (10-6 M) had no effect on TRH stimulation of TSH or PRL release or on SRIF inhibition of GH release. Similarly, melatonin had no effect on basal release of TSH, PRL, or GH at the times examined. These findings show that melatonin inhibition of the gonadotroph response to LHRH is a selective effect.  相似文献   

5.
Ten normal young men (22-28 yr of age), within 10% of their ideal body weight, were given the four releasing hormones (TRH, 200 micrograms; GnRH, 100 micrograms; ovine corticotropin-releasing hormone, 50 micrograms; GH-releasing hormone, 80 micrograms) iv on separate days and then in combination on the same day. Plasma TSH, PRL, FSH, LH, cortisol, ACTH, and GH were measured by RIA in samples collected from 20 min before to 120 min after injection. There were no significant differences in responses to the separate and combined tests for FSH, LH, cortisol, ACTH, and GH. The plasma TSH (0.001 less than P less than 0.01) and PRL (P less than 0.001) responses were significantly higher after the combined test. The tolerance was identical to that of TRH alone. In eight patients studied after pituitary surgery, combined administration provided results comparable to those obtained after separate administration of TRH, GnRH, and insulin.  相似文献   

6.
To assess the role of dopamine receptors in naloxone-induced hormonal changes, the effects of dopamine and metoclopramide on anterior pituitary hormone secretion were studied during the infusion of the opiate blocker in normal men. Naloxone stimulated LH and cortisol secretion in all subjects, whereas FSH, TSH, PRL, and GH did not change. The infusion of dopamine completely suppressed the naloxone-induced LH rise; on the contrary, metoclopramide failed to alter the magnitude of the increments in LH observed during the infusion of the opiate blocker. The cortisol response to naloxone remained unchanged during dopamine and metoclopramide infusion. Metoclopramide stimulated PRL and TSH release during naloxone treatment, whereas dopamine suppressed PRL and TSH secretion. The data do not suggest a participation of dopamine receptors in the naloxone-induced hormonal changes in man and confirm a suppressive effect of dopamine infusion on LH release in humans.  相似文献   

7.
We have tested the influence of a new calcium ion channel antagonist, diltiazem, on hypothalamic releasing hormone-stimulated secretion of LH and other anterior pituitary hormones in man. To this end, six normal men received a continuous infusion of GnRH (1 microgram/min) and TRH (2 micrograms/min) for 3 h under three different experimental conditions: 1) saline (control) infusion; 2) iv diltiazem (0.3 mg/kg bolus dose, and 0.002 mg/kg . min) infusion for 4 h beginning 1 h before releasing hormone injection; and 3) oral diltiazem (60 mg, every 6 h) administration for 1 week before pituitary stimulation. Blood was sampled at 10-min intervals for the subsequent immunoassay of LH, FSH, TSH, PRL, and GH concentrations and at hourly intervals for the assay of plasma diltiazem concentrations by high performance liquid chromatography. Despite sustained plasma diltiazem concentrations of 80-120 ng/ml during either iv or oral drug administration, the GnRH/TRH-stimulated release of LH, FSH, TSH, and PRL or the basal secretion of GH did not differ significantly from that during saline infusion. In contrast, when these subjects underwent the same infusion schedule using a structurally dissimilar calcium influx blocker, verapamil (5-mg bolus dose and 15 mg/h, continuous infusion), there was significant suppression of the delayed component of GnRH/TRH-stimulated LH release, with simultaneous enhancement of PRL secretion. We conclude that exogenously stimulated anterior pituitary hormone secretion in man exhibits differential susceptibility to the structurally discrete calcium entry blockers diltiazem and verapamil. Moreover, the differential influence of these two calcium ion channel antagonists on gonadotropes is distinct from that described in cardiac and smooth muscle cells.  相似文献   

8.
Hypothalamic-pituitary function was assessed in 24 individuals with isolated gonadotrophin deficiency (IGD). Thirteen had normal olfaction (Group I) while 11 (Group II) had anosmia (Kallmann's syndrome). In response to a 10 micrograms intravenous (i.v.) bolus of GnRH, the minimal dose required to evoke a consistent gonadotrophin response in normal subjects, the patients responded with significant LH and FSH increases over baseline (P less than 0.01). In Group II patients, large doses (150 micrograms) of GnRH, which elicit maximal release of gonadotrophin in normal subjects did not increase gonadotrophin release beyond that produced by a 10 micrograms bolus. In response to two 10 micrograms GnRH doses, at times 0 and 120 min, the IGD patients responded with similar LH increases to both boluses (both P less than 0.01 compared to baseline). The maximal PRL responses to arginine infusion and to TRH in the male patients were similar to those of normal males. However, in the IGD females, the PRL response to TRH was less than in normal females. The TSH responses to TRH in IGD males and females were similar to each other and similar to normal. The IGD male GH response to arginine infusion was comparable to that in normal males. We conclude that (1) IGD patients appear to retain minimal endogenous GnRH secretion so that the IGD pituitary responds to a minimal dose of GnRH without priming; (2) IGD is a heterogeneous syndrome in which affected individuals with and without normal olfaction represent parts of the spectrum of the same disease; and (3) except for the PRL response in females, the PRL, TSH and GH responses demonstrate that the IGD pituitaries are largely intact.  相似文献   

9.
Adult male Sprague-Dawley rats averaging 300 g each were subjected to complete food removal for 7 days (acutely starved), 7 days complete food removal followed by 2 weeks of 1/4 ad libitum food intake (chronically strved), 7 days complete food removal and 2 weeks of 1/4 ad libitum intake followed by ad libitum feeding for 7 days (refed), or fed ad libitum throughout (controls). Serum LH, FSH, TSH, PRL, and GH levels were measured by radioimmunoassays for each group of rats. The in vivo response to the combination of synthetic LHRH and TRH also was tested in each group of rats. Circulating LH, TSH, GH, and PRL were significantly depressed in acutely and chronically starved rats, and FSH was lowered only in acutely starved rats. After 7 days of refeeding, serum levels of LH and FSH were significantly greater than in ad libitum fed controls, PRL returned to control levels, and TSH and GH increased but were still below control levels. After LHRH + TRH injection serum LH and TSH were increased significantly in all groups of rats, FSH and PRL rose in acutely but not in chronically starved rats, and GH was not elevated in any group. The increases in serum LH, FSH, TSH and prolactin in response to LHRH + TRH injection in acutely or chronically starved rats were equal to or greater than in the ad libitum fed controls. These data indicate that severe reductions in food intake result in decreased release of at least 5 anterior pituitary hormones, and this is due primarily to reduced hypothalamic stimulation rather than to inability of the pituitary to secrete hormones.  相似文献   

10.
Although the role of the neurotransmitter, dopamine (DA), in the regulation of PRL has been well documented, controversy exists regarding its participation in the regulation of the other pituitary hormones. Consequently, we infused DA into six healthy male subjects (ages 19-32) and studied its effects on both basal pituitary hormone levels and augmented hormonal release induced by insulin hypoglycemia (ITT), TRH, and gonadotropin-releasing hormone (GnRH). DA alone produced a modest though significant increase in GH concentration from 2.2 +/- 0.5 to 11.9 +/- 3.7 ng/ml (P less than 0.05) by 60 min, but the peak incremental GH response to ITT was significantly inhibited by DA (43.5 +/- 5.0 vs. 16.3 +/- 3.3 ng/ml; P less than 0.01). PRL concentrations fell during the DA infusion (20.4 +/- 3.0 to 10.6 +/- 1.5 ng/ml; P less than 0.02) at 235 min, and the PRL responses to both ITT and TRH were completely abolished. Although the basal LH and FSH concentrations were unaffected by DA, the incremental LH response to GnRH was inhibited (45.5 +/- 10.6 to 24.4 +/- 5.4 mIU/ml; P less than 0.05), while the FSH response was unchanged. DA significantly reduced the basal TSH concentration from 3.9 +/- 0.2 to 2.5 +/- 0.2 micro U/ml (P less than 0.01) at 230 min and blunted the peak incremental TSH response to TRH (6.0 +/- 1.5 vs. 2.9 +/- 0.9 microU/ml; P less than 0.01). DA had no effect on basal cortisol levels, the cortisol response to ITT, basal plasma glucose, or the degree of hypoglycemia after ITT. Our data provide new evidence that DA has an inhibitory as well as a stimulatory role in the regulation of GH secretion in normal humans. It inhibits centrally as well as peripherally mediated PRL secretion and blunts the LH response to GnRH. In addition, DA lowers both basal and TRH-mediated TSH release, confirming the reports of other investigators.  相似文献   

11.
The present study was designed to investigate pituitary hormone responses to a kappa-opiate receptor agonist in man. Normal men were given the racemic benzomorphan kappa-agonist MR 2033 or its levorotatory isomer MR 2034 iv. Plasma levels of PRL and GH markedly increased after injection of 3.5 micrograms/kg MR 2033 or 1.9 or 3.8 micrograms/kg MR 2034. These effects of MR 2033 were blocked by the opiate antagonist naloxone (10 mg), thereby demonstrating their mediation by opiate receptors. The kappa-agonist did not change plasma levels of LH and FSH. The secretion of TSH was significantly suppressed by MR 2033 and MR 2034, but this action was not antagonized by pretreatment with naloxone. The suppression of plasma TSH was, however, stereospecific since the (+)-isomer, MR 2035, did not affect TSH secretion. These data indicate that kappa-opiate receptors are located on neuronal pathways regulating GH, TSH, and PRL secretion. The pattern of pituitary responses elicited by the kappa-agonist differs from that of mu-opioid agonists, indicating differential endocrine functions for the endogenous agonists.  相似文献   

12.
The effects of the ergoline derivative, lergotrile mesylate, on the serum levels of PRL, GH, TSH, LH, FSH, cortisol, and blood sugar were studied in six normal males. The effects of lergotrile mesylate on the serum levels of GH and PRL were also studied in eight patients with acromegaly and in two with idiopathic hyperprolactinemia. In the normal subjects, 2 mg oral lergotrile lowered basal PRL levels after 90 min and markedly impaired the PRL response to TRH (200 micrograms iv); the mean peak value +/- SE was 8.3 +/- 1.1 micrograms/liter, compared to the control value of 66.6 /+- 11.3 micrograms/liter. Lergotrile raised serum GH levels in five of the six subjects to peaks of 8-49 micrograms/liter, compared to 2-8 micrograms/liter after placebo. In three subjects, the GH response to lergotrile was attenuated by the prior administration of the dopamine antagonist, metoclopramide (10 mg orally). Lergotrile had no effect on FSH and LH levels under basal conditions or after the gonadotrophin-releasing hormone (GnRH; 100 micrograms iv). Circulating TSH levels were unaltered basally but impaired after TRH. Blood sugar levels were unaltered; serum cortisol was elevated in five of six subjects; there was a brief depression of diastolic blood pressure, but no change in pulse rate. The side effects after lergotrile were variable, with drowsiness as a consistent feature. These actions are similar to those of bromocriptine (an ergot derivative treatment of hyperprolactinemia and acromegaly, to suppress PRL and GH secretion, and in parkinsonism. Therefore, it may be expected that lergotrile could fulfill these clinical uses; however, in the studies comparing the effects of single oral doses of lergotrile (2 mg) and bromocriptine (2.5 mg) on GH and PRL secretion in patients with acromegaly and hyperprolactinemia, lergotrile in the dose used has been found to have an earlier onset and shorter duration of action.  相似文献   

13.
The present study aimed at evaluating the anterior pituitary hormone levels in the inferior petrosal sinuses and in the peripheral blood of 55 patients affected by various pituitary disorders and undergoing perihypophysial phlebography on neurosurgical indication or for diagnostic purposes. The results indicated that in 6 patients with Cushing's disease and in 4 with hyperprolactinemia the secreting adenoma could be localized by inferior petrosal sinus sampling. Furthermore, the concentrations of all the pituitary hormones were found to be higher in the right and/or in the left inferior petrosal sinus than in peripheral blood, showing a clear gradient between central and peripheral samples. Moreover, the evaluation of hormone central/peripheral concentration ratios revealed noteworthy differences, namely, that central/peripheral concentration ratios of GH, ACTH, and PRL were significantly higher than those of TSH, FSH, and LH (p less than 0.01). On the contrary, no significant differences were found when the concentration ratios of GH, ACTH and PRL or TSH, FSH and LH were compared among themselves. This finding may be attributed to at least two factors: the increased pulsatility and the relatively short biological halftime of polypeptic hormones (GH, ACTH, and PRL) compared with glycoprotein hormones (TSH, FSH, and LH).  相似文献   

14.
The effect of intravenous infusion of glucagon in a dose of 85 pmol/kg/hr on submaximal pentagastrin-stimulated gastric acid secretion was studied in eight healthy volunteers. The study was repeated four times in each subject. By a glucose-insulin clamp technique blood glucose levels were kept constant during the studies at 5.0 mmol/liter (euglycemic clamp), 2.5 mmol/liter (hypoglycemic clamp), or 7.0 mmol/liter (hyperglycemic clamp) on three different days. Glucose and insulin were not infused during one control day study. During glucagon infusion, plasma glucagon levels increased but the level reached was lower during the hyperglycemic condition when compared to euglycemic and hypoglycemic conditions. Glucagon infusion inhibited gastric acid secretion during hyper- and euglycemic conditions but not during hypoglycemic conditions. Hyperglycemia caused a modest but significant inhibition of acid secretion. Serum gastrin concentrations were unaltered during glucagon infusion regardless of the level of blood glucose. The present observations indicate that the inhibitory effect of glucagon is independent of the glucagon-induced hyperglycemia, but the effect is lost when blood glucose is below a certain limit, suggesting that blood glucose may have a modulating effect on gastric acid secretion.This study was supported by the Danish Hospital Foundation for Medical Research. Region of Copenhagen, The Faroe Islands and Greenland.  相似文献   

15.
To study the effects of altered thyroid status on pretranslational control of pituitary hormones, adult male rats were given propylthiouracil for 6 weeks and underwent the following studies. 1) Rats were injected with T3 at 10 micrograms/100 g BW daily for 10 days. 2) Rats were given T3 injections at 0, 0.01, 0.1, 1.0, or 10 micrograms/100 g BW for 10 days. 3) Rats were killed 0, 1, 6, or 24 h after a single injection of T3 at 10 micrograms/100 g BW or after 5 or 10 days of daily T3 injections. Pituitary mRNA concentrations of TSH beta, alpha-subunit, PRL, GH, POMC, FSH beta, and LH beta were determined for individual animals. Marked increases in TSH beta and alpha-subunit mRNAs occurred after PTU treatment, and these changes were reversed by 1.0 microgram/100 g BW T3 and within 24 h of a single T3 injection of 10 micrograms/100 g BW. Further increases in the dose or time course of T3 administration led to a relatively greater suppression of TSH beta mRNA levels than alpha-subunit mRNA levels. In contrast, GH and PRL mRNA levels were low in hypothyroid animals, and both rose toward control levels with 0.1 microgram/100 g BW T3 and by 24 h after a single T3 dose. Induction of hyperthyroidism did not further increase GH mRNA levels above control, but increased PRL mRNA levels 2-fold over control. No changes were seen in FSH beta, LH beta, or POMC mRNA levels with any treatment. Thus, studies of altered thyroid status in the rat reveal dose-response and time-course variability in the pretranslational control of TSH beta, alpha-subunit, GH, and PRL by thyroid hormone.  相似文献   

16.
The influence of fenoldopam, a dopamine (DA) D-1 receptor agonist, on basal and GnRH/TRH stimulated PRL, GH, LH, TSH, testosterone and thyroid hormone secretion was studied in nine normal men. All men received 4-h infusions of either 0.9% saline or fenoldopam at an infusion rate of 0.5 microgram/kg min, 12-16 ml/h, adjusted according to weight. After 3 h of infusion, 50 micrograms GnRH and 100 micrograms TRH was given i.v. Blood samples were collected every 15 min from 1 h before to 1 h after the infusion for a total of 6 h for measurements of PRL, LH, FSH, GH, TSH, testosterone, T4 and T3. The median PRL concentration increased significantly (P less than 0.01) to 128%, range 87-287, of preinfusion levels, compared to the decline during control infusion (85%, 78-114). Basal TSH levels declined significantly to 71% (60-91) during fenoldopam compared with 82% (65-115) during control infusion (P less than 0.05). Basal LH, FSH, GH and thyroid hormones were similar during fenoldopam and control infusions (P greater than 0.05). The LH response to GnRH/TRH was significantly (P less than 0.02) increased by fenoldopam infusion. Basal and stimulated testosterone concentration was lower during fenoldopam (P less than 0.01) infusion compared with control. Other hormones were similar after GnRH/TRH stimulation during fenoldopam and saline infusions. These results suggest that DA D-1 receptors are involved in the modulation of pituitary hormone secretion. We suggest that the effect of fenoldopam on PRL and TSH is mainly at the hypothalamic level. Regarding the effect on LH concentrations, an additional direct effect of fenoldopam on testosterone regulation can not be excluded.  相似文献   

17.
The effects of long term restricted feeding on the synthesis, storage, and release of GH, LH, FSH, and PRL were examined in adult ovariectomized ewes. Two groups of six ewes were fed a diet of either 1000 g/day (normal feeding) or 400-600 g/day (restricted feeding) hay for 20 weeks. Restricted feeding increased mean plasma GH concentrations and the amplitude of GH pulses, but did not affect GH pulse frequency. In contrast, mean plasma LH and FSH concentrations and LH pulse frequency were decreased by restricted feeding. Mean plasma PRL concentrations were unaffected by treatment. The levels of mRNA for GH in pituitary cytosol were increased by restricted feeding, but no changes were seen in mRNA levels of alpha-subunit, LH beta, FSH beta, or PRL. The pituitary contents of hormones measured did not change with the level of feeding. In conclusion, these data show that long term restricted feeding affects anterior pituitary function in adult ewes, presumably reflecting alterations in the secretion of hypothalamic releasing and inhibiting factors.  相似文献   

18.
In eight normal adult men pituitary secretion following GRF(1-40) was studied. GRF administration (50 micrograms i.v.) was followed by an increase in GH release with a peak value between the 15 and 60 min. No effects were noticed on LH, FSH, PRL, TSH and ACTH secretion. GH and PRL release was also studied after domperidone (DOM) (5 mg i.v./h), and GRF plus DOM. PRL increased significantly after DOM and GRF plus DOM. During GRF plus DOM a more marked GH release was observed in comparison with the hormone response to GRF alone at 15-45 and 120 min (P less than 0.05). This phenomenon was found in in six out of eight subjects studied. Mean peak and secretory area was greater (P less than 0.05) after GRF plus DOM than after GRF alone. These data suggest that GRF(1-40) at the dose used is a useful tool in the study of GH secretion. The GH pattern during GRF plus DOM seems to indicate that dopaminergic tone may play a direct inhibitory role on GH secretion in man.  相似文献   

19.
R Nesher  L Eylon  N Segal  E Cerasi 《Endocrinology》1989,124(1):142-148
Most secretagogues, in addition to their acute stimulatory effect on insulin release, modify the responsiveness of the islet to subsequent stimulations. According to the nature and duration of the stimulus, the generated islet memory may either amplify [time-dependent potentiation, (TDP)] or diminish [time-dependent inhibition (TDI)] the responsiveness of the beta-cell. This work characterizes the kinetic parameters of TDI in the isolated rat pancreas. When subjected to a low dose (8.3 mmol/liter) glucose stimulus, maximal TDI was observed after 5 min of priming, while at a higher dose (16.7 mmol/liter) shorter exposures were sufficient. Longer periods of stimulation (10-40 min) resulted in the predominance of TDP, thus amplifying the release rate. TDI was not affected by previous generation of TDP; 40-min priming with 16.7 mmol/liter glucose markedly augmented the subsequent insulin responses to a pair of 6.9 mmol/liter stimuli, but the response to the second stimulus was inhibited, as in unprimed pancreas. Stimulation with arginine (5.0 mmol/liter) in the presence of basal (3.3 mmol/liter) glucose activated TDI only, and hence revealed monophasic insulin release. Tolbutamide (100 micrograms/ml), glucagon (5 micrograms/ml), and isobutylmethylxanthine (0.1 mmol/liter) also demonstrated TDI when given as a pair of 10-min stimuli; they all elicited monophasic insulin responses during prolonged stimulation. Arginine was chosen for detailed characterization of TDI because of its potency. Using identical concentrations of arginine for the generation and expression of TDI, a similar degree of inhibition (60-80%) was observed at all doses tested (0.5-5.0 mmol/liter). However, there existed competition between TDI and the acute secretory signal. Thus, TDI generated by 1.0 mmol/liter arginine had a minimal effect on insulin release induced by 2.0-5.0 mmol/liter amino acid, while it was fully inhibitory of the response to 1.0 mmol/liter arginine. Similarly, inhibition of the insulin response to 5.0 mmol/liter arginine was dependent on the dose (0.5-5.0 mmol/liter) of the priming pulse of arginine. The generation of TDI was unaffected by the insulin release rate during priming, since synergistic augmentation (combined arginine-glucose or arginine-isobutylmethylxanthine stimulation) or partial inhibition (arginine plus epinephrine) of the response had no effect on the subsequent expression of TDI. It is concluded that TDI and TDP are two distinct regulatory systems that independently control the rate of insulin release, most probably operating through different mechanisms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Administration of L-dopa 1 g induced an increase of plasma growth hormone (GH) levels in seven of ten healthy volunteers and in six of ten hyperglycemic insulin-dependent diabetic subjects; the maximal GH response was higher in normal subjects. Addition of 100 g glucose orally to the L-dopa completely abolished the GH response of both groups. The difference between the effect of endogenous hyperglycemia and the effect of a sudden increase of blood sugar after glucose administration on L-dopa induced GH release in diabetic subjects may be explain by the resetting of the hypothalamic control for pituitary GH release to higher levels of blood glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号