首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although the glucocorticoid receptor (GR) facilitates the xenobiotic-induced expression of CYP2B in rodents, its role in the regulation of human CYP2B6 is unclear. In this report, the role of human GR in the regulation of CYP2B6 was evaluated using primary human hepatocytes and transfection assays with Huh7 cells. CYP2B6 expression was not induced in primary hepatocytes treated with dexamethasone (DEX) concentrations (0.01-1 microM) known to activate GR. In contrast, treatment with 0.1 microM DEX enhanced CYP2B6 induction by different pregnane X receptor (PXR) activators, including rifampin, phenytoin, clotrimazole, and phenobarbital. In Huh7 cells, cotransfection of human (h)GR and hPXR with CYP2B6-phenobarbital-responsive enhancer module (PBREM) reporter constructs revealed that all hPXR ligands induce CYP2B6 reporter gene activity, and this ligand-dependent activation is greatly enhanced by activated hGR. CYP2B6 reporter gene expression was not induced in the presence of hPXR ligands when hGR alone was cotransfected with CYP2B6 reporter construct. In hGR and human constitutive androstane receptor (hCAR) cotransfection assays, activated hGR increased the constitutive activation of PBREM reporter constructs by hCAR in the absence of inducers. In the presence of activated hGR and known inducers of CYP2B6, only PB treatment caused a further 2-fold activation of hCAR compared with control. These studies show that hGR is involved synergistically in the xenobiotic-responsive regulation of human CYP2B6 by hPXR and hCAR. Moreover, the results suggest that the GR-enhanced expression of CYP2B6 is mediated through an indirect mechanism that does not require increased expression of nuclear receptor.  相似文献   

3.
Ginkgolide A, ginkgolide B, ginkgolide C, and ginkgolide J are structurally related terpene trilactones present in Ginkgo biloba extract. Pregnane X receptor (PXR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR) regulate the expression of genes involved in diverse biological functions. In the present study, we investigated the effects of individual ginkgolides as single chemical entities on the function of human PXR (hPXR), human GR (hGR), and human CAR (hCAR). In cell-based reporter gene assays, none of the ginkgolides activated hGR or hCAR (wild-type and its SV23, SV24, and SV25 splice variants). Concentration-response experiments showed that ginkgolide A and ginkgolide B activated hPXR and rat PXR to a greater extent than ginkgolide C, whereas ginkgolide J had no effect. As determined by a time-resolved fluorescence resonance energy transfer competitive binding assay, ginkgolide A and ginkgolide B, but not ginkgolide C or ginkgolide J, were shown to bind to the ligand-binding domain of hPXR, consistent with molecular docking data. Compared with tetraethyl 2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethenyl-1,1-bisphosphonate (SR12813) (a known agonist of hPXR), ginkgolide A and ginkgolide B were considerably less potent in binding to hPXR. These two ginkgolides recruited steroid receptor coactivator-1 to hPXR and increased hPXR target gene (CYP3A4) expression, as assessed by a mammalian two-hybrid assay and real-time polymerase chain reaction, respectively. In conclusion, the individual ginkgolides regulate the function of nuclear receptors in a receptor-selective and chemical-dependent manner. This study identifies ginkgolide A and ginkgolide B as naturally occurring agonists of hPXR and provides mechanistic insight into the structure-activity relationship in ligand activation of hPXR.  相似文献   

4.
5.
6.
In the present study, we have utilized a target selective human pregnane X receptor-siRNA (hPXR-siRNA)-adenovirus expression system to examine the contribution of hPXR on the gene regulation of drug-metabolizing P450s in human hepatocytes. Introduction of the hPXR-siRNA adenoviral vector reduced the level of PXR mRNA. After infection with Ad hPXR-siRNA, the basal and ligand-activated CYP2A6, CYP2C8, CYP3A4 and CYP3A5 mRNA levels were decreased significantly in dose-dependent manners, whereas CYP2B6, CYP2C9 and CYP2C19 mRNA levels were moderately influenced after infection with Ad hPXR-siRNA. These data suggest the distinct PXR influences on the regulation of these genes. The expression of CYP1A2 and CYP2D6 mRNA were not affected by the introduction of hPXR-siRNA, suggesting that PXR plays no functional role in the expression of either of these genes. This is the first report to compare simultaneously the relative contribution of hPXR on the expression of nine forms of P450 in primary cultured human hepatocytes. Mutual sharing among nuclear receptors of their binding cis-elements becomes clear now. Thus, the present method using the combination of adenovirus-mediated hPXR-siRNA expression and human hepatocytes may offer clear information on the relative role of nuclear receptors such as hPXR on the expression of drug metabolizing genes.  相似文献   

7.
In an assay system using a human CYP3A4 reporter constructed with the promoter (+11 nt to -362 nt) and enhancer (-7.2 knt to -7.8 knt) regions including everted repeat separated by six nucleotides (ER-6) and direct repeat separated by three nucleotides (DR-3) motifs, the CYP3A4 transactivation was detected without overexpression of any nuclear receptors in rifampicin-treated HepG2 cells. Overexpression of human pregnane X receptor (hPXR) enhanced the transactivation. Rat CYP3A1 reporter constructed with the promoter region (+31 nt to -171 nt) including both DR-3 and ER-6 motifs was, however, not transactivated in rifampicin-treated cells, even after overexpression of hPXR. Although overexpression of retinoid X receptor alpha (RXRalpha) had no clear effect for both CYP3A reporters, co-expression of apolipoprotein AI regulatory protein-1 (ARP-1) with hPXR resulted in the rifampicin-induced transactivation of the CYP3A1 reporter. A truncated CYP3A4 reporter retaining the both motifs showed the rifampicin-induced transactivation by overexpression of hPXR and ARP-1, while the transactivation in hPXR-overexpressed cells was not observed. These results support the idea that a nuclear receptor other than RXRalpha may play a role in the CYP3A transactivation together with hPXR. The present study also suggests the involvement of a novel cis-element in the hPXR-mediated CYP3A4 transactivation.  相似文献   

8.
The expression of three cytochromes P450 (CYP3A4, CYP2C9, and CYP2B6) was investigated in primary human hepatocyte cultures following treatment with four calcium channel modulators (CCM) of the dihydropyridine family, three antagonists (nifedipine, nicardipine, and isradipine), and one agonist (BK8644). Induction of CYP3A4 was studied by Northern blot, Western blot, and enzymatic activity. Induction began between 1 and 10 microM CCM and was dependent on the presence of dexamethasone (100 nM) in the medium. CYP3A4 mRNA accumulation started only after 16 h of treatment because pregnane X receptor (hPXR) synthesis was needed. Cotransfection experiments showed that the proximal and the distal PXR response elements of the CYP3A4 promoter and hPXR (HepG2 cells) or dexamethasone-induced hPXR (primary hepatocytes) were necessary to obtain full induction. Furthermore, glutathione S-transferase pull-down assays demonstrated that the CCM tested can act as hPXR ligands. In addition, cotransfection experiments in CV1 cells showed that these compounds failed to reverse CAR (constitutively activated receptor) inactivation by androstenol. Finally, 10 microM CCM induced both CYP2C9 and CYP2B6, strengthening the evidence that hPXR is involved in the regulation of these genes. All together, these results widen the field of hPXR activators to a new class of ligand, namely the CCM of the dihydropyridine family.  相似文献   

9.
Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers.   总被引:8,自引:0,他引:8  
The objectives of this study were to evaluate the ability of 14 compounds, which differentially activate human pregnane X receptor (hPXR), to induce CYP2B6 expression and to compare CYP2B6 and CYP3A4 concentration- and time-dependent induction by select inducers. Three primary human hepatocyte preparations were treated daily for 3 days with three concentrations of all compounds. Additional concentration- and/or time-response studies were conducted with clotrimazole, phenytoin, phenobarbital, and rifampin in six preparations. CYP2B6 and CYP3A4 protein and activities were assessed by Western blotting, bupropion hydroxylation, and testosterone 6beta-hydroxylation, respectively. To evaluate hPXR activation by the 14 compounds, reporter gene assays were conducted using Huh7 cells cotransfected with hPXR and a CYP2B6 (NR1)5-LUC reporter plasmid. Clotrimazole, phenobarbital, rifampin, and ritonavir strongly induced CYP2B6 and activated hPXR; dexamethasone t-butylacetate and sulfinpyrazone induced CYP2B6 weakly and activated hPXR moderately; paclitaxel strongly activated hPXR but did not increase CYP2B6 expression; carbamazepine and phenytoin moderately or strongly increased CYP2B6 expression but weakly activated hPXR; and dexamethasone, methotrexate, probenecid, sulfadimidine, and troleandomycin demonstrated weak or negligible effects on CYP2B6 and hPXR. EC50 values for CYP2B6 and CYP3A4 induction by clotrimazole, phenobarbital, phenytoin, and rifampin were strongly correlated (r2 = 0.99) and were statistically indistinguishable for clotrimazole, phenytoin, and rifampin. Kinetic constants governing time-dependent induction by phenobarbital and rifampin were also similar between CYP2B6 and CYP3A4. These results indicate that CYP2B6 is highly inducible by known CYP3A4 inducers and suggest that hPXR is a major determinant of CYP2B6-inducible expression for many, but not all, compounds evaluated in this study.  相似文献   

10.
The role of the glucocorticoid receptor (GR) and pregnane X receptor (PXR) in the regulation of female-predominant expression of mouse CYP3A44 by glucocorticoid hormones was evaluated using a primary culture of female mouse hepatocytes, as the expression was suppressed in adrenalectomized female mice, restored by dexamethasone (DEX) treatment and was not detected in male mouse livers. Glucocorticoid hormones, such as DEX, hydrocortisone, and corticosterone, 11beta-[4-dimethylamino] phenyl-17beta-hydroxy-17-[1-propynyl]estra-4,9-diene-3-one (RU486), antagonists for GR and an agonist for PXR, and rifampicin, an agonist for PXR, were chosen to investigate the relationship of GR/PXR activation and Cyp3a44 gene expression. Glucocorticoid-inducible expression of CYP3A44 was not suppressed but rather was increased by RU486. Treatment of GR expression plasmid-transfected hepatocytes with DEX concentration dependently enhanced the expression of PXR as well as CYP3A44 mRNAs. A synergistic effect of DEX at submicromolar concentrations and rifampicin is observed. Furthermore, transfection of PXR and retinoid X receptor-alpha (RXRalpha) also showed prominent induction of CYP3A44 mRNA by DEX. These results suggest that DEX plays a dual role in CYP3A44 expression: first, direct activation of the Cyp3a44 gene by the PXR-RXRalpha complex, and, second, indirect activation of the Cyp3a44 gene through the induction of PXR gene expression by the GR pathway.  相似文献   

11.
Abstract

1.?Induction of hepatic drug-metabolizing enzymes can affect drug efficacy and cause toxicity. However, so far, limited information is available regarding the molecular mechanism how herbal medicines induce human CYP2B6, which metabolizes many of the clinically used therapeutics and activates several pro-carcinogens or toxicants. Accumulated evidence suggests that the human constitutive androstane receptor (hCAR) and the human pregnane X receptor (hPXR) play important roles in trans-activation of CYP2B6. In this study, we investigated the effects of 68 Chinese herbal ingredients on the receptor specificity of hPXR/hCAR-mediated CYP2B6 induction by luciferase reporter gene assays in transiently transfected HepG2 cells and on the expression of CYP2B6 in LS174T cells.

2.?The HepG2 cells were transiently transfected with human CYP2B6 luciferase promoter reporter plasmids along with hPXR or hCAR3. The results indicated that apigenin (Api), curcumol (Cur) and praeruptorin A (Pra A) were identified as potent activators of hPXR, and Pra A was also a ligand of hCAR.

3.?Furthermore, CYP2B6 mRNA expression in LS174T cells treated with the three herbal ingredients was determined by real-time polymerase chain reaction. By combining western blot and LC–MS/MS, CYP2B6 protein expression and catalytic activity induced by the three herbal ingredients were measured.

4.?Our observation showed Api and Cur up-regulated CYP2B6 expression by transactivation of hPXR, and Pra A acted as the ligand of both hPXR and hCAR to induce CYP2B6 expression.  相似文献   

12.
观察几种降血糖药物是否能通过活化孕烷X受体(PXR)诱导细胞色素P450 3A4(CYP 3A4)的转录表达。在人肝肿瘤细胞株HepG2细胞中,用瞬时共转染报告基因实验进行几种降血糖中药提取物在不同浓度和不同处理时间下对PXR介导的CYP 3A4的转录调节作用研究。筛选出五味子、牛蒡子、桔络3种中药提取物以及非磺脲类促胰岛素降糖药米格列奈分别作用于HepG2细胞24 h后,均能诱导PXR介导的CYP3A4基因的转录表达,诱导能力随浓度增强,而其他待测药物无类似作用。在不同处理时间的研究中,五味子、牛蒡子、桔络以及米格列奈均能在12 h~36 h内增强CYP 3A4的转录表达,诱导能力随时间延长呈增强趋势。  相似文献   

13.
Recent studies have demonstrated that a member of the nuclear receptor family, pregnane X receptor (PXR) is a key regulator of the expression of cytochrome P450 3A (CYP3A) in humans and rodents. It is also known that species specificity in the induction of CYP3A by xenobiotics is likely a consequence of differences at the level of PXR activation. Because of the importance of CYP3A4 in drug metabolism, the development of rapid and accurate in vitro assays for predicting the effects of compounds on CYP3A4 expression or activity in humans has been a long-standing goal within pharmaceutical industries. PXR activation measurements using an in vitro reporter gene approach appears to provide a rapid and relatively inexpensive means for predicting whether compounds will induce CYP3A levels in vivo. In this study, using an HepG2 cell based human and mouse PXR reporter gene assay, 23 compounds were tested for their potential to activate hPXR or mPXR. Data demonstrated that potent activators of hPXR had virtually no activity on mPXR and efficient activators of mPXR had weak activity on hPXR. In addition, a third category of moderate/weak activators of both hPXR and mPXR was identified. Exemestane was a strong activator of mPXR ( approximately 22-fold activation) with only minor effect on hPXR ( approximately 5-fold activation). The importance of cell viability measurements as part of the PXR reporter gene assay was demonstrated as significant cytotoxicity or inhibition of cell proliferation might underestimate the potential for PXR activation.  相似文献   

14.
15.
16.
1 The importance of CYP3A enzymes in drug metabolism and toxicology has yielded a wealth of information on the structure, function and regulation of this subfamily and recent research emphasis has been placed on the human forms, namely CYP3A4, CYP3A5, CYP3A7 and CYP3A43. 2 The current review will focus on the receptor-dependency of CYP3A regulation and includes consideration of the regulatory roles of the glucocorticoid (GR), pregnane X (PXR) and constitutive androstane (CAR) receptors. 3 Emphasis has been placed on the topics of expression and substrate specificity, assessment of induction, species differences in induction, CYP3A promoter sequences and regulation of gene expression, structural and functional aspects of receptor-mediated, CYP3A gene activation, receptor variants and interindividual variation in human CYP3A expression, the latter encompassing environmental, physiological and genetic aspects. 4 An outline of future research needs will be discussed in the context of receptor-mediated molecular mechanisms of CYP3A gene regulation and the impact on interindividual variations in CYP3A expression. 5 Taken collectively, this review highlights the importance of understanding the molecular mechanisms of CYP3A induction as a means of rationalizing human responses to many clinically used drugs, in addition to providing a mechanistically coherent platform to understand and predict interindividual variations in response and drug-drug interactions.  相似文献   

17.
Bilobalide is a naturally occurring sesquiterpene trilactone with therapeutic potential in the management of ischemia and neurodegenerative diseases such as Alzheimer's disease. In the present study, we investigated the effect of bilobalide on the activity of rat constitutive androstane receptor (rCAR) and rat pregnane X receptor (rPXR) and compared that with human CAR (hCAR) and human PXR (hPXR). Bilobalide activated rCAR in a luciferase reporter gene assay and increased rCAR target gene expression in cultured rat hepatocytes, as determined by the CYP2B1 mRNA and CYP2B enzyme activity (benzyloxyresorufin O-dealkylation) assays. This increase in hepatocyte CYP2B1 expression by bilobalide was not accompanied by a corresponding increase in rCAR mRNA level. In contrast to the activation of rCAR, the activity of rPXR, hCAR, and hPXR was not influenced by this chemical in cell-based reporter gene assays. Consistent with these results, bilobalide did not alter rPXR, hCAR, or hPXR target gene expression in rat or human hepatocytes, as evaluated by the CYP3A23, CYP2B6, CYP3A4 mRNA assays and the CYP3A (testosterone 6β-hydroxylation) and CYP2B6 (bupropion hydroxylation) enzyme activity assays. Bilobalide was not an antagonist of rPXR, hCAR, or hPXR, as suggested by the finding that it did not attenuate rPXR activation by pregnenolone 16α-carbonitrile, hCAR activation by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime, or hPXR activation by rifampicin in reporter gene assays. In conclusion, bilobalide is an activator of rCAR, whereas it is not a ligand of rPXR, hCAR, or hPXR. Likewise, it is an inducer of rat CYP2B1, but not of rat CYP3A23, human CYP2B6, or human CYP3A4.  相似文献   

18.
1. The importance of CYP3A enzymes in drug metabolism and toxicology has yielded a wealth of information on the structure, function and regulation of this subfamily and recent research emphasis has been placed on the human forms, namely CYP3A4, CYP3A5, CYP3A7 and CYP3A43. 2. The current review will focus on the receptor-dependency of CYP3A regulation and includes consideration of the regulatory roles of the glucocorticoid (GR), pregnane X (PXR) and constitutive androstane (CAR) receptors. 3. Emphasis has been placed on the topics of expression and substrate specificity, assessment of induction, species differences in induction, CYP3A promoter sequences and regulation of gene expression, structural and functional aspects of receptor-mediated, CYP3A gene activation, receptor variants and interindividual variation in human CYP3A expression, the latter encompassing environmental, physiological and genetic aspects. 4. An outline of future research needs will be discussed in the context of receptor-mediated molecular mechanisms of CYP3A gene regulation and the impact on interindividual variations in CYP3A expression. 5. Taken collectively, this review highlights the importance of understanding the molecular mechanisms of CYP3A induction as a means of rationalizing human responses to many clinically used drugs, in addition to providing a mechanistically coherent platform to understand and predict interindividual variations in response and drug-drug interactions.  相似文献   

19.
Recent studies have demonstrated that the pregnane X receptor (PXR) is a key regulator of cytochromes P450 3A (e.g. CYP3A4 in human) gene expression. As a result, activation of PXR may lead to CYP3A4 protein over-expression. Because induction of CYP3A4 could result in clinically important drug drug interactions, there has been a great interest in reducing the possibility of PXR activation by drug candidates in drug-discovery programmes. In order to provide structural insight for attenuating drug candidate-mediated PXR activation, we used a docking approach to study the structure activity relationship for PXR activators. Based on our docking models, it is proposed that introducing polar groups to the end of an activator should reduce its human PXR (hPXR) activity via destabilizing interactions in the hydrophobic areas of the PXR ligand-binding pocket. A number of analogues that incorporate these structural features then were designed and synthesized, and they exhibited significantly lower hPXR activation in a transactivation assay and decreased CYP3A4 induction in a human hepatocytes-based assay. In addition, an example in which attenuating hPXR activation was achieved by sterically destabilizing the helices 11 and 12 of the receptor is presented.  相似文献   

20.
Recent studies have demonstrated that the pregnane X receptor (PXR) is a key regulator of cytochromes P450 3A (e.g. CYP3A4 in human) gene expression. As a result, activation of PXR may lead to CYP3A4 protein over-expression. Because induction of CYP3A4 could result in clinically important drug–drug interactions, there has been a great interest in reducing the possibility of PXR activation by drug candidates in drug-discovery programmes. In order to provide structural insight for attenuating drug candidate-mediated PXR activation, we used a docking approach to study the structure–activity relationship for PXR activators. Based on our docking models, it is proposed that introducing polar groups to the end of an activator should reduce its human PXR (hPXR) activity via destabilizing interactions in the hydrophobic areas of the PXR ligand-binding pocket. A number of analogues that incorporate these structural features then were designed and synthesized, and they exhibited significantly lower hPXR activation in a transactivation assay and decreased CYP3A4 induction in a human hepatocytes-based assay. In addition, an example in which attenuating hPXR activation was achieved by sterically destabilizing the helices 11 and 12 of the receptor is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号