首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many biomedical and clinical studies with time‐to‐event outcomes involve competing risks data. These data are frequently subject to interval censoring. This means that the failure time is not precisely observed but is only known to lie between two observation times such as clinical visits in a cohort study. Not taking into account the interval censoring may result in biased estimation of the cause‐specific cumulative incidence function, an important quantity in the competing risks framework, used for evaluating interventions in populations, for studying the prognosis of various diseases, and for prediction and implementation science purposes. In this work, we consider the class of semiparametric generalized odds rate transformation models in the context of sieve maximum likelihood estimation based on B‐splines. This large class of models includes both the proportional odds and the proportional subdistribution hazard models (i.e., the Fine–Gray model) as special cases. The estimator for the regression parameter is shown to be consistent, asymptotically normal and semiparametrically efficient. Simulation studies suggest that the method performs well even with small sample sizes. As an illustration, we use the proposed method to analyze data from HIV‐infected individuals obtained from a large cohort study in sub‐Saharan Africa. We also provide the R function ciregic that implements the proposed method and present an illustrative example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The number needed to treat is a tool often used in clinical settings to illustrate the effect of a treatment. It has been widely adopted in the communication of risks to both clinicians and non‐clinicians, such as patients, who are better able to understand this measure than absolute risk or rate reductions. The concept was introduced by Laupacis, Sackett, and Roberts in 1988 for binary data, and extended to time‐to‐event data by Altman and Andersen in 1999. However, up to the present, there is no definition of the number needed to treat for time‐to‐event data with competing risks. This paper introduces such a definition using the cumulative incidence function and suggests non‐parametric and semi‐parametric inferential methods for right‐censored time‐to‐event data in the presence of competing risks. The procedures are illustrated using the data from a breast cancer clinical trial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Modern medical treatments have substantially improved survival rates for many chronic diseases and have generated considerable interest in developing cure fraction models for survival data with a non‐ignorable cured proportion. Statistical analysis of such data may be further complicated by competing risks that involve multiple types of endpoints. Regression analysis of competing risks is typically undertaken via a proportional hazards model adapted on cause‐specific hazard or subdistribution hazard. In this article, we propose an alternative approach that treats competing events as distinct outcomes in a mixture. We consider semiparametric accelerated failure time models for the cause‐conditional survival function that are combined through a multinomial logistic model within the cure‐mixture modeling framework. The cure‐mixture approach to competing risks provides a means to determine the overall effect of a treatment and insights into how this treatment modifies the components of the mixture in the presence of a cure fraction. The regression and nonparametric parameters are estimated by a nonparametric kernel‐based maximum likelihood estimation method. Variance estimation is achieved through resampling methods for the kernel‐smoothed likelihood function. Simulation studies show that the procedures work well in practical settings. Application to a sarcoma study demonstrates the use of the proposed method for competing risk data with a cure fraction.  相似文献   

4.
Semicompeting risks data arise when two types of events, non‐terminal and terminal, are observed. When the terminal event occurs first, it censors the non‐terminal event, but not vice versa. To account for possible dependent censoring of the non‐terminal event by the terminal event and to improve prediction of the terminal event using the non‐terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the well‐known illness–death models to allow flexible random effects to capture heterogeneous association structures in the data. Our extension also represents a generalization of the popular shared frailty models that usually assume that the non‐terminal event does not affect the hazards of the terminal event beyond a frailty term. We propose a unified Bayesian modeling approach that can utilize existing software packages for both model fitting and individual‐specific event prediction. The approach is demonstrated via both simulation studies and a breast cancer data set analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Competing risks arise with time‐to‐event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause‐specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow‐up time, accounting for the fact that some individuals may have a competing event. When modelling the cause‐specific CIF, the most common model is a semi‐parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause‐specific CIF where the effect of follow‐up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause‐specific CIF with the important advantage that the approach is easily extended to model time‐dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time‐dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause‐specific CIF and those obtained from a semi‐parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time‐dependent effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Competing risks analysis considers time‐to‐first‐event (‘survival time’) and the event type (‘cause’), possibly subject to right‐censoring. The cause‐, i.e. event‐specific hazards, completely determine the competing risk process, but simulation studies often fall back on the much criticized latent failure time model. Cause‐specific hazard‐driven simulation appears to be the exception; if done, usually only constant hazards are considered, which will be unrealistic in many medical situations. We explain simulating competing risks data based on possibly time‐dependent cause‐specific hazards. The simulation design is as easy as any other, relies on identifiable quantities only and adds to our understanding of the competing risks process. In addition, it immediately generalizes to more complex multistate models. We apply the proposed simulation design to computing the least false parameter of a misspecified proportional subdistribution hazard model, which is a research question of independent interest in competing risks. The simulation specifications have been motivated by data on infectious complications in stem‐cell transplanted patients, where results from cause‐specific hazards analyses were difficult to interpret in terms of cumulative event probabilities. The simulation illustrates that results from a misspecified proportional subdistribution hazard analysis can be interpreted as a time‐averaged effect on the cumulative event probability scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In cancer clinical trials, in addition to time to death (i.e., overall survival), progression‐related measurements such as progression‐free survival and time to progression are also commonly used to evaluate treatment efficacy. It is of scientific interest and importance to understand the correlations among these measurements. In this paper, we propose a Bayesian semi‐competing risks approach to jointly model progression‐related measurements and overall survival. This new model is referred to as the NICE model, which stands for the normal induced copula estimation model. Correlation among these variables can be directly derived from the joint model. In addition, when correlation exists, simulation shows that the joint model is able to borrow strength from correlated measurements, and as a consequence the NICE model improves inference on both variables. The proposed model is in a Bayesian framework that enables us to use it in various Bayesian contexts, such as Bayesian adaptive design and using posterior predictive samples to simulate future trials. We conducted simulation studies to demonstrate properties of the NICE model and applied this method to a data set from chemotherapy‐naive patients with extensive‐stage small‐cell lung cancer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This article explores Bayesian joint models for a quantile of longitudinal response, mismeasured covariate and event time outcome with an attempt to (i) characterize the entire conditional distribution of the response variable based on quantile regression that may be more robust to outliers and misspecification of error distribution; (ii) tailor accuracy from measurement error, evaluate non‐ignorable missing observations, and adjust departures from normality in covariate; and (iii) overcome shortages of confidence in specifying a time‐to‐event model. When statistical inference is carried out for a longitudinal data set with non‐central location, non‐linearity, non‐normality, measurement error, and missing values as well as event time with being interval censored, it is important to account for the simultaneous treatment of these data features in order to obtain more reliable and robust inferential results. Toward this end, we develop Bayesian joint modeling approach to simultaneously estimating all parameters in the three models: quantile regression‐based nonlinear mixed‐effects model for response using asymmetric Laplace distribution, linear mixed‐effects model with skew‐t distribution for mismeasured covariate in the presence of informative missingness and accelerated failure time model with unspecified nonparametric distribution for event time. We apply the proposed modeling approach to analyzing an AIDS clinical data set and conduct simulation studies to assess the performance of the proposed joint models and method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Competing risks extend standard survival analysis to considering time‐to‐first‐event and type‐of‐first‐event, where the event types are called competing risks. The competing risks process is completely described by all cause‐specific hazards, ie, the hazard marked by the event type. Separate Cox models for each cause‐specific hazard are the standard approach to regression modelling, but they come with the interpretational challenge that there are as many regression coefficients as there are competing risks. An alternative approach is to directly model the cumulative event probabilities, but again, there will be as many models as there are competing risks. The aim of this paper is to investigate the usefulness of a third alternative. Proportional odds modelling of all cause‐specific hazards summarizes the effect of one covariate on “opposing” competing outcomes in one regression coefficient. For instance, if the competing outcomes are hospital death and alive discharge from hospital, the modelling assumption is that a covariate affects both outcomes in opposing directions, but the effect size is of the same absolute magnitude. We will investigate the interpretational aspects of the approach analysing a data set on intensive care unit patients using parametric methods.  相似文献   

10.
Existing joint models for longitudinal and survival data are not applicable for longitudinal ordinal outcomes with possible non‐ignorable missing values caused by multiple reasons. We propose a joint model for longitudinal ordinal measurements and competing risks failure time data, in which a partial proportional odds model for the longitudinal ordinal outcome is linked to the event times by latent random variables. At the survival endpoint, our model adopts the competing risks framework to model multiple failure types at the same time. The partial proportional odds model, as an extension of the popular proportional odds model for ordinal outcomes, is more flexible and at the same time provides a tool to test the proportional odds assumption. We use a likelihood approach and derive an EM algorithm to obtain the maximum likelihood estimates of the parameters. We further show that all the parameters at the survival endpoint are identifiable from the data. Our joint model enables one to make inference for both the longitudinal ordinal outcome and the failure times simultaneously. In addition, the inference at the longitudinal endpoint is adjusted for possible non‐ignorable missing data caused by the failure times. We apply the method to the NINDS rt‐PA stroke trial. Our study considers the modified Rankin Scale only. Other ordinal outcomes in the trial, such as the Barthel and Glasgow scales, can be treated in the same way. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Prognostic studies often involve modeling competing risks, where an individual can experience only one of alternative events, and the goal is to estimate hazard functions and covariate effects associated with each event type. Lunn and McNeil proposed data manipulation that permits extending the Cox's proportional hazards model to estimate covariate effects on the hazard of each competing events. However, the hazard functions for competing events are assumed to remain proportional over the entire follow‐up period, implying the same shape of all event‐specific hazards, and covariate effects are restricted to also remain constant over time, even if such assumptions are often questionable. To avoid such limitations, we propose a flexible model to (i) obtain distinct estimates of the baseline hazard functions for each event type, and (ii) allow estimating time‐dependent covariate effects in a parsimonious model. Our flexible competing risks regression model uses smooth cubic regression splines to model the time‐dependent changes in (i) the ratio of event‐specific baseline hazards, and (ii) the covariate effects. In simulations, we evaluate the performance of the proposed estimators and likelihood ratio tests, under different assumptions. We apply the proposed flexible model in a prognostic study of colorectal cancer mortality, with two competing events: ‘death from colorectal cancer’ and ‘death from other causes’. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In studies with survival or time‐to‐event outcomes, a competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. Specialized statistical methods must be used to analyze survival data in the presence of competing risks. We conducted a review of randomized controlled trials with survival outcomes that were published in high‐impact general medical journals. Of 40 studies that we identified, 31 (77.5%) were potentially susceptible to competing risks. However, in the majority of these studies, the potential presence of competing risks was not accounted for in the statistical analyses that were described. Of the 31 studies potentially susceptible to competing risks, 24 (77.4%) reported the results of a Kaplan–Meier survival analysis, while only five (16.1%) reported using cumulative incidence functions to estimate the incidence of the outcome over time in the presence of competing risks. The former approach will tend to result in an overestimate of the incidence of the outcome over time, while the latter approach will result in unbiased estimation of the incidence of the primary outcome over time. We provide recommendations on the analysis and reporting of randomized controlled trials with survival outcomes in the presence of competing risks. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.  相似文献   

13.
This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi‐nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi‐nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of ‘ad hoc’ asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

14.
Elashoff RM  Li G  Li N 《Statistics in medicine》2007,26(14):2813-2835
Joint analysis of longitudinal measurements and survival data has received much attention in recent years. However, previous work has primarily focused on a single failure type for the event time. In this paper we consider joint modelling of repeated measurements and competing risks failure time data to allow for more than one distinct failure type in the survival endpoint which occurs frequently in clinical trials. Our model uses latent random variables and common covariates to link together the sub-models for the longitudinal measurements and competing risks failure time data, respectively. An EM-based algorithm is derived to obtain the parameter estimates, and a profile likelihood method is proposed to estimate their standard errors. Our method enables one to make joint inference on multiple outcomes which is often necessary in analyses of clinical trials. Furthermore, joint analysis has several advantages compared with separate analysis of either the longitudinal data or competing risks survival data. By modelling the event time, the analysis of longitudinal measurements is adjusted to allow for non-ignorable missing data due to informative dropout, which cannot be appropriately handled by the standard linear mixed effects models alone. In addition, the joint model utilizes information from both outcomes, and could be substantially more efficient than the separate analysis of the competing risk survival data as shown in our simulation study. The performance of our method is evaluated and compared with separate analyses using both simulated data and a clinical trial for the scleroderma lung disease.  相似文献   

15.
Cai Wu  Liang Li 《Statistics in medicine》2018,37(21):3106-3124
This paper focuses on quantifying and estimating the predictive accuracy of prognostic models for time‐to‐event outcomes with competing events. We consider the time‐dependent discrimination and calibration metrics, including the receiver operating characteristics curve and the Brier score, in the context of competing risks. To address censoring, we propose a unified nonparametric estimation framework for both discrimination and calibration measures, by weighting the censored subjects with the conditional probability of the event of interest given the observed data. The proposed method can be extended to time‐dependent predictive accuracy metrics constructed from a general class of loss functions. We apply the methodology to a data set from the African American Study of Kidney Disease and Hypertension to evaluate the predictive accuracy of a prognostic risk score in predicting end‐stage renal disease, accounting for the competing risk of pre–end‐stage renal disease death, and evaluate its numerical performance in extensive simulation studies.  相似文献   

16.
It is often the case that interest lies in the effect of an exposure on each of several distinct event types. For example, we are motivated to investigate in the impact of recent injection drug use on deaths due to each of cancer, end‐stage liver disease, and overdose in the Canadian Co‐infection Cohort (CCC). We develop a marginal structural model that permits estimation of cause‐specific hazards in situations where more than one cause of death is of interest. Marginal structural models allow for the causal effect of treatment on outcome to be estimated using inverse‐probability weighting under the assumption of no unmeasured confounding; these models are particularly useful in the presence of time‐varying confounding variables, which may also mediate the effect of exposures. An asymptotic variance estimator is derived, and a cumulative incidence function estimator is given. We compare the performance of the proposed marginal structural model for multiple‐outcome data to that of conventional competing risks models in simulated data and demonstrate the use of the proposed approach in the CCC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In the analysis of time‐to‐event data, the problem of competing risks occurs when an individual may experience one, and only one, of m different types of events. The presence of competing risks complicates the analysis of time‐to‐event data, and standard survival analysis techniques such as Kaplan–Meier estimation, log‐rank test and Cox modeling are not always appropriate and should be applied with caution. Fine and Gray developed a method for regression analysis that models the hazard that corresponds to the cumulative incidence function. This model is becoming widely used by clinical researchers and is now available in all the major software environments. Although model selection methods for Cox proportional hazards models have been developed, few methods exist for competing risks data. We have developed stepwise regression procedures, both forward and backward, based on AIC, BIC, and BICcr (a newly proposed criteria that is a modified BIC for competing risks data subject to right censoring) as selection criteria for the Fine and Gray model. We evaluated the performance of these model selection procedures in a large simulation study and found them to perform well. We also applied our procedures to assess the importance of bone mineral density in predicting the absolute risk of hip fracture in the Women's Health Initiative–Observational Study, where mortality was the competing risk. We have implemented our method as a freely available R package called crrstep. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The proportional subdistribution hazards model (i.e. Fine‐Gray model) has been widely used for analyzing univariate competing risks data. Recently, this model has been extended to clustered competing risks data via frailty. To the best of our knowledge, however, there has been no literature on variable selection method for such competing risks frailty models. In this paper, we propose a simple but unified procedure via a penalized h‐likelihood (HL) for variable selection of fixed effects in a general class of subdistribution hazard frailty models, in which random effects may be shared or correlated. We consider three penalty functions, least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and HL, in our variable selection procedure. We show that the proposed method can be easily implemented using a slight modification to existing h‐likelihood estimation approaches. Numerical studies demonstrate that the proposed procedure using the HL penalty performs well, providing a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy. The usefulness of the new method is illustrated using two actual datasets from multi‐center clinical trials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
When competing risks data arise, information on the actual cause of failure for some subjects might be missing. Therefore, a cause-specific proportional hazards model together with multiple imputation (MI) methods have been used to analyze such data. Modelling the cumulative incidence function is also of interest, and thus we investigate the proportional subdistribution hazards model (Fine and Gray model) together with MI methods as a modelling approach for competing risks data with missing cause of failure. Possible strategies for analyzing such data include the complete case analysis as well as an analysis where the missing causes are classified as an additional failure type. These approaches, however, may produce misleading results in clinical settings. In the present work we investigate the bias of the parameter estimates when fitting the Fine and Gray model in the above modelling approaches. We also apply the MI method and evaluate its comparative performance under various missing data scenarios. Results from simulation experiments showed that there is substantial bias in the estimates when fitting the Fine and Gray model with naive techniques for missing data, under missing at random cause of failure. Compared to those techniques the MI-based method gave estimates with much smaller biases and coverage probabilities of 95 per cent confidence intervals closer to the nominal level. All three methods were also applied on real data modelling time to AIDS or non-AIDS cause of death in HIV-1 infected individuals.  相似文献   

20.
In this paper, we develop a Bayesian method for joint analysis of longitudinal measurements and competing risks failure time data. The model allows one to analyze the longitudinal outcome with nonignorable missing data induced by multiple types of events, to analyze survival data with dependent censoring for the key event, and to draw inferences on multiple endpoints simultaneously. Compared with the likelihood approach, the Bayesian method has several advantages. It is computationally more tractable for high‐dimensional random effects. It is also convenient to draw inference. Moreover, it provides a means to incorporate prior information that may help to improve estimation accuracy. An illustration is given using a clinical trial data of scleroderma lung disease. The performance of our method is evaluated by simulation studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号