首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cell transplantation may provide an alternative therapy to promote functional recovery after various neurological disorders including cerebral infarct. Due to the minimal immunogenicity and neuronal differentiation potential of neural stem cells (NSCs), we tested whether intravenous administration of mice-derived C17.2 NSCs could improve neurological function deficit and cerebral infarction volume after ischemic stroke in rats. Additionally, we evaluated the survival, migration, proliferation, and differentiation capacity of transplanted NSCs in the rat brain. Intravenous infusion of NSCs after middle cerebral artery occlusion (MCAO) showed better performance in neurobiological severity scores after MCAO compared to control. However, the volume of cerebral infarction was not different at 7 days after MCAO compared with control. Transplanted NSCs were detected in the ischemic region but not in the contralateral hemisphere. NSCs differentiated into neurons or astrocytes after MCAO. These data suggest that intravenously transplanted NSCs can migrate, proliferate, and differentiate into neurons and astrocytes in the rat brain with focal ischemia and improve functional recovery.  相似文献   

2.
Vascular endothelial growth factor (VEGF) may mediate increases in vascular permeability and hence plasma extravasation and edema following cerebral ischemia. To better define the role of VEGF in edema, we examined the effectiveness of a novel small molecule KDR kinase inhibitor Compound-1 in reducing edema and infarct volume following focal cerebral ischemia in studies utilizing treatment regimens initiated both pre- and post-ischemia, and with study durations of 24-72 h. Rats were subjected to 90 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. Pretreatment with Compound-1 (40 mg/kg p.o.) starting 0.5h before occlusion significantly reduced infarct volume at 72 h post-MCAO (vehicle, 194.1+/-22.9 mm(3) vs. Compound-1, 127.6+/-22.8mm(3) and positive control MK-801, 104.4+/-22.6mm(3), both p<0.05 compared to vehicle control), whereas Compound-1 treatment initiated at 2h after occlusion did not affect infarct volume. Compound-1 pretreatment also significantly reduced brain water content at 24h (vehicle, 80.3+/-0.2% vs. Compound-1, 79.7+/-0.2%, p<0.05) but not at 72 h after MCAO. These results demonstrate that early pretreatment administration of a KDR kinase inhibitor elicited an early, transient decrease in edema and subsequent reduction in infarct volume, implicating VEGF as a mediator of stroke-related vascular permeability and ischemic injury.  相似文献   

3.
The present study investigates the anti-oxidative effects of D-allose on ischemic damage. Rats were subjected to transient middle cerebral artery occlusion (MCAO) for 1 h under pentobarbital anesthesia. D-allose was intravenously infused during occlusion and a further 1 h after reperfusion (400 mg/kg). The effects of D-allose on focal cerebral ischemia were examined by measuring brain damage (infarction and atrophy volume) and behavioral deficits 7 days after MCAO. In another set of rats, apurnic/apyrimidic abasic sites (AP-sites) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), oxidative stress markers, were investigated 24 h after MCAO to examine the anti-oxidative effects of D-allose. Brain damage and behavioral deficits were significantly decreased by D-allose administration compared to vehicle. The number of AP-sites and 8-OHdG levels were also reduced by D-allose. Thus, the present study suggests that D-allose has anti-oxidative effects and induces neuroprotection in focal cerebral ischemia.  相似文献   

4.
目的:脑组织在缺血再灌注的早期,超氧阴离子的大量生成加重了脑组织损伤,本实验研究阿托伐他汀对缺血再灌注脑组织保护作用的可能机制。方法:成年雄性Sprague-Dawley大鼠经线栓法阻断大脑中动脉建立脑缺血再灌注模型,再灌注前经腹腔给予阿托伐他汀(立普妥)治疗。脑梗死灶体积用四唑氮蓝染色后测量;NADPH氧化酶酶活性和超氧阴离子水平使用光泽精增强化学发光法定量测定;NADPH氧化酶膜亚基gp91phox、膜易位亚基p47phox和小GTP酶Rac-1蛋白的表达用蛋白质印迹分析。结果:缺血半暗区的NADPH氧化酶活性和超氧阴离子水平增高,于再灌注2 h达到高峰,但缺血中心区的NADPH氧化酶活性和超氧阴离子水平无明显增高。阿托伐他汀预治疗能抑制再灌注2 h后缺血半暗区的NADPH氧化酶活性和超氧阴离子增高,减少膜亚基gp91phox蛋白的表达和预防细胞质亚基p47phox蛋白易位至细胞膜。结论:阿托伐他汀对缺血再灌注脑组织NADPH氧化酶源性超氧阴离子的抑制作用,是其脑保护作用机制之一。  相似文献   

5.
6.
Stroke is a leading cause of death and disability but has limited therapeutic options. Thiazolidinediones (TZDs), agonists for the nuclear receptor, peroxisome proliferator-activated receptor (PPAR)γ, reduce infarct volume and improve neurologic function following transient middle cerebral artery occlusion (MCAO) in rats. Translation of these findings into clinical therapy will require careful assessment of dosing paradigms and effective time windows for treatment. Understanding the mechanisms by which TZDs protect the brain provides insight into how time windows for neuroprotection might be extended. We find that two TZDs, pioglitazone and rosiglitazone, significantly reduce infarct volume at doses similar to those used clinically (1 mg/kg for pioglitazone and 0.1 mg/kg for rosiglitazone). We also find that pioglitazone reduces infarction volume in a transient, but not a permanent MCAO model suggesting that reperfusion plays an important role in TZD mediated neuroprotection. Since PPARγ agonists reduce inflammation and oxidative stress, both of which are exacerbated by reperfusion, we hypothesized that TZDs would be most effective if administered prior to reperfusion. We administered TZDs 3 h after MCAO and found that infarction volume and neurologic function are significantly improved in animals reperfused at 3 h and 15 min (after TZD treatment), but not in animals reperfused at 2 h (before TZD treatment) when assessed either 24 h or 3 weeks after MCAO. While TZDs reduce intercellular adhesion molecule (ICAM) expression to a similar extent regardless of the time of reperfusion, leukocyte entry into brain parenchyma is more dramatically reduced when reperfusion is delayed until after drug treatment. The finding that delaying reperfusion until after TZD treatment is beneficial despite a longer period of ischemia, is dramatic given the widely held view that duration of ischemia is the most important determinate of injury.  相似文献   

7.
Early reperfusion following stroke results in reduced tissue injury. Paradoxically, restoration of blood flow under certain conditions may also cause delayed neuronal damage (reperfusion injury). The interrelationship of changes in T1, T2 and diffusion weighted images of tissue water were studied in mouse models of permanent and transient focal cerebral ischemia. A sham surgery or either permanent or transient (30 min) middle cerebral artery occlusion (MCAO) were induced in 14 mice. Magnetic resonance (MR) images of the brain were acquired including: T2 maps, T1 maps and diffusion weighted spin-echo images to produce apparent diffusion coefficient of water apparent diffusion coefficient (ADC) maps. Images were collected on average 90 min after MCAO in both the transient and permanent ischemia groups. Scans were repeated at 24h post-occlusion in mice with transient ischemia. Permanent MCAO resulted in decreases in ADC and no significant change in T2 acutely following MCAO. There were increases in T1 compared to sham controls within the ischemic region in mice following either transient or permanent MCAO (P<0.001). In contrast to permanent MCAO, there were increases in T2 (P<0.001) in the infarct area present in the reperfusion phase within 90 min of transient MCAO. There was considerable infarct growth at 24h (P<0.001). This study demonstrates that following either type of occlusion there are early increases in T1 suggesting an elevated water content in the stroke lesion, while only following transient MCAO are there early increases in T2, indicative of early vasogenic oedema with breakdown of the blood-brain barrier.  相似文献   

8.
The c-Jun-N-terminal kinase (JNK) pathway has been shown to play an important role in excitotoxic neuronal death and several studies have demonstrated a neuroprotective effect of D-JNKi, a peptide inhibitor of JNK, in various models of cerebral ischemia. We have now investigated the effect of D-JNKi in a model of transient focal cerebral ischemia (90 min) induced by middle cerebral artery occlusion (MCAo) in adult male rats. D-JNKi (0.1 mg/kg), significantly decreased the volume of infarct, 3 days after cerebral ischemia. Sensorimotor and cognitive deficits were then evaluated over a period of 6 or 10 days after ischemia and infarct volumes were measured after behavioral testing. In behavioral studies, D-JNKi improved the general state of the animals as demonstrated by the attenuation of body weight loss and improvement in neurological score, as compared with animals receiving the vehicle. Moreover, D-JNKi decreased sensorimotor deficits in the adhesive removal test and improved cognitive function in the object recognition test. In contrast, D-JNKi did not significantly affect the infarct volume at day 6 and at day 10. This study shows that D-JNKi can improve functional recovery after transient focal cerebral ischemia in the rat and therefore supports the use of this molecule as a potential therapy for stroke.  相似文献   

9.
Hyperbaric (HBO) and normobaric (NBO) oxygen therapy have been shown to be neuroprotective in focal cerebral ischemia. In previous comparative studies, NBO appeared to be less effective than HBO. However, the experimental protocols did not account for important advantages of NBO in the clinical setting such as earlier initiation and prolonged administration. Therefore, we compared the effects of early prolonged NBO to delayed HBO on infarct size and functional outcome. We also examined whether combining NBO and HBO is of additional benefit. Wistar rats underwent filament-induced middle cerebral artery occlusion (MCAO) for 150 min. Animals breathed either air, 100% O(2) at ambient pressure (NBO; initiated 30 min after MCAO) 100% O(2) at 3 atm absolute (HBO; initiated 90 min after MCAO), or a sequence of NBO and HBO. Infarct volumes and neurological outcome (Garcia score) were examined 7d after MCAO. HBO (174+/-65 mm(3)) significantly reduced mean infarct volume by 31% compared to air (251+/-59 mm(3)) and by 23% compared to NBO treated animals (225+/-63 mm(3)). In contrast, NBO failed to decrease infarct volume significantly. Treatment with NBO+HBO (185+/-101 mm(3)) added no additional benefit to HBO alone. Neurological deficit was significantly smaller in HBO treated animals (Garcia score: 13.3+/-1.2) than in animals treated with air (12.1+/-1.4), but did not differ significantly from NBO (12.4+/-0.9) and NBO+HBO (12.8+/-1.1). In conclusion, HBO is a more effective therapy than NBO in transient experimental ischemia even when accounting for delayed treatment-onset of HBO. The combination of NBO and HBO results in no additional benefit.  相似文献   

10.
缺血后适应对大鼠脑缺血/再灌注损伤的影响   总被引:1,自引:3,他引:1       下载免费PDF全文
目的:探讨缺血后适应对大鼠脑缺血/再灌注损伤的影响。方法:应用线栓法制作大鼠脑缺血/再灌注损伤模型;21只雄性SD大鼠随机分为缺血/再灌注组、夹闭单侧颈总动脉后处理组和夹闭双侧颈总动脉后处理组,每组7只。再灌注48 h,测定脑梗死体积;拔栓后1 h及处死大鼠前进行神经功能测定;梗死即刻、梗死后10 min、术中1 h、拔栓后即刻、每次夹/松颈总动脉时、干预后30 min等15个时点监测脑血流。结果:夹闭单侧、双侧颈总动脉后处理组大鼠脑组织梗死体积与缺血/再灌注组相比明显减小,有显著差异;3组脑血流各个时点方差分析差异无显著,但是夹闭双侧颈总动脉后处理组干预30 min后脑血流百分比较缺血/再灌注组、夹闭单侧颈总动脉后处理组降低9%。手术后1 h 3组神经功能评分P<0.05,差异显著,夹闭单侧、双侧颈总动脉后处理组神经功能缺损均比缺血/再灌注组减轻。结论:缺血后适应能够明显减小梗塞体积,改善大鼠术后1h神经功能评分,可能与缺血后适应调节早期再灌注时血流动力学状态有关。  相似文献   

11.
为评价左右侧大脑中动脉闭塞(MCAO)对右利大鼠神经行为功能和脑梗死体积的影响,本研究应用四足动物觅食实验筛选右利爪雄性SD大鼠24只,随机分为经左、右侧插线组各12只,8%水合氯醛腹腔注射(300mg/kg)麻醉,线栓法经左、右侧颈外-内动脉插入头端涂有多聚赖氨酸的4-0尼龙线,建立大鼠MCAO缺血2h模型,再灌注72h后评价动物的神经行为功能,测量脑梗死体积。结果表明,所有动物在脑缺血2h神经功能缺损评分最高,再灌注1、24、48和72h经左侧MCAO大鼠显著高于经右侧MCAO大鼠(P<0.05),后者功能明显优于前者,脑梗死体积经左侧插线的大鼠显著大于经右侧插线的大鼠(P<0.05)。研究结果提示,大鼠主侧半球大脑中动脉缺血后,神经功能缺损和脑梗死体积较对侧严重,脑的不对称性影响大鼠局灶性脑缺血的最终结局。  相似文献   

12.
L. Li  Z. Zuo   《Neuroscience》2009,164(2):497-506
Isoflurane preconditioning improved short-term neurological outcome after focal brain ischemia in adult rats. It is not known whether desflurane induces a delayed phase of preconditioning in the brain and whether isoflurane preconditioning-induced neuroprotection is long-lasting. Two months-old Sprague–Dawley male rats were exposed to or were not exposed to isoflurane or desflurane for 30 min and then subjected to a 90 min middle cerebral arterial occlusion (MCAO) at 24 h after the anesthetic exposure. Neurological outcome was evaluated at 24 h or 4 weeks after the MCAO. The density of the terminal deoxynucleotidyl transferase biotinylated UTP nick end labeling (TUNEL) positive cells in the penumbral cerebral cortex were assessed 4 weeks after the MCAO. Also, rats were pretreated with isoflurane or desflurane for 30 min. Their cerebral cortices were harvested for quantifying B-cell lymphoma-2 (Bcl-2) expression 24 h later. Here, we showed that pretreatment with 1.1% or 2.2% isoflurane, but not with 6% or 12% desflurane, increased Bcl-2 expression in the cerebral cortex, improved neurological functions and reduced infarct volumes evaluated at 24 h after the MCAO. Isoflurane preconditioning also improved neurological functions and reduced brain infarct volumes in rats evaluated 4 weeks after the MCAO. Isoflurane preconditioning also decreased the density of TUNEL-positive cells in the penumbral cerebral cortex. We conclude that isoflurane preconditioning improves short-term and long-term neurological outcome and reduces delayed cell death after transient focal brain ischemia in adult rats. Bcl-2 may be involved in the isoflurane preconditioning effect. Desflurane pretreatment did not induce a delayed phase of neuroprotection.  相似文献   

13.
Some gene expression may be regulated by hypoxia-responsive element (HRE) that is bound by hypoxia-inducible factor-1 (HIF-1) which is up-regulated during cerebral ischemia. To explore ischemia/hypoxia-controlled expression and the neuroprotective effects of brain-derived neurotrophic factor (BDNF) after ischemic brain injury, an adenoviral vector using five copies of hypoxia response element (HRE) in the vascular endothelial growth factor gene to regulate the expression of BDNF gene (Ad5HRE:BDNF) was constructed, and its efficacy was verified for driving BDNF expression in cultured Hela cells under hypoxic condition by ELISA. We found that the concentration of BDNF in the Ad5HRE:BDNF-transfected culture media was 28-fold greater in a hypoxic condition than under normoxia. To examine the effect of Ad5HRE:BDNF on ischemic brain injury in vivo, Ad5HRE:BDNF was injected into right caudate putamen of adult mice 7 days prior to 60 min transient middle cerebral artery occlusion (MCAO). It was found that exogenous BDNF expression was increased in the Ad5HRE-BDNF-treated group and infarct volume of the Ad5HRE:BDNF-treated group at 3 days after MCAO was significantly smaller than that of vehicle- or AdNull-treated groups. Moreover, Ad5HRE:BDNF injection resulted in significantly improved sensorimotor scores 7 days after MCAO and induced a reduction in the number of Fluoro-Jade B-positive neurons and TUNEL-positive cells, compared with vehicle- or AdNull-injection. Our findings suggest that BDNF expression could be regulated in hypoxia/ischemia condition with five copies of HRE and ameliorates ischemic brain injury in a mouse focal cerebral ischemia model.  相似文献   

14.
目的:研究尼古丁对大鼠局灶性脑缺血再灌注损伤是否具有神经保护作用。方法:在大鼠大脑中动脉堵塞(MCAO)前30min给予腹腔注射尼古丁酒石酸盐溶液,观察局灶性脑缺血2h再灌注24h后,大鼠神经行为学评分及脑梗死容积的变化。结果:再灌注24h后,与单纯缺血再灌注组相比,给予尼古丁酒石酸盐溶液注射可以改善动物的神经行为学评分、减少脑梗死容积百分比(P0.05)。结论:尼古丁对大鼠局灶性脑缺血再灌注损伤具有神经保护作用。  相似文献   

15.
Wang Q  Xiong L  Chen S  Liu Y  Zhu X 《Neuroscience letters》2005,381(1-2):158-162
The aim of the present study was to investigate the first protective window of preconditioning with electroacupuncture (EA) against focal cerebral ischemia, and to explore whether adenosine is involved in the rapid tolerance phenomenon. Sixty-four male Sprague-Dawley rats were randomly assigned to eight groups (n=8 in each). Animals in the control group received no treatment, and animals in EA1-EA4 groups received EA at 0.5, 1, 2 and 3 h before induction of focal cerebral ischemia, respectively. Rats in DPCPX group were intraperitoneally injected with 1 mg kg-1 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), 3 h before induction of focal cerebral ischemia. Animals in vehicle group and EA+DPCPX group were pretreated with 1 ml kg-1 dimethyl sulfoxide (DMSO, the solvent of DPCPX) and 1 mg kg-1 DPCPX 30 min before preconditioning with EA, respectively. All rats were anesthetized with 40 mg kg-1 pentobarbital sodium intraperitoneally. Animals that required EA preconditioning, received EA with intensity of 1 mA and frequency of 15 Hz at the Baihui acupoint (GV 20) for 30 min. The focal cerebral ischemia was produced by the right middle cerebral artery occlusion (MCAO) for 120 min. The neurologic deficit scores (NDS) and brain infarct volumes were evaluated at 24 h after reperfusion. All rats survived until 24 h after reperfusion. Preconditioning with EA at 2 h before induction of focal cerebral ischemia improved neurologic outcome (P<0.05 versus control) and reduced the infarct volume (P<0.01 versus control) at 24 h after reperfusion. These beneficial effects were reversed by pretreatment with 1 mg kg-1 DPCPX, whereas this agent itself did not affect the NDS and volume in drug-ischemic controls after ischemia. The results show that preconditioning with single EA session induces rapid tolerance to focal cerebral ischemia. The rapid ischemic tolerance appears at 2 h (but not at 0.5, 1, or 3 h) after preconditioning, and is possibly mediated through an adenosine A1 receptor-related mechanism.  相似文献   

16.
目的:研究大鼠局灶性脑缺血不同缺血时间和不同再灌注时间的脑梗塞体积比、皮质半影区葡萄糖转运体3(GLUT3)转录水平和蛋白水平的表达。方法:用线栓法复制大鼠局灶性脑缺血模型,用Kontron IBAS2.5全自动图像分析系统检测脑梗塞体积比;剥取缺血半影区皮质组织,采用反转录-聚合酶链反应(RT-PCR)测定GLUT3 mRNA水平的变化;用免疫组织化学方法半定量测定GLUT3蛋白水平的变化。结果:脑缺血1 h后再灌注组的脑梗塞体积明显小于缺血3 h再灌注组梗塞体积。GLUT3自3 h即开始升高,24 h到达高峰,1周时仍高于假手术对照组;缺血3 h再灌注组在3 h有一下降点,然后升高,24 h到高峰,1周时接近正常水平。GLUT3蛋白水平的表达与mRNA相符合。结论:GLUT3在缺血半影区的表达上调,可能是机体对缺血/再灌注的保护性反应。  相似文献   

17.
The role of complement in post-ischemic cerebral injury is incompletely understood. Therefore, experiments were designed to test the effect of complement depletion on cerebral infarct volume in adult rats and cerebral atrophy in neonatal rats. Cerebral infarcts were induced in adult rats by transient filamentous occlusion of the right middle cerebral artery (MCAO). Cerebral atrophy was induced by subjecting 7-day-old rats to ligation of the right common carotid artery followed by 2.5h of hypoxia (8% O2). Forty-eight hours after MCAO, coronal sections of adult brains were obtained and stained with 2,3,5-triphenyl tetrazolium chloride. The infant rat brains were removed for analysis 6 weeks after the hypoxic-ischemic insult. Volumes of infarcts and normal hemispheric parenchyma were quantified by computer-based planimetry. Twenty-four hours prior to MCAO (adults) or hypoxia-ischemia (neonates), each animal received an i.p. injection of either 1 mcg/g body weight cobra venom factor (CVF; adult n=11; neonatal n=20) or normal saline (adult n=12; neonatal n=24). In the neonates, a second dose of CVF or saline was administered 2 days after hypoxia-ischemia. The administration of CVF significantly reduced: (1) post-ischemic cerebral infarct volume in the adults and (2) post-hypoxic-ischemic cerebral atrophy in the neonates. Therefore, complement activation augmented post-ischemic cerebral injury in adult and neonatal rats. Complement depletion induced by CVF significantly reduced post-ischemic cerebral infarct volume and atrophy in adult and neonatal rats.  相似文献   

18.
We investigated whether pre-treatment with melatonin, a potent free radical scavenger and antioxidant, would protect against permanent focal cerebral ischemia without reperfusion in a rat middle cerebral artery occlusion (MCAO) model. A single dose of melatonin at 5, 15, or 50 mg/kg or the vehicle alone was given via an intraperitoneal injection at 0.5 h before permanent MCAO. Relative infarction volumes on day 3 were significantly reduced in the groups treated with melatonin at 5 (mean+/-SEM, 17.0+/-6.5%), 15 (18.1+/-5.8%), or 50 (20.6+/-5.0%) mg/kg when compared with the vehicle-treated group (37.1+/-2.8%) and so melatonin treatment achieved a relative reduction in infarct volume by 54.2, 51.2 and 44.5%, respectively. Melatonin did not affect the hemodynamic parameters. Thus, pre-treatment with melatonin at a dose between 5 and 50 mg/kg protects against focal cerebral ischemia without reperfusion.  相似文献   

19.
The potential neuroprotective effects of VELCADE were investigated in two different models of focal cerebral ischemia. For time-window assessment, male Wistar-Kyoto rats were treated with 0.2 mg/kg VELCADE at 1, 2, or 3 h after the induction of permanent middle cerebral artery occlusion (MCAO) using the suture occlusion method (experiment 1). To evaluate effects in a different model, male Sprague-Dawley rats received 0.2 mg/kg VELCADE after embolic MCAO (experiment 2). Infarct volume was calculated based on TTC-staining 24 h postischemia and whole blood proteasome activity was fluorometrically determined in both experiments at baseline, 1 and 24 h post-MCAO. In experiment 1, a dose of 0.2 mg/kg inhibited proteasome activity by 77% and infarct volume was reduced to 175.7+/-59.9 mm3 and 205.9+/-83.9 mm3 (1 and 2 h group, respectively; p<0.05) compared to 306.5+/-48.5 mm3 (control). Treatment at 3 h was not neuroprotective (293.0+/-40.1 mm3). After embolic MCAO, infarct volume was 167.5+/-90.7 mm3 (treatment group) and 398.9+/-141.3 mm3 (control; p=0.002). In conclusion, VELCADE treatment inhibited whole blood proteasome activity and achieved significant neuroprotection in two rat models of focal cerebral ischemia at various time points poststroke.  相似文献   

20.
5-Lipoxygenase inhibitor zileuton has been demonstrated to attenuate ischemic brain damage in rats of permanent focal cerebral ischemia in previous work. To further investigate the mechanism underlying zileuton's neuroprotection, adult male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (MCAO), then received treatment with zileuton or vehicle after the onset of ischemia. Neurological deficit, cerebral infarction, and morphological characteristic were measured 6 and 24 h after MCAO. The enzymatic activity of myeloperoxidase (MPO) was assessed 6 and 24 h after MCAO and the lipid peroxidation levels were evaluated by malondialdehyde assay. Expression of nuclear factor-kappa B (NF-κB) p65 in rat brain was detected by immunohistochemistry and Western blot. Expression of inducible nitric oxide synthase (iNOS) in rat brain was determined by RT-PCR and Western blot. Nitric oxide production in rat brain was also measured 24 h after MCAO. The concentration of TNF-α and IL-1β in serum were detected by ELISA. Zileuton significantly reduced neurological deficit scores, cerebral infarct volume, MPO activity, and the lipid peroxidation levels. It also inhibited the expression of NF-κB and decreased the expression and activity of iNOS in rat brain. In addition, zileuton attenuated the release of TNF-α and IL-1β in serum. Our results suggest that zileuton reduces inflammatory reaction and brain damage in a rat model of permanent focal cerebral ischemia. The neuroprotective effect of zileuton in cerebral ischemia might be associated with the inhibition of inflammatory reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号